The pkgsrc guide

Documentation on the NetBSD packages system

Alistair Crooks

<agc@NetBSD.org>

Hubert Feyrer

<hubertf@NetBSD.org>

The pkgsrc Developers

Copyright   1994-2006 The NetBSD Foundation, Inc

$NetBSD: pkgsrc.xml,v 1.21 2006/07/03 23:51:01 rillig Exp $

Abstract

pkgsrc is a centralized package management system for Unix-like operating
systems. This guide provides information for users and developers of pkgsrc. It
covers installation of binary and source packages, creation of binary and
source packages and a high-level overview about the infrastructure.

-------------------------------------------------------------------------------

Table of Contents

1. What is pkgsrc?

    1.1. Introduction
    1.2. Overview
    1.3. Terminology

        1.3.1. Commonly used abbreviations
        1.3.2. People involved in pkgsrc

    1.4. Typography

I. The pkgsrc user's guide

    2. Where to get pkgsrc and how to keep it up-to-date

        2.1. Getting pkgsrc for the first time

            2.1.1. As tar file
            2.1.2. Via SUP
            2.1.3. Via CVS

        2.2. Keeping pkgsrc up-to-date

            2.2.1. Via tar files
            2.2.2. Via CVS

    3. Using pkgsrc on systems other than NetBSD

        3.1. Bootstrapping pkgsrc
        3.2. Platform-specific notes

            3.2.1. Darwin (Mac OS X)
            3.2.2. FreeBSD
            3.2.3. Interix
            3.2.4. IRIX
            3.2.5. Linux
            3.2.6. OpenBSD
            3.2.7. Solaris

    4. Using pkgsrc

        4.1. Using binary packages

            4.1.1. Finding binary packages
            4.1.2. Installing binary packages
            4.1.3. A word of warning

        4.2. Building packages from source

            4.2.1. Requirements
            4.2.2. Fetching distfiles
            4.2.3. How to build and install
            4.2.4. Selecting the compiler

    5. Configuring pkgsrc

        5.1. General configuration
        5.2. Variables affecting the build process
        5.3. Selecting and configuring the compiler

            5.3.1. Additional flags to the compiler (CFLAGS)

        5.4. Developer/advanced settings
        5.5. Selecting Build Options

    6. Creating binary packages

        6.1. Building a single binary package
        6.2. Settings for creation of binary packages
        6.3. Doing a bulk build of all packages

            6.3.1. Configuration
            6.3.2. Other environmental considerations
            6.3.3. Operation
            6.3.4. What it does
            6.3.5. Disk space requirements
            6.3.6. Setting up a sandbox for chrooted builds
            6.3.7. Building a partial set of packages
            6.3.8. Uploading results of a bulk build

        6.4. Creating a multiple CD-ROM packages collection

            6.4.1. Example of cdpack

    7. Frequently Asked Questions

        7.1. Are there any mailing lists for pkg-related discussion?
        7.2. Where's the pkgviews documentation?
        7.3. Utilities for package management (pkgtools)
        7.4. How to use pkgsrc as non-root
        7.5. How to resume transfers when fetching distfiles?
        7.6. How can I install/use XFree86 from pkgsrc?
        7.7. How can I install/use X.org from pkgsrc?
        7.8. How to fetch files from behind a firewall
        7.9. How do I tell make fetch to do passive FTP?
        7.10. How to fetch all distfiles at once
        7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc"
            mean?
        7.12. What does "Could not find bsd.own.mk" mean?
        7.13. Using 'sudo' with pkgsrc
        7.14. How do I change the location of configuration files?
        7.15. Automated security checks
        7.16. Why do some packages ignore my CFLAGS?
        7.17. A package does not build. What shall I do?

II. The pkgsrc developer's guide

    8. Creating a new pkgsrc package from scratch
    9. Package components - files, directories and contents

        9.1. Makefile
        9.2. distinfo
        9.3. patches/*
        9.4. Other mandatory files
        9.5. Optional files

            9.5.1. Files affecting the binary package
            9.5.2. Files affecting the build process
            9.5.3. Files affecting nothing at all

        9.6. work*
        9.7. files/*

    10. Programming in Makefiles

        10.1. Makefile variables

            10.1.1. Naming conventions

        10.2. Code snippets

            10.2.1. Adding things to a list
            10.2.2. Converting an internal list into an external list
            10.2.3. Passing variables to a shell command
            10.2.4. Quoting guideline
            10.2.5. Workaround for a bug in BSD Make

    11. PLIST issues

        11.1. RCS ID
        11.2. Semi-automatic PLIST generation
        11.3. Tweaking output of make print-PLIST
        11.4. Variable substitution in PLIST
        11.5. Man page compression
        11.6. Changing PLIST source with PLIST_SRC
        11.7. Platform-specific and differing PLISTs
        11.8. Sharing directories between packages

    12. Buildlink methodology

        12.1. Converting packages to use buildlink3
        12.2. Writing buildlink3.mk files

            12.2.1. Anatomy of a buildlink3.mk file
            12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files

        12.3. Writing builtin.mk files

            12.3.1. Anatomy of a builtin.mk file
            12.3.2. Global preferences for native or pkgsrc software

    13. The pkginstall framework

        13.1. Files and directories outside the installation prefix

            13.1.1. Directory manipulation
            13.1.2. File manipulation

        13.2. Configuration files

            13.2.1. How PKG_SYSCONFDIR is set
            13.2.2. Telling the software where configuration files are
            13.2.3. Patching installations
            13.2.4. Disabling handling of configuration files

        13.3. System startup scripts

            13.3.1. Disabling handling of system startup scripts

        13.4. System users and groups
        13.5. System shells

            13.5.1. Disabling shell registration

        13.6. Fonts

            13.6.1. Disabling automatic update of the fonts databases

    14. Options handling

        14.1. Global default options
        14.2. Converting packages to use bsd.options.mk
        14.3. Option Names

    15. The build process

        15.1. Introduction
        15.2. Program location
        15.3. Directories used during the build process
        15.4. Running a phase
        15.5. The fetch phase
        15.6. The checksum phase
        15.7. The extract phase
        15.8. The patch phase
        15.9. The tools phase
        15.10. The wrapper phase
        15.11. The configure phase
        15.12. The build phase
        15.13. The test phase
        15.14. The install phase
        15.15. The package phase
        15.16. Other helpful targets

    16. Tools needed for building or running

        16.1. Tools for pkgsrc builds
        16.2. Tools needed by packages
        16.3. Tools provided by platforms

    17. Making your package work

        17.1. General operation

            17.1.1. Portability of packages
            17.1.2. How to pull in user-settable variables from mk.conf
            17.1.3. User interaction
            17.1.4. Handling licenses
            17.1.5. Restricted packages
            17.1.6. Handling dependencies
            17.1.7. Handling conflicts with other packages
            17.1.8. Packages that cannot or should not be built
            17.1.9. Packages which should not be deleted, once installed
            17.1.10. Handling packages with security problems
            17.1.11. How to handle incrementing versions when fixing an
                existing package
            17.1.12. Substituting variable text in the package files (the SUBST
                framework)

        17.2. Fixing problems in the fetch phase

            17.2.1. Packages whose distfiles aren't available for plain
                downloading
            17.2.2. How to handle modified distfiles with the 'old' name

        17.3. Fixing problems in the configure phase

            17.3.1. Shared libraries - libtool
            17.3.2. Using libtool on GNU packages that already support libtool
            17.3.3. GNU Autoconf/Automake

        17.4. Fixing problems in the build phase

            17.4.1. Compiling C and C++ code conditionally
            17.4.2. How to handle compiler bugs
            17.4.3. Undefined reference to "..."

