
LIBARCHIVE (3) BSD Library Functions Manual LIBARCHIVE (3)

NAME

libarchive — functions for reading and writing streaming archives

OVERVIEW

The libarchive library provides a flexible interface for reading and writing archives in various formats

such as tar and cpio. libarchive also supports reading and writing archives compressed using various

compression filters such as gzip and bzip2. The library is inherently stream-oriented; readers serially iterate

through the archive, writers serially add things to the archive. In particular, note that there is currently no

built-in support for random access nor for in-place modification.

When reading an archive, the library automatically detects the format and the compression. The library cur-

rently has read support for:

• old-style tar archives,

• most variants of the POSIX “ustar” format,

• the POSIX “pax interchange” format,

• GNU-format tar archives,

• most common cpio archive formats,

• ISO9660 CD images (including RockRidge and Joliet extensions),

• Zip archives,

• ar archives (including GNU/SysV and BSD extensions),

• Microsoft CAB archives,

• LHA archives,

• mtree file tree descriptions,

• RAR archives,

• XAR archives.

The library automatically detects archives compressed with gzip(1), bzip2(1), xz(1), lzip(1), or

compress(1) and decompresses them transparently. It can similarly detect and decode archives processed

with uuencode(1) or which have an rpm(1) header.

When writing an archive, you can specify the compression to be used and the format to use. The library can

write

• POSIX-standard “ustar” archives,

• POSIX “pax interchange format” archives,

• POSIX octet-oriented cpio archives,

• Zip archive,

• two different variants of shar archives,

• ISO9660 CD images,

• 7-Zip archives,

• ar archives,

• mtree file tree descriptions,

• XAR archives.

Pax interchange format is an extension of the tar archive format that eliminates essentially all of the limita-

tions of historic tar formats in a standard fashion that is supported by POSIX-compliant pax(1) implementa-

tions on many systems as well as several newer implementations of tar(1). Note that the default write for-

mat will suppress the pax extended attributes for most entries; explicitly requesting pax format will enable

those attributes for all entries.

The read and write APIs are accessed through the archive_read_XXX() functions and the

archive_write_XXX() functions, respectively, and either can be used independently of the other.

The rest of this manual page provides an overview of the library operation. More detailed information can be

found in the individual manual pages for each API or utility function.

BSD March 18, 2012 1



LIBARCHIVE (3) BSD Library Functions Manual LIBARCHIVE (3)

READING AN ARCHIVE

See archive_read(3).

WRITING AN ARCHIVE

See archive_write(3).

WRITING ENTRIES TO DISK

The archive_write_disk(3) API allows you to write archive_entry(3) objects to disk using the

same API used by archive_write(3). The archive_write_disk(3) API is used internally by

archive_read_extract(); using it directly can provide greater control over how entries get written to

disk. This API also makes it possible to share code between archive-to-archive copy and archive-to-disk ex-

traction operations.

READING ENTRIES FROM DISK

The archive_read_disk(3) supports for populating archive_entry(3) objects from information in

the filesystem. This includes the information accessible from the stat(2) system call as well as ACLs, ex-

tended attributes, and other metadata. The archive_read_disk(3) API also supports iterating over di-

rectory trees, which allows directories of files to be read using an API compatible with the

archive_read(3) API.

DESCRIPTION

Detailed descriptions of each function are provided by the corresponding manual pages.

All of the functions utilize an opaque struct archive datatype that provides access to the archive contents.

The struct archive_entry structure contains a complete description of a single archive entry. It uses an opaque

interface that is fully documented in archive_entry(3).

Users familiar with historic formats should be aware that the newer variants have eliminated most restrictions

on the length of textual fields. Clients should not assume that filenames, link names, user names, or group

names are limited in length. In particular, pax interchange format can easily accommodate pathnames in ar-

bitrary character sets that exceed PA TH_MAX.

RETURN VALUES

Most functions return ARCHIVE_OK (zero) on success, non-zero on error. The return value indicates the

general severity of the error, ranging from ARCHIVE_WARN, which indicates a minor problem that should

probably be reported to the user, to ARCHIVE_FATAL, which indicates a serious problem that will prevent

any further operations on this archive. On error, the archive_errno() function can be used to retrieve a

numeric error code (see errno(2)). The archive_error_string() returns a textual error message

suitable for display.

archive_read_new() and archive_write_new() return pointers to an allocated and initialized struct

archive object.

archive_read_data() and archive_write_data() return a count of the number of bytes actually

read or written. A value of zero indicates the end of the data for this entry. A negative value indicates an er-

ror, in which case the archive_errno() and archive_error_string() functions can be used to ob-

tain more information.

ENVIRONMENT

There are character set conversions within the archive_entry(3) functions that are impacted by the cur-

rently-selected locale.

BSD March 18, 2012 2



LIBARCHIVE (3) BSD Library Functions Manual LIBARCHIVE (3)

SEE ALSO

tar(1), archive_entry(3), archive_read(3), archive_util(3), archive_write(3), tar(5)

HISTORY

The libarchive library first appeared in FreeBSD 5.3.

AUTHORS

The libarchive library was originally written by Tim Kientzle <kientzle@acm.org>.

BUGS

Some archive formats support information that is not supported by struct archive_entry. Such information can-

not be fully archived or restored using this library. This includes, for example, comments, character sets, or

the arbitrary key/value pairs that can appear in pax interchange format archives.

Conversely, of course, not all of the information that can be stored in an struct archive_entry is supported by all

formats. For example, cpio formats do not support nanosecond timestamps; old tar formats do not support

large device numbers.

The ISO9660 reader cannot yet read all ISO9660 images; it should learn how to seek.

The AR writer requires the client program to use two passes, unlike all other libarchive writers.

BSD March 18, 2012 3


