summaryrefslogtreecommitdiff
path: root/math/p5-Math-Random-ISAAC/distinfo
AgeCommit message (Collapse)AuthorFilesLines
2015-11-03Add SHA512 digests for distfiles for math categoryagc1-1/+2
Problems found locating distfiles: Package dfftpack: missing distfile dfftpack-20001209.tar.gz Package eispack: missing distfile eispack-20001130.tar.gz Package fftpack: missing distfile fftpack-20001130.tar.gz Package linpack: missing distfile linpack-20010510.tar.gz Package minpack: missing distfile minpack-20001130.tar.gz Package odepack: missing distfile odepack-20001130.tar.gz Package py-networkx: missing distfile networkx-1.10.tar.gz Package py-sympy: missing distfile sympy-0.7.6.1.tar.gz Package quadpack: missing distfile quadpack-20001130.tar.gz Otherwise, existing SHA1 digests verified and found to be the same on the machine holding the existing distfiles (morden). All existing SHA1 digests retained for now as an audit trail.
2013-07-03Adding package for CPAN distribution Math-Random-ISAAC version 1.004 intosno1-0/+5
math/p5-Math-Random-ISAAC. As with other Pseudo-Random Number Generator (PRNG) algorithms like the Mersenne Twister (see Math::Random::MT), this algorithm is designed to take some seed information and produce seemingly random results as output. However, ISAAC (Indirection, Shift, Accumulate, Add, and Count) has different goals than these commonly used algorithms. In particular, it's really fast - on average, it requires only 18.75 machine cycles to generate a 32-bit value. This makes it suitable for applications where a significant amount of random data needs to be produced quickly, such solving using the Monte Carlo method or for games. The results are uniformly distributed, unbiased, and unpredictable unless you know the seed. The algorithm was published by Bob Jenkins in the late 90s and despite the best efforts of many security researchers, no feasible attacks have been found to date.