        17.5. Fixing problems in the install phase

            17.5.1. Creating needed directories
            17.5.2. Where to install documentation
            17.5.3. Installing score files
            17.5.4. Packages containing perl scripts
            17.5.5. Packages with hardcoded paths to other interpreters
            17.5.6. Packages installing perl modules
            17.5.7. Packages installing info files
            17.5.8. Packages installing man pages
            17.5.9. Packages installing GConf2 data files
            17.5.10. Packages installing scrollkeeper data files
            17.5.11. Packages installing X11 fonts
            17.5.12. Packages installing GTK2 modules
            17.5.13. Packages installing SGML or XML data
            17.5.14. Packages installing extensions to the MIME database
            17.5.15. Packages using intltool
            17.5.16. Packages installing startup scripts
            17.5.17. Packages installing TeX modules

        17.6. Feedback to the author

    18. Debugging
    19. Submitting and Committing

        19.1. Submitting binary packages
        19.2. Submitting source packages (for non-NetBSD-developers)
        19.3. General notes when adding, updating, or removing packages
        19.4. Committing: Importing a package into CVS
        19.5. Updating a package to a newer version
        19.6. Moving a package in pkgsrc

    20. Frequently Asked Questions

III. The pkgsrc infrastructure internals

    21. Design of the pkgsrc infrastructure

        21.1. Variable evaluation

            21.1.1. At load time
            21.1.2. At runtime

        21.2. How can variables be specified?
        21.3. Designing interfaces for Makefile fragments

            21.3.1. Procedures with parameters
            21.3.2. Actions taken on behalf of parameters

    22. Regression tests

        22.1. The regression tests framework
        22.2. Running the regression tests
        22.3. Adding a new regression test

            22.3.1. Overridable functions
            22.3.2. Helper functions

    23. Porting pkgsrc

        23.1. Porting pkgsrc to a new operating system
        23.2. Adding support for a new compiler

A. A simple example package: bison

    A.1. files

        A.1.1. Makefile
        A.1.2. DESCR
        A.1.3. PLIST
        A.1.4. Checking a package with pkglint

    A.2. Steps for building, installing, packaging

B. Build logs

    B.1. Building figlet
    B.2. Packaging figlet

C. Directory layout of the pkgsrc FTP server

    C.1. bootstrap-pkgsrc: Bootstrap kits
    C.2. distfiles: The distributed source files
    C.3. iso: Currently empty
    C.4. misc: Miscellaneous things
    C.5. packages*: Binary packages
    C.6. current, 200xQy: source packages

D. Editing guidelines for the pkgsrc guide

    D.1. Make targets
    D.2. Procedure

Chapter 1. What is pkgsrc?

Table of Contents

1.1. Introduction
1.2. Overview
1.3. Terminology

    1.3.1. Commonly used abbreviations
    1.3.2. People involved in pkgsrc

1.4. Typography

1.1. Introduction

There is a lot of software freely available for Unix-based systems, which
usually runs on NetBSD and other Unix-flavoured systems, too, sometimes with
some modifications. The NetBSD Packages Collection (pkgsrc) incorporates any
such changes necessary to make that software run, and makes the installation
(and de-installation) of the software package easy by means of a single
command.

Once the software has been built, it is manipulated with the pkg_* tools so
that installation and de-installation, printing of an inventory of all
installed packages and retrieval of one-line comments or more verbose
descriptions are all simple.

pkgsrc currently contains several thousand packages, including:

  * www/apache - The Apache web server

  * www/mozilla - The Mozilla web browser

  * meta-pkgs/gnome - The GNOME Desktop Environment

  * meta-pkgs/kde3 - The K Desktop Environment

...just to name a few.

pkgsrc has built-in support for handling varying dependencies, such as pthreads
and X11, and extended features such as IPv6 support on a range of platforms.

pkgsrc was derived from FreeBSD's ports system, and initially developed for
NetBSD only. Since then, pkgsrc has grown a lot, and now supports the following
platforms:

  * Darwin (Mac OS X)

  * DragonFly BSD

  * FreeBSD

  * Microsoft Windows, via Interix

  * IRIX

  * Linux

  * NetBSD (of course)

  * Tru64 (Digital UNIX, OSF1)

  * OpenBSD

  * Solaris

1.2. Overview

This document is divided into three parts. The first, The pkgsrc user's guide,
describes how one can use one of the packages in the Package Collection, either
by installing a precompiled binary package, or by building one's own copy using
the NetBSD package system. The second part, The pkgsrc developer's guide,
explains how to prepare a package so it can be easily built by other NetBSD
users without knowing about the package's building details. The third part, The
pkgsrc infrastructure internals is intended for those who want to understand
how pkgsrc is implemented.

This document is available in various formats: HTML, PDF, PS, TXT.

1.3. Terminology

There has been a lot of talk about "ports", "packages", etc. so far. Here is a
description of all the terminology used within this document.

Package

    A set of files and building instructions that describe what's necessary to
    build a certain piece of software using pkgsrc. Packages are traditionally
    stored under /usr/pkgsrc.

The NetBSD package system

    This is the former name of "pkgsrc". It is part of the NetBSD operating
    system and can be bootstrapped to run on non-NetBSD operating systems as
    well. It handles building (compiling), installing, and removing of
    packages.

Distfile

    This term describes the file or files that are provided by the author of
    the piece of software to distribute his work. All the changes necessary to
    build on NetBSD are reflected in the corresponding package. Usually the
    distfile is in the form of a compressed tar-archive, but other types are
    possible, too. Distfiles are usually stored below /usr/pkgsrc/distfiles.

Port

    This is the term used by FreeBSD and OpenBSD people for what we call a
    package. In NetBSD terminology, "port" refers to a different architecture.

Precompiled/binary package

    A set of binaries built with pkgsrc from a distfile and stuffed together in
    a single .tgz file so it can be installed on machines of the same machine
    architecture without the need to recompile. Packages are usually generated
    in /usr/pkgsrc/packages; there is also an archive on ftp.NetBSD.org.

    Sometimes, this is referred to by the term "package" too, especially in the
    context of precompiled packages.

Program

    The piece of software to be installed which will be constructed from all
    the files in the distfile by the actions defined in the corresponding
    package.

1.3.1. Commonly used abbreviations

ICE

    Internal Compiler Error

1.3.2. People involved in pkgsrc

pkgsrc users

    The pkgsrc users are people who use the packages provided by pkgsrc.
    Typically they are system administrators. The people using the software
    that is inside the packages (maybe called "end users") are not covered by
    the pkgsrc guide.

    There are two kinds of pkgsrc users: Some only want to install pre-built
    binary packages. Others build the pkgsrc packages from source, either for
    installing them directly or for building binary packages themselves. For
    pkgsrc users Part I, "The pkgsrc user's guide" should provide all necessary
    documentation.

package maintainers

    A package maintainer creates packages as described in Part II, "The pkgsrc
    developer's guide".

infrastructure developers

    These people are involved in all those files that live in the mk/ directory
    and below. Only these people should need to read through Part III, "The
    pkgsrc infrastructure internals", though others might be curious, too.

1.4. Typography

When giving examples for commands, shell prompts are used to show if the
command should/can be issued as root, or if "normal" user privileges are
sufficient. We use a # for root's shell prompt, and a % for users' shell
prompt, assuming they use the C-shell or tcsh.

Part I. The pkgsrc user's guide

Table of Contents

2. Where to get pkgsrc and how to keep it up-to-date

    2.1. Getting pkgsrc for the first time

        2.1.1. As tar file
        2.1.2. Via SUP
        2.1.3. Via CVS

    2.2. Keeping pkgsrc up-to-date

        2.2.1. Via tar files
        2.2.2. Via CVS

3. Using pkgsrc on systems other than NetBSD

    3.1. Bootstrapping pkgsrc
    3.2. Platform-specific notes

        3.2.1. Darwin (Mac OS X)
        3.2.2. FreeBSD
        3.2.3. Interix
        3.2.4. IRIX
        3.2.5. Linux
        3.2.6. OpenBSD
        3.2.7. Solaris

4. Using pkgsrc

    4.1. Using binary packages

        4.1.1. Finding binary packages
        4.1.2. Installing binary packages
        4.1.3. A word of warning

    4.2. Building packages from source

        4.2.1. Requirements
        4.2.2. Fetching distfiles
        4.2.3. How to build and install
        4.2.4. Selecting the compiler

5. Configuring pkgsrc

    5.1. General configuration
    5.2. Variables affecting the build process
    5.3. Selecting and configuring the compiler

        5.3.1. Additional flags to the compiler (CFLAGS)

    5.4. Developer/advanced settings
    5.5. Selecting Build Options

6. Creating binary packages

    6.1. Building a single binary package
    6.2. Settings for creation of binary packages
    6.3. Doing a bulk build of all packages

        6.3.1. Configuration
        6.3.2. Other environmental considerations
        6.3.3. Operation
        6.3.4. What it does
        6.3.5. Disk space requirements
        6.3.6. Setting up a sandbox for chrooted builds
        6.3.7. Building a partial set of packages
        6.3.8. Uploading results of a bulk build

    6.4. Creating a multiple CD-ROM packages collection

        6.4.1. Example of cdpack

7. Frequently Asked Questions

    7.1. Are there any mailing lists for pkg-related discussion?
    7.2. Where's the pkgviews documentation?
    7.3. Utilities for package management (pkgtools)
    7.4. How to use pkgsrc as non-root
    7.5. How to resume transfers when fetching distfiles?
    7.6. How can I install/use XFree86 from pkgsrc?
    7.7. How can I install/use X.org from pkgsrc?
    7.8. How to fetch files from behind a firewall
    7.9. How do I tell make fetch to do passive FTP?
    7.10. How to fetch all distfiles at once
    7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
    7.12. What does "Could not find bsd.own.mk" mean?
    7.13. Using 'sudo' with pkgsrc
    7.14. How do I change the location of configuration files?
    7.15. Automated security checks
    7.16. Why do some packages ignore my CFLAGS?
    7.17. A package does not build. What shall I do?

Chapter 2. Where to get pkgsrc and how to keep it up-to-date

Table of Contents

2.1. Getting pkgsrc for the first time

    2.1.1. As tar file
    2.1.2. Via SUP
    2.1.3. Via CVS

2.2. Keeping pkgsrc up-to-date

    2.2.1. Via tar files
    2.2.2. Via CVS

The most common location where pkgsrc is installed is /usr/pkgsrc for the
"package sources" and /usr/pkg for the installed binary packages. You are
though free to install the sources and binary packages wherever you want in
your filesystem, provided that both paths do not contain white-space or other
characters that are interpreted specially by the shell and some other programs.
A safe bet is to use only letters, digits, underscores and dashes in the names.

2.1. Getting pkgsrc for the first time

Before you download any pkgsrc files, you should decide whether you want the
current branch or the stable branch. The latter is forked on a quarterly basis
from the current branch and only gets modified for security updates. The names
of the stable branches are built from the year and the quarter, for example
2006Q1.

The second step is to decide how you want to download pkgsrc. You can get it as
a tar file, via SUP, or via CVS. All three ways are described here.

2.1.1. As tar file

The primary download location for all pkgsrc files is ftp://ftp.NetBSD.org/pub/
pkgsrc/. There are a number of subdirectories for different purposes, which are
described in detail in Appendix C, Directory layout of the pkgsrc FTP server.

The tar file for the current branch is in the directory current and is called
pkgsrc.tar.gz. It is autogenerated daily.

The tar file for the stable branch 2006Q1 is in the directory 2006Q1 and is
also called pkgsrc.tar.gz.

After downloading the tar file, change to the directory where you want to have
pkgsrc. This is usually /usr. Then, run tar xfz pkgsrc.tar.gz to extract the
files.

2.1.2. Via SUP

As an alternative to the tar file, you can get pkgsrc via the Software Update
Protocol, SUP. To do so, make sure your supfile has a line

    release=pkgsrc

in it, see the examples in /usr/share/examples/supfiles, and that the /usr/
pkgsrc directory exists. Then, simply run sup -v /path/to/your/supfile.

2.1.3. Via CVS

To get pkgsrc via CVS, make sure you have cvs(1) installed. To do an initial
(full) checkout of pkgsrc, you first have to set some environment variables.
For the C-Shell, type:

    % setenv CVSROOT anoncvs@anoncvs.NetBSD.org:/cvsroot
    % setenv CVS_RSH ssh

Or, the same for the bourne shell:

    $ CVSROOT="anoncvs@anoncvs.NetBSD.org:/cvsroot"
    $ CVS_RSH="ssh"
    $ export CVSROOT CVS_RSH

Then, you change to the directory where you want to have your copy of pkgsrc.
In most cases this is /usr. In that directory you run the checkout command,
which is cvs -q checkout -P pkgsrc for the current branch and cvs -q checkout
-rpkgsrc-2006Q1 -P pkgsrc for the stable branch. This command will create a
directory called pkgsrc with all the pkgsrc files in it.

2.2. Keeping pkgsrc up-to-date

The preferred way to keep pkgsrc up-to-date is via CVS (which also works if you
have first installed it via a tar file). It saves bandwidth and hard disk
activity, compared to downloading the tar file again.

2.2.1. Via tar files

Warning

When updating from a tar file, you first need to completely remove the old
pkgsrc directory. Otherwise those files that have been removed from pkgsrc in
the mean time will not be removed on your local disk, resulting in
inconsistencies. When removing the old files, any changes that you have done to
the pkgsrc files will be lost after updating. Therefore updating via CVS is
strongly recommended.

To update pkgsrc from a tar file, download the tar file as explained above.
Then, make sure that you have not made any changes to the files in the pkgsrc
directory. Remove the pkgsrc directory and extract the new tar file. Done.

2.2.2. Via CVS

To update pkgsrc via CVS, make sure the environment variable CVS_RSH is set as
above. Then, change to the pkgsrc directory and run cvs -q update -dP.

2.2.2.1. Switching between different pkgsrc branches

When updating pkgsrc, the CVS program keeps track of the branch you selected.
But if you, for whatever reason, want to switch from the stable branch to the
current one, you can do it by adding the option "-A" after the "update"
keyword. To switch from the current branch back to the stable branch, add the
"-rpkgsrc-2006Q1" option.

2.2.2.2. What happens to my changes when updating?

When you update pkgsrc, the CVS program will only touch those files that are
registered in the CVS repository. That means that any packages that you created
on your own will stay unmodified. If you change files that are managed by CVS,
later updates will try to merge your changes with those that have been done by
others. See the CVS manual, chapter "update" for details.

Chapter 3. Using pkgsrc on systems other than NetBSD

Table of Contents

3.1. Bootstrapping pkgsrc
3.2. Platform-specific notes

    3.2.1. Darwin (Mac OS X)
    3.2.2. FreeBSD
    3.2.3. Interix
    3.2.4. IRIX
    3.2.5. Linux
    3.2.6. OpenBSD
    3.2.7. Solaris

3.1. Bootstrapping pkgsrc

For operating systems other than NetBSD, we provide a bootstrap kit to build
the required tools to use pkgsrc on your platform. Besides support for native
NetBSD, pkgsrc and the bootstrap kit have support for the following operating
systems:

  * Darwin (Mac OS X)

  * DragonFly BSD

  * FreeBSD

  * Interix (Windows 2000, XP, 2003)

  * IRIX

  * Linux

  * OpenBSD

  * Solaris

  * Tru64 (Digital UNIX/OSF1)

Support for other platforms is under development.

Installing the bootstrap kit should be as simple as:

# env CVS_RSH=ssh cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout pkgsrc
# cd pkgsrc/bootstrap
# ./bootstrap

See Chapter 2, Where to get pkgsrc and how to keep it up-to-date for other ways
to get pkgsrc before bootstrapping. The given bootstrap command will use the
defaults of /usr/pkg for the prefix where programs will be installed in, and /
var/db/pkg for the package database directory where pkgsrc will do its internal
bookkeeping. However, these can also be set using command-line arguments.

Binary packages for the pkgsrc tools and an initial set of packages is
available for supported platforms. An up-to-date list of these can be found on
www.pkgsrc.org. Note that this only works for privileged builds that install
into /usr/pkg.

Note

The bootstrap installs a bmake tool. Use this bmake when building via pkgsrc.
For examples in this guide, use bmake instead of "make".

3.2. Platform-specific notes

Here are some platform-specific notes you should be aware of.

3.2.1. Darwin (Mac OS X)

Darwin 5.x and 6.x are supported. There are two methods of using pkgsrc on Mac
OS X, by using a disk image, or a UFS partition.

Before you start, you will need to download and install the Mac OS X Developer
Tools from Apple's Developer Connection. See http://developer.apple.com/macosx/
for details. Also, make sure you install X11 for Mac OS X and the X11 SDK from
http://www.apple.com/macosx/x11/download/ if you intend to build packages that
use the X11 Window System.

If you already have a UFS partition, or have a spare partition that you can
format as UFS, it is recommended to use that instead of the disk image. It'll
be somewhat faster and will mount automatically at boot time, where you must
manually mount a disk image.

Note

You cannot use a HFS+ file system for pkgsrc, because pkgsrc currently requires
the file system to be case-sensitive, and HFS+ is not.

3.2.1.1. Using a disk image

Create the disk image:

# cd pkgsrc/bootstrap
# ./ufsdiskimage create ~/Documents/NetBSD 512 # megabytes - season to taste
# ./ufsdiskimage mount ~/Documents/NetBSD
# sudo chown `id -u`:`id -g` /Volumes/NetBSD

That's it!

3.2.1.2. Using a UFS partition

By default, /usr will be on your root file system, normally HFS+. It is
possible to use the default prefix of /usr/pkg by symlinking /usr/pkg to a
directory on a UFS file system. Obviously, another symlink is required if you
want to place the package database directory outside the prefix. e.g.

# ./bootstrap --pkgdbdir /usr/pkg/pkgdb

If you created your partitions at the time of installing Mac OS X and formatted
the target partition as UFS, it should automatically mount on /Volumes/<volume
name> when the machine boots. If you are (re)formatting a partition as UFS, you
need to ensure that the partition map correctly reflects "Apple_UFS" and not
"Apple_HFS".

The problem is that none of the disk tools will let you touch a disk that is
booted from. You can unmount the partition, but even if you newfs it, the
partition type will be incorrect and the automounter won't mount it. It can be
mounted manually, but it won't appear in Finder.

You'll need to boot off of the OS X Installation (User) CD. When the
Installation program starts, go up to the menu and select Disk Utility. Now,
you will be able to select the partition you want to be UFS, and Format it
Apple UFS. Quit the Disk Utility, quit the installer which will reboot your
machine. The new UFS file system will appear in Finder.

Be aware that the permissions on the new file system will be writable by root
only.

This note is as of 10.2 (Jaguar) and applies to earlier versions. Hopefully
Apple will fix Disk Utility in 10.3 (Panther).

3.2.2. FreeBSD

FreeBSD 4.7 and 5.0 have been tested and are supported, other versions may
work.

Care should be taken so that the tools that this kit installs do not conflict
with the FreeBSD userland tools. There are several steps:

 1. FreeBSD stores its ports pkg database in /var/db/pkg. It is therefore
    recommended that you choose a different location (e.g. /usr/pkgdb) by using
    the --pkgdbdir option to the bootstrap script.

 2. If you do not intend to use the FreeBSD ports tools, it's probably a good
    idea to move them out of the way to avoid confusion, e.g.

    # cd /usr/sbin
    # mv pkg_add pkg_add.orig
    # mv pkg_create pkg_create.orig
    # mv pkg_delete pkg_delete.orig
    # mv pkg_info pkg_info.orig

 3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
    when you use the bootstrap script.

3.2.3. Interix

Interix is a POSIX-compatible subsystem for the Windows NT kernel, providing a
Unix-like environment with a tighter kernel integration than available with
Cygwin. It is part of the Windows Services for Unix package, available for free
for any licensed copy of Windows 2000, XP (not including XP Home), or 2003. SFU
can be downloaded from http://www.microsoft.com/windows/sfu/.

Services for Unix 3.5, current as of this writing, has been tested. 3.0 or 3.1
may work, but are not officially supported. (The main difference in 3.0/3.1 is
lack of pthreads.)

3.2.3.1. When installing Interix/SFU

At an absolute minimum, the following packages must be installed from the
Windows Services for Unix 3.5 distribution in order to use pkgsrc:

  * Utilities -> Base Utilities

  * Interix GNU Components -> (all)

  * Remote Connectivity

  * Interix SDK

When using pkgsrc on Interix, DO NOT install the Utilities subcomponent "UNIX
Perl". That is Perl 5.6 without shared module support, installed to /usr/local,
and will only cause confusion. Instead, install Perl 5.8 from pkgsrc (or from a
binary package).

The Remote Connectivity subcomponent "Windows Remote Shell Service" does not
need to be installed, but Remote Connectivity itself should be installed in
order to have a working inetd.

During installation you may be asked whether to enable setuid behavior for
Interix programs, and whether to make pathnames default to case-sensitive.
Setuid should be enabled, and case-sensitivity MUST be enabled. (Without
case-sensitivity, a large number of packages including perl will not build.)

NOTE: Newer Windows service packs change the way binary execution works (via
the Data Execution Prevention feature). In order to use pkgsrc and other
gcc-compiled binaries reliably, a hotfix containing POSIX.EXE, PSXDLL.DLL,
PSXRUN.EXE, and PSXSS.EXE (899522 or newer) must be installed. Hotfixes are
available from Microsoft through a support contract; however, a NetBSD
developer has made most Interix hotfixes available for personal use from http:/
/www.duh.org/interix/hotfixes.php.

3.2.3.2. What to do if Interix/SFU is already installed

If SFU is already installed and you wish to alter these settings to work with
pkgsrc, note the following things.

  * To uninstall UNIX Perl, use Add/Remove Programs, select Microsoft Windows
    Services for UNIX, then click Change. In the installer, choose Add or
    Remove, then uncheck Utilities->UNIX Perl.

  * To enable case-sensitivity for the file system, run REGEDIT.EXE, and change
    the following registry key:

    HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\kernel

    Set the DWORD value "obcaseinsensitive" to 0; then reboot.

  * To enable setuid binaries (optional), run REGEDIT.EXE, and change the
    following registry key:

    HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Services for UNIX

    Set the DWORD value "EnableSetuidBinaries" to 1; then reboot.

3.2.3.3. Important notes for using pkgsrc

The package manager (either the pkgsrc "su" user, or the user running
"pkg_add") must be a member of the local Administrators group. Such a user must
also be used to run the bootstrap. This is slightly relaxed from the normal
pkgsrc requirement of "root".

The package manager should use a umask of 002. "make install" will
automatically complain if this is not the case. This ensures that directories
written in /var/db/pkg are Administrators-group writeable.

The popular Interix binary packages from http://www.interopsystems.com/ use an
older version of pkgsrc's pkg_* tools. Ideally, these should NOT be used in
conjunction with pkgsrc. If you choose to use them at the same time as the
pkgsrc packages, ensure that you use the proper pkg_* tools for each type of
binary package.

The TERM setting used for DOS-type console windows (including those invoked by
the csh and ksh startup shortcuts) is "interix". Most systems don't have a
termcap/terminfo entry for it, but the following .termcap entry provides
adequate emulation in most cases:

    interix:kP=\E[S:kN=\E[T:kH=\E[U:dc@:DC@:tc=pcansi:

3.2.3.4. Limitations of the Interix platform

Though Interix suffices as a familiar and flexible substitute for a full
Unix-like platform, it has some drawbacks that should be noted for those
desiring to make the most of Interix.

  * X11:

    Interix comes with the standard set of X11R6 client libraries, and can run
    X11 based applications, but it does not come with an X server. Some options
    are StarNet X-Win32, Hummingbird Exceed (available in a trimmed version for
    Interix from Interop Systems as the Interop X Server), and the free X11
    server included with Cygwin.

    Also, StarNet Communications has graciously provided a free version of
    their X-Win32 product that accepts connections only from localhost: X-Win32
    LX, recommended by the maintainer of Interix pkgsrc support.

  * X11 acceleration:

    Because Interix runs in a completely different NT subsystem from Win32
    applications, it does not currently support various X11 protocol extensions
    for acceleration (such as MIT-SHM or DGA). Most interactive applications to
    a local X server will run reasonably fast, but full motion video and other
    graphics intensive applications may require a faster-than-expected CPU.

  * Audio:

    Interix has no native support for audio output. For audio support, pkgsrc
    uses the esound client/server audio system on Interix. Unlike on most
    platforms, the audio/esound package does not contain the esd server
    component. To output audio via an Interix host, the emulators/cygwin_esound
    package must also be installed.

  * CD/DVDs, USB, and SCSI:

    Direct device access is not currently supported in Interix, so it is not
    currently possible to access CD/DVD drives, USB devices, or SCSI devices
    through non-filesystem means. Among other things, this makes it impossible
    to use Interix directly for CD/DVD burning.

  * Tape drives:

    Due to the same limitations as for CD-ROMs and SCSI devices, tape drives
    are also not directly accessible in Interix. However, support is in work to
    make tape drive access possible by using Cygwin as a bridge (similarly to
    audio bridged via Cygwin's esound server).

3.2.3.5. Known issues for pkgsrc on Interix

It is not necessary, in general, to have a "root" user on the Windows system;
any member of the local Administrators group will suffice. However, some
packages currently assume that the user named "root" is the privileged user. To
accommodate these, you may create such a user; make sure it is in the local
group Administrators (or your language equivalent).

"pkg_add" creates directories of mode 0755, not 0775, in $PKG_DBDIR. For the
time being, install packages as the local Administrator (or your language
equivalent), or run the following command after installing a package to work
around the issue:

# chmod -R g+w $PKG_DBDIR

3.2.4. IRIX

You will need a working C compiler, either gcc or SGI's MIPS and MIPSpro
compiler (cc/c89). Please set the CC environment variable according to your
preference. If you do not have a license for the MIPSpro compiler suite, you
can download a gcc tardist file from http://freeware.sgi.com/.

Please note that you will need IRIX 6.5.17 or higher, as this is the earliest
version of IRIX providing support for if_indextoname(3), if_nametoindex(3),
etc.

At this point in time, pkgsrc only supports one ABI at a time. That is, you can
not switch between the old 32-bit ABI, the new 32-bit ABI and the 64-bit ABI.
If you start out using "abi=n32", that's what all your packages will be built
with.

Therefore, please make sure that you have no conflicting CFLAGS in your
environment or the /etc/mk.conf. Particularly, make sure that you do not try to
link n32 object files with lib64 or vice versa. Check your /etc/
compiler.defaults!

If you have the actual pkgsrc tree mounted via NFS from a different host,
please make sure to set WRKOBJDIR to a local directory, as it appears that IRIX
linker occasionally runs into issues when trying to link over a network-mounted
file system.

The bootstrapping process should set all the right options for programs such as
imake(1), but you may want to set some options depending on your local setup.
Please see pkgsrc/mk/defaults/mk.conf and, of course, your compiler's man pages
for details.

If you are using SGI's MIPSPro compiler, please set

    PKGSRC_COMPILER=        mipspro

in /etc/mk.conf. Otherwise, pkgsrc will assume you are using gcc and may end up
passing invalid flags to the compiler. Note that bootstrap should create an
appropriate mk.conf.example by default.

If you have both the MIPSPro compiler chain installed as well as gcc, but want
to make sure that MIPRPro is used, please set your PATH to not include the
location of gcc (often /usr/freeware/bin), and (important) pass the
'--preserve-path' flag.

3.2.5. Linux

Some versions of Linux (for example Debian GNU/Linux) need either libtermcap or
libcurses (libncurses). Installing the distributions libncurses-dev package (or
equivalent) should fix the problem.

pkgsrc supports both gcc (GNU Compiler Collection) and icc (Intel C++
Compiler). gcc is the default. icc 8.0 and 8.1 on i386 have been tested.

To bootstrap using icc, assuming the default icc installation directory:

    env CC=/opt/intel_cc_80/bin/icc LDFLAGS=-static-libcxa \
            ac_cv___attribute__=yes ./bootstrap

Note

icc 8.1 needs the `-i-static' argument instead of -static-libcxa.

icc supports __attribute__, but the GNU configure test uses a nested function,
which icc does not support. #undef'ing __attribute__ has the unfortunate
side-effect of breaking many of the Linux header files, which cannot be
compiled properly without __attribute__. The test must be overridden so that
__attribute__ is assumed supported by the compiler.

After bootstrapping, you should set PKGSRC_COMPILER in /etc/mk.conf:

    PKGSRC_COMPILER=        icc

The default installation directory for icc is /opt/intel_cc_80, which is also
the pkgsrc default. If you have installed it into a different directory, set
ICCBASE in /etc/mk.conf:

    ICCBASE=                /opt/icc

pkgsrc uses the static linking method of the runtime libraries provided by icc,
so binaries can be run on other systems which do not have the shared libraries
installed.

Libtool, however, extracts a list of libraries from the ld(1) command run when
linking a C++ shared library and records it, throwing away the -Bstatic and
-Bdynamic options interspersed between the libraries. This means that
libtool-linked C++ shared libraries will have a runtime dependency on the icc
libraries until this is fixed in libtool.

3.2.6. OpenBSD

OpenBSD 3.0 and 3.2 are tested and supported.

Care should be taken so that the tools that this kit installs do not conflict
with the OpenBSD userland tools. There are several steps:

 1. OpenBSD stores its ports pkg database in /var/db/pkg. It is therefore
    recommended that you choose a different location (e.g. /usr/pkgdb) by using
    the --pkgdbdir option to the bootstrap script.

 2. If you do not intend to use the OpenBSD ports tools, it's probably a good
    idea to move them out of the way to avoid confusion, e.g.

    # cd /usr/sbin
    # mv pkg_add pkg_add.orig
    # mv pkg_create pkg_create.orig
    # mv pkg_delete pkg_delete.orig
    # mv pkg_info pkg_info.orig

 3. An example /etc/mk.conf file will be placed in /etc/mk.conf.example file
    when you use the bootstrap script. OpenBSD's make program uses /etc/mk.conf
    as well. You can work around this by enclosing all the pkgsrc-specific
    parts of the file with:

        .ifdef BSD_PKG_MK
        # pkgsrc stuff, e.g. insert defaults/mk.conf or similar here
        .else
        # OpenBSD stuff
        .endif


3.2.7. Solaris

Solaris 2.6 through 9 are supported on both x86 and sparc. You will need a
working C compiler. Both gcc 2.95.3 and Sun WorkShop 5 have been tested.

The following packages are required on Solaris 8 for the bootstrap process and
to build packages.

  * SUNWsprot

  * SUNWarc

  * SUNWbtool

  * SUNWtoo

  * SUNWlibm

Please note that the use of GNU binutils on Solaris is not supported, as of
June 2006.

Whichever compiler you use, please ensure the compiler tools and your $prefix
are in your PATH. This includes /usr/ccs/{bin,lib} and e.g. /usr/pkg/
{bin,sbin}.

3.2.7.1. If you are using gcc

It makes life much simpler if you only use the same gcc consistently for
building all packages.

It is recommended that an external gcc be used only for bootstrapping, then
either build gcc from lang/gcc or install a binary gcc package, then remove gcc
used during bootstrapping.

Binary packages of gcc can be found through http://www.sun.com/bigadmin/common/
freewareSearch.html.

3.2.7.2. If you are using Sun WorkShop

You will need at least the following packages installed (from WorkShop 5.0)

  * SPROcc - Sun WorkShop Compiler C 5.0

  * SPROcpl - Sun WorkShop Compiler C++ 5.0

  * SPROild - Sun WorkShop Incremental Linker

  * SPROlang - Sun WorkShop Compilers common components

You should set CC, CXX and optionally, CPP in /etc/mk.conf, e.g.:

    CC=     cc
    CXX=    CC
    CPP=    /usr/ccs/lib/cpp

3.2.7.3. Buildling 64-bit binaries with SunPro

Building 64-bit binaries is a little trickier. First, you need to bootstrap
pkgsrc in 64-bit mode. One problem here is that while building one of the
programs in the bootstrap kit (bmake), the CFLAGS variable is not honored, even
if it is set in the environment. To work around this bug, you can create a
simple shell script called cc64 and put it somewhere in the PATH:

    #! /bin/sh
    exec /opt/SUNWspro/bin/cc -xtarget=ultra -xarch=v9 ${1+"$@"}

Then, pass the definition for CC in the environment of the bootstrap command:

    $ cd bootstrap
    $ CC=cc64 ./bootstrap

After bootstrapping, there are two alternative ways, depending on whether you
want to find bugs in packages or get your system ready quickly. If you just
want a running system, add the following lines to your mk.conf file:

    CC=                     cc64
    CXX=                    CC64
    PKGSRC_COMPILER=        sunpro

This way, all calls to the compiler will be intercepted by the above wrapper
and therefore get the necessary ABI options automatically. (Don't forget to
create the shell script CC64, too.)

To find packages that ignore the user-specified CFLAGS and CXXFLAGS, add the
following lines to your mk.conf file:

    CC=                     cc
    CXX=                    CC
    PKGSRC_COMPILER=        sunpro
    CFLAGS=                 -xtarget=ultra -xarch=v9
    CXXFLAGS=               -xtarget=ultra -xarch=v9
    LDFLAGS=                -xtarget=ultra -xarch=v9

Packages that don't use the flags provided in the configuration file will try
to build 32-bit binaries and fail during linking. Detecting this is useful to
prevent bugs on other platforms where the error would not show up but pass
silently.

3.2.7.4. Common problems

Sometimes, when using libtool, /bin/ksh crashes with a segmentation fault. The
workaround is to use another shell for the configure scripts, for example by
installing shells/bash and adding the following lines to your mk.conf:

    CONFIG_SHELL=   ${LOCALBASE}/bin/bash
    WRAPPER_SHELL=  ${LOCALBASE}/bin/bash

Then, rebuild the devel/libtool-base package.

Chapter 4. Using pkgsrc

Table of Contents

4.1. Using binary packages

    4.1.1. Finding binary packages
    4.1.2. Installing binary packages
    4.1.3. A word of warning

4.2. Building packages from source

    4.2.1. Requirements
    4.2.2. Fetching distfiles
    4.2.3. How to build and install
    4.2.4. Selecting the compiler

Basically, there are two ways of using pkgsrc. The first is to only install the
package tools and to use binary packages that someone else has prepared. This
is the "pkg" in pkgsrc. The second way is to install the "src" of pkgsrc, too.
Then you are able to build your own packages, and you can still use binary
packages from someone else.

4.1. Using binary packages

To use binary packages, you need some tools to manage them. On NetBSD, these
tools are already installed. On all other operating systems, you need to
install them first. For the following platforms, prebuilt versions of the
package tools are available and can simply be downloaded and unpacked in the /
directory:

+------------------------------------------------------------------------+
| Platform |                             URL                             |
|----------+-------------------------------------------------------------|
|Solaris 9 |ftp://ftp0.mh.bbc.co.uk/pub/pkgsrc/packages/bootstrap-pkgsrc/|
|----------+-------------------------------------------------------------|
|Solaris 10|http://public.enst.fr/pkgsrc/packages/bootstrap-pkgsrc/      |
+------------------------------------------------------------------------+

These prebuilt package tools use /usr/pkg for the base directory, and /var/db/
pkg for the database of installed packages. If you cannot use these directories
for whatever reasons (maybe because you're not root), you have to build the
package tools yourself, which is explained in Section 3.1, "Bootstrapping
pkgsrc".

4.1.1. Finding binary packages

To install binary packages, you first need to know from where to get them. You
can get them on CD-ROMs, DVDs, or via FTP or HTTP.

For NetBSD, the binary packages are made available on ftp.NetBSD.org and its
mirrors, in the directory /pub/NetBSD/packages/OSVERSION/ARCH/. For OSVERSION,
you should insert the output of uname -r, and for ARCH the output of uname -p.

For some other platforms, binary packages can be found at the following
locations:

+-------------------------------------------------------+
| Platform |                    URL                     |
|----------+--------------------------------------------|
|Solaris 9 |ftp://ftp0.mh.bbc.co.uk/pub/pkgsrc/packages/|
|----------+--------------------------------------------|
|Solaris 10|http://public.enst.fr/pkgsrc/packages/      |
+-------------------------------------------------------+

Most of these directories contain the pkgsrc distribution for multiple
platforms. Select the appropriate subdirectories, according to your machine
architecture and operating system, until you find a directory called All. This
directory contains all the binary packages. Further, there are subdirectories
for categories that contain symbolic links that point to the actual binary
package in ../All. This directory layout is used for all package repositories,
no matter if they are accessed via HTTP, FTP, NFS, CD-ROM, or the local
filesystem.

4.1.2. Installing binary packages

If you have the files on a CD-ROM or downloaded them to your hard disk, you can
install them with the following command (be sure to su to root first):

# pkg_add /path/to/package.tgz

If you have FTP access and you don't want to download the packages via FTP
prior to installation, you can do this automatically by giving pkg_add an FTP
URL:

# pkg_add ftp://ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All/package.tgz

Note that any prerequisite packages needed to run the package in question will
be installed, too, assuming they are present where you install from.

To save some typing, you can set the PKG_PATH environment variable to a
semicolon-separated list of paths (including remote URLs); trailing slashes are
not allowed.

Additionally to the All directory there exists a vulnerable directory to which
binary packages with known vulnerabilities are moved, since removing them could
cause missing dependencies. To use these packages, add the vulnerable directory
to your PKG_PATH. However, you should run security/audit-packages regularly,
especially after installing new packages, and verify that the vulnerabilities
are acceptable for your configuration. An example PKG_PATH would be: ftp://
ftp.NetBSD.org/pub/NetBSD/packages/<OSVERSION>/<ARCH>/All;ftp://ftp.NetBSD.org/
pub/NetBSD/packages/<OSVERSION>/<ARCH>/vulnerable Please note that semicolon
(';') is a shell meta-character, so you'll probably have to quote it.

After you've installed packages, be sure to have /usr/pkg/bin and /usr/pkg/sbin
in your PATH so you can actually start the just installed program.

4.1.3. A word of warning

Please pay very careful attention to the warnings expressed in the pkg_add(1)
manual page about the inherent dangers of installing binary packages which you
did not create yourself, and the security holes that can be introduced onto
your system by indiscriminate adding of such files.

The same warning of course applies to every package you install from source
when you haven't completely read and understood the source code of the package,
the compiler that is used to build the package and all the other tools that are
involved.

4.2. Building packages from source

This assumes that the package is already in pkgsrc. If it is not, see Part II,
"The pkgsrc developer's guide" for instructions how to create your own
packages.

4.2.1. Requirements

To build packages from source on a NetBSD system the "comp" and the "text"
distribution sets must be installed. If you want to build X11-related packages
the "xbase" and "xcomp" distribution sets are required, too.

4.2.2. Fetching distfiles

The first step for building a package is downloading the distfiles (i.e. the
unmodified source). If they have not yet been downloaded, pkgsrc will fetch
them automatically.

You can overwrite some of the major distribution sites to fit to sites that are
close to your own. Have a look at pkgsrc/mk/defaults/mk.conf to find some
examples ? in particular, look for the MASTER_SORT, MASTER_SORT_REGEX and
INET_COUNTRY definitions. This may save some of your bandwidth and time.

You can change these settings either in your shell's environment, or, if you
want to keep the settings, by editing the /etc/mk.conf file, and adding the
definitions there.

If you don't have a permanent Internet connection and you want to know which
files to download, make fetch-list will tell you what you'll need. Put these
distfiles into /usr/pkgsrc/distfiles.

4.2.3. How to build and install

Assuming that the distfile has been fetched (see previous section), become root
and change into the relevant directory and run make.

Note

If using bootstrap or pkgsrc on a non-NetBSD system, use the pkgsrc bmake
command instead of "make" in the examples in this guide.

For example, type

% cd misc/figlet
% make

at the shell prompt to build the various components of the package, and

# make install

to install the various components into the correct places on your system.
Installing the package on your system requires you to be root. However, pkgsrc
has a just-in-time-su feature, which allows you to only become root for the
actual installation step

Taking the figlet utility as an example, we can install it on our system by
building as shown in Appendix B, Build logs.

The program is installed under the default root of the packages tree - /usr/
pkg. Should this not conform to your tastes, set the LOCALBASE variable in your
environment, and it will use that value as the root of your packages tree. So,
to use /usr/local, set LOCALBASE=/usr/local in your environment. Please note
that you should use a directory which is dedicated to packages and not shared
with other programs (i.e., do not try and use LOCALBASE=/usr). Also, you should
not try to add any of your own files or directories (such as src/, obj/, or
pkgsrc/) below the LOCALBASE tree. This is to prevent possible conflicts
between programs and other files installed by the package system and whatever
else may have been installed there.

Some packages look in /etc/mk.conf to alter some configuration options at build
time. Have a look at pkgsrc/mk/defaults/mk.conf to get an overview of what will
be set there by default. Environment variables such as LOCALBASE can be set in
/etc/mk.conf to save having to remember to set them each time you want to use
pkgsrc.

Occasionally, people want to "look under the covers" to see what is going on
when a package is building or being installed. This may be for debugging
purposes, or out of simple curiosity. A number of utility values have been
added to help with this.

 1. If you invoke the make(1) command with PKG_DEBUG_LEVEL=2, then a huge
    amount of information will be displayed. For example,

    make patch PKG_DEBUG_LEVEL=2

    will show all the commands that are invoked, up to and including the
    "patch" stage.

 2. If you want to know the value of a certain make(1) definition, then the
    VARNAME definition should be used, in conjunction with the show-var target.
    e.g. to show the expansion of the make(1) variable LOCALBASE:

    % make show-var VARNAME=LOCALBASE
    /usr/pkg
    %



If you want to install a binary package that you've either created yourself
(see next section), that you put into pkgsrc/packages manually or that is
located on a remote FTP server, you can use the "bin-install" target. This
target will install a binary package - if available - via pkg_add(1), else do a
make package. The list of remote FTP sites searched is kept in the variable
BINPKG_SITES, which defaults to ftp.NetBSD.org. Any flags that should be added
to pkg_add(1) can be put into BIN_INSTALL_FLAGS. See pkgsrc/mk/defaults/mk.conf
for more details.

A final word of warning: If you set up a system that has a non-standard setting
for LOCALBASE, be sure to set that before any packages are installed, as you
can not use several directories for the same purpose. Doing so will result in
pkgsrc not being able to properly detect your installed packages, and fail
miserably. Note also that precompiled binary packages are usually built with
the default LOCALBASE of /usr/pkg, and that you should not install any if you
use a non-standard LOCALBASE.

4.2.4. Selecting the compiler

By default, pkgsrc will use GCC to build packages. This may be overridden by
setting the following variables in /etc/mk.conf:

PKGSRC_COMPILER:

    This is a list of values specifying the chain of compilers to invoke when
    building packages. Valid values are:

      * distcc: distributed C/C++ (chainable)

      * ccache: compiler cache (chainable)

      * gcc: GNU C/C++ Compiler

      * mipspro: Silicon Graphics, Inc. MIPSpro (n32/n64)

      * mipspro: Silicon Graphics, Inc. MIPSpro (o32)

      * sunpro: Sun Microsystems, Inc. WorkShip/Forte/Sun ONE Studio

    The default is "gcc". You can use ccache and/or distcc with an appropriate
    PKGSRC_COMPILER setting, e.g. "ccache gcc". This variable should always be
    terminated with a value for a real compiler.

GCC_REQD:

    This specifies the minimum version of GCC to use when building packages. If
    the system GCC doesn't satisfy this requirement, then pkgsrc will build and
    install one of the GCC packages to use instead.

Chapter 5. Configuring pkgsrc

Table of Contents

5.1. General configuration
5.2. Variables affecting the build process
5.3. Selecting and configuring the compiler

    5.3.1. Additional flags to the compiler (CFLAGS)

5.4. Developer/advanced settings
5.5. Selecting Build Options

5.1. General configuration

In this section, you can find some variables that apply to all pkgsrc packages.
The preferred method of setting these variables is by setting them in /etc/
mk.conf.

  * LOCALBASE: Where packages will be installed. The default is /usr/pkg. Do
    not mix binary packages with different LOCALBASEs!

  * CROSSBASE: Where "cross" category packages will be installed. The default
    is ${LOCALBASE}/cross.

  * X11BASE: Where X11 is installed on the system. The default is /usr/X11R6.

  * DISTDIR: Where to store the downloaded copies of the original source
    distributions used for building pkgsrc packages. The default is $
    {PKGSRCDIR}/distfiles.

  * MASTER_SITE_OVERRIDE: If set, override the packages' MASTER_SITES with this
    value.

  * MASTER_SITE_BACKUP: Backup location(s) for distribution files and patch
    files if not found locally or in ${MASTER_SITES} or ${PATCH_SITES}
    respectively. The defaults are ftp://ftp.NetBSD.org/pub/NetBSD/packages/
    distfiles/${DIST_SUBDIR}/ and ftp://ftp.freebsd.org/pub/FreeBSD/distfiles/$
    {DIST_SUBDIR}/.

  * BINPKG_SITES: List of sites carrying binary pkgs.

5.2. Variables affecting the build process

XXX

  * PACKAGES: The top level directory for the binary packages. The default is $
    {PKGSRCDIR}/packages.

  * WRKOBJDIR: The top level directory where, if defined, the separate working
    directories will get created, and symbolically linked to from ${WRKDIR}
    (see below). This is useful for building packages on several architectures,
    then ${PKGSRCDIR} can be NFS-mounted while ${WRKOBJDIR} is local to every
    architecture. (It should be noted that PKGSRCDIR should not be set by the
    user ? it is an internal definition which refers to the root of the pkgsrc
    tree. It is possible to have many pkgsrc tree instances.)

  * LOCALPATCHES: Directory for local patches that aren't part of pkgsrc. See
    Section 9.3, "patches/*" for more information. rel and arch are replaced
    with OS release ("2.0", etc.) and architecture ("mipsel", etc.).

  * PKGMAKECONF: Location of the mk.conf file used by a package's BSD-style
    Makefile. If this is not set, MAKECONF is set to /dev/null to avoid picking
    up settings used by builds in /usr/src.

5.3. Selecting and configuring the compiler

5.3.1. Additional flags to the compiler (CFLAGS)

If you wish to set the CFLAGS variable, please make sure to use the += operator
instead of the = operator:

    CFLAGS+=        -your -flags

Using CFLAGS= (i.e. without the "+") may lead to problems with packages that
need to add their own flags. Also, you may want to take a look at the devel/
cpuflags package if you're interested in optimization for the current CPU.

5.4. Developer/advanced settings

XXX

  * PKG_DEVELOPER: Run some sanity checks that package developers want:

      o make sure patches apply with zero fuzz

      o run check-shlibs to see that all binaries will find their shared libs.

  * PKG_DEBUG_LEVEL: The level of debugging output which is displayed whilst
    making and installing the package. The default value for this is 0, which
    will not display the commands as they are executed (normal, default, quiet
    operation); the value 1 will display all shell commands before their
    invocation, and the value 2 will display both the shell commands before
    their invocation, and their actual execution progress with set -x will be
    displayed.

  * ALLOW_VULNERABILITIES.pkgbase: A space separated list of vulnerability IDs
    that may be ignored when performing the automated security checks. These
    IDs are listed in the pkg-vulnerabilities file and are displayed by
    audit-packages when it finds a vulnerable package.

  * SKIP_AUDIT_PACKAGES: If this is set to "yes", the automated security checks
    (which use the security/audit-packages package) will be entirely skipped
    for all packages built. Normally you'll want to use ALLOW_VULNERABILITIES
    instead of this.

5.5. Selecting Build Options

Some packages have build time options, usually to select between different
dependencies, enable optional support for big dependencies or enable
experimental features.

To see which options, if any, a package supports, and which options are
mutually exclusive, run make show-options, for example:

    The following options are supported by this package:
        ssl      Enable SSL support.
    Exactly one of the following gecko options is required:
        firefox  Use firefox as gecko rendering engine.
        mozilla  Use mozilla as gecko rendering engine.
    At most one of the following database options may be selected:
        mysql    Enable support for MySQL database.
        pgsql    Enable support for PostgreSQL database.

    These options are enabled by default: firefox
    These options are currently enabled: mozilla ssl

The following variables can be defined in /etc/mk.conf to select which options
to enable for a package: PKG_DEFAULT_OPTIONS, which can be used to select or
disable options for all packages that support them, and PKG_OPTIONS.pkgbase,
which can be used to select or disable options specifically for package pkgbase
. Options listed in these variables are selected, options preceded by "-" are
disabled. A few examples:

$ grep "PKG.*OPTION" /etc/mk.conf
PKG_DEFAULT_OPTIONS=    -arts -dvdread -esound
PKG_OPTIONS.kdebase=    debug -sasl
PKG_OPTIONS.apache=     suexec

The following settings are consulted in the order given, and the last setting
that selects or disables an option is used:

 1. the default options as suggested by the package maintainer

 2. the options implied by the settings of legacy variables (see below)

 3. PKG_DEFAULT_OPTIONS

 4. PKG_OPTIONS.pkgbase

For groups of mutually exclusive options, the last option selected is used, all
others are automatically disabled. If an option of the group is explicitly
disabled, the previously selected option, if any, is used. It is an error if no
option from a required group of options is selected, and building the package
will fail.

Before the options framework was introduced, build options were selected by
setting a variable (often named USE_FOO) in /etc/mk.conf for each option. To
ease transition to the options framework for the user, these legacy variables
are converted to the appropriate options setting (PKG_OPTIONS.pkgbase)
automatically. A warning is issued to prompt the user to update /etc/mk.conf to
use the options framework directly. Support for the legacy variables will be
removed eventually.

Chapter 6. Creating binary packages

Table of Contents

6.1. Building a single binary package
6.2. Settings for creation of binary packages
6.3. Doing a bulk build of all packages

    6.3.1. Configuration
    6.3.2. Other environmental considerations
    6.3.3. Operation
    6.3.4. What it does
    6.3.5. Disk space requirements
    6.3.6. Setting up a sandbox for chrooted builds
    6.3.7. Building a partial set of packages
    6.3.8. Uploading results of a bulk build

6.4. Creating a multiple CD-ROM packages collection

    6.4.1. Example of cdpack

6.1. Building a single binary package

Once you have built and installed a package, you can create a binary package
which can be installed on another system with pkg_add(1). This saves having to
build the same package on a group of hosts and wasting CPU time. It also
provides a simple means for others to install your package, should you
distribute it.

To create a binary package, change into the appropriate directory in pkgsrc,
and run make package:

# cd misc/figlet
# make package

This will build and install your package (if not already done), and then build
a binary package from what was installed. You can then use the pkg_* tools to
manipulate it. Binary packages are created by default in /usr/pkgsrc/packages,
in the form of a gzipped tar file. See Section B.2, "Packaging figlet" for a
continuation of the above misc/figlet example.

See Chapter 19, Submitting and Committing for information on how to submit such
a binary package.

6.2. Settings for creation of binary packages

See Section 15.16, "Other helpful targets".

6.3. Doing a bulk build of all packages

If you want to get a full set of precompiled binary packages, this section
describes how to get them. Beware that the bulk build will remove all currently
installed packages from your system!

Having an FTP server configured either on the machine doing the bulk builds or
on a nearby NFS server can help to make the packages available to other
machines that can then save time by installing only the binary packages. See
ftpd(8) for more information. If you use a remote NFS server's storage, be sure
to not actually compile on NFS storage, as this slows things down a lot.

6.3.1. Configuration

6.3.1.1. build.conf

The build.conf file is the main configuration file for bulk builds. You can
configure how your copy of pkgsrc is kept up to date, how the distfiles are
downloaded, how the packages are built and how the report is generated. You can
find an annotated example file in pkgsrc/mk/bulk/build.conf-example. To use it,
copy build.conf-example to build.conf and edit it, following the comments in
that file.

6.3.1.2. /etc/mk.conf

You may want to set variables in /etc/mk.conf. Look at pkgsrc/mk/defaults/
mk.conf for details of the default settings. You will want to ensure that
ACCEPTABLE_LICENSES meet your local policy. As used in this example,
_ACCEPTABLE=yes accepts all licenses.

    PACKAGES?=      ${_PKGSRCDIR}/packages/${MACHINE_ARCH}
    WRKOBJDIR?=     /usr/tmp/pkgsrc   # build here instead of in pkgsrc
    BSDSRCDIR=      /usr/src
    BSDXSRCDIR=     /usr/xsrc         # for x11/xservers
    OBJHOSTNAME?=   yes               # use work.`hostname`
    FAILOVER_FETCH= yes               # insist on the correct checksum
    PKG_DEVELOPER?= yes
    _ACCEPTABLE=    yes

Some options that are especially useful for bulk builds can be found at the top
lines of the file mk/bulk/bsd.bulk-pkg.mk. The most useful options of these are
briefly described here.

  * If you are on a slow machine, you may want to set USE_BULK_BROKEN_CHECK to
    "no".

  * If you are doing bulk builds from a read-only copy of pkgsrc, you have to
    set BULKFILESDIR to the directory where all log files are created.
    Otherwise the log files are created in the pkgsrc directory.

  * Another important variable is BULK_PREREQ, which is a list of packages that
    should be always available while building other packages.

Some other options are scattered in the pkgsrc infrastructure:

  * ALLOW_VULNERABLE_PACKAGES should be set to yes. The purpose of the bulk
    builds is creating binary packages, no matter if they are vulnerable or
    not. When uploading the packages to a public server, the vulnerable
    packages will be put into a directory of their own. Leaving this variable
    unset would prevent the bulk build system from even trying to build them,
    so possible building errors would not show up.

  * CHECK_FILES (pkgsrc/mk/bsd.pkg.check.mk) can be set to "yes" to check that
    the installed set of files matches the PLIST.

  * CHECK_INTERPRETER (pkgsrc/mk/bsd.pkg.check.mk) can be set to "yes" to check
    that the installed "#!"-scripts will find their interpreter.

6.3.1.3. pre-build.local

It is possible to configure the bulk build to perform certain site-specific
tasks at the end of the pre-build stage. If the file pre-build.local exists in
/usr/pkgsrc/mk/bulk, it will be executed (as a sh(1) script) at the end of the
usual pre-build stage. An example use of pre-build.local is to have the line:

echo "I do not have enough disk space to build this pig." \
    > misc/openoffice/$BROKENF

to prevent the system from trying to build a particular package which requires
nearly 3 GB of disk space.

6.3.2. Other environmental considerations

As /usr/pkg will be completely deleted at the start of bulk builds, make sure
your login shell is placed somewhere else. Either drop it into /usr/local/bin
(and adjust your login shell in the passwd file), or (re-)install it via
pkg_add(1) from /etc/rc.local, so you can login after a reboot (remember that
your current process won't die if the package is removed, you just can't start
any new instances of the shell any more). Also, if you use NetBSD earlier than
1.5, or you still want to use the pkgsrc version of ssh for some reason, be
sure to install ssh before starting it from rc.local:

    ( cd /usr/pkgsrc/security/ssh ; make bulk-install )
    if [ -f /usr/pkg/etc/rc.d/sshd ]; then
        /usr/pkg/etc/rc.d/sshd
    fi

Not doing so will result in you being not able to log in via ssh after the bulk
build is finished or if the machine gets rebooted or crashes. You have been
warned! :)

6.3.3. Operation

Make sure you don't need any of the packages still installed.

Warning

During the bulk build, all packages will be removed!

Be sure to remove all other things that might interfere with builds, like some
libs installed in /usr/local, etc. then become root and type:

# cd /usr/pkgsrc
# sh mk/bulk/build

If for some reason your last build didn't complete (power failure, system
panic, ...), you can continue it by running:

# sh mk/bulk/build restart

At the end of the bulk build, you will get a summary via mail, and find build
logs in the directory specified by FTP in the build.conf file.

6.3.4. What it does

The bulk builds consist of three steps:

1. pre-build

    The script updates your pkgsrc tree via (anon)cvs, then cleans out any
    broken distfiles, and removes all packages installed.

2. the bulk build

    This is basically "make bulk-package" with an optimised order in which
    packages will be built. Packages that don't require other packages will be
    built first, and packages with many dependencies will be built later.

3. post-build

    Generates a report that's placed in the directory specified in the
    build.conf file named broken.html, a short version of that report will also
    be mailed to the build's admin.

During the build, a list of broken packages will be compiled in /usr/pkgsrc
/.broken (or .../.broken.${MACHINE} if OBJMACHINE is set), individual build
logs of broken builds can be found in the package's directory. These files are
used by the bulk-targets to mark broken builds to not waste time trying to
rebuild them, and they can be used to debug these broken package builds later.

6.3.5. Disk space requirements

Currently, roughly the following requirements are valid for NetBSD 2.0/i386:

  * 10 GB - distfiles (NFS ok)

  * 8 GB - full set of all binaries (NFS ok)

  * 5 GB - temp space for compiling (local disk recommended)

Note that all pkgs will be de-installed as soon as they are turned into a
binary package, and that sources are removed, so there is no excessively huge
demand to disk space. Afterwards, if the package is needed again, it will be
installed via pkg_add(1) instead of building again, so there are no cycles
wasted by recompiling.

6.3.6. Setting up a sandbox for chrooted builds

If you don't want all the packages nuked from a machine (rendering it useless
for anything but pkg compiling), there is the possibility of doing the package
bulk build inside a chroot environment.

The first step is to set up a chroot sandbox, e.g. /usr/sandbox. This can be
done by using null mounts, or manually.

There is a shell script called pkgsrc/mk/bulk/mksandbox which will set up the
sandbox environment using null mounts. It will also create a script called
sandbox in the root of the sandbox environment, which will allow the null
mounts to be activated using the sandbox mount command and deactivated using
the sandbox umount command.

To set up a sandbox environment by hand, after extracting all the sets from a
NetBSD installation or doing a make distribution DESTDIR=/usr/sandbox in /usr/
src/etc, be sure the following items are present and properly configured:

 1. Kernel

    # cp /netbsd /usr/sandbox

 2. /dev/*

    # cd /usr/sandbox/dev ; sh MAKEDEV all

 3. /etc/resolv.conf (for security/smtpd and mail):

    # cp /etc/resolv.conf /usr/sandbox/etc

 4. Working(!) mail config (hostname, sendmail.cf):

    # cp /etc/mail/sendmail.cf /usr/sandbox/etc/mail

 5. /etc/localtime (for security/smtpd):

    # ln -sf /usr/share/zoneinfo/UTC /usr/sandbox/etc/localtime

 6. /usr/src (system sources, e. g. for sysutils/aperture):

    # ln -s ../disk1/cvs .
    # ln -s cvs/src-2.0 src

 7. Create /var/db/pkg (not part of default install):

    # mkdir /usr/sandbox/var/db/pkg

 8. Create /usr/pkg (not part of default install):

    # mkdir /usr/sandbox/usr/pkg

 9. Checkout pkgsrc via cvs into /usr/sandbox/usr/pkgsrc:

    # cd /usr/sandbox/usr
    # cvs -d anoncvs@anoncvs.NetBSD.org:/cvsroot checkout -d -P pkgsrc

    Do not mount/link this to the copy of your pkgsrc tree you do development
    in, as this will likely cause problems!

10. Make /usr/sandbox/usr/pkgsrc/packages and .../distfiles point somewhere
    appropriate. NFS- and/or nullfs-mounts may come in handy!

11. Edit /etc/mk.conf, see Section 6.3.1.2, "/etc/mk.conf".

12. Adjust mk/bulk/build.conf to suit your needs.

When the chroot sandbox is set up, you can start the build with the following
steps:

# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-build

This will just jump inside the sandbox and start building. At the end of the
build, mail will be sent with the results of the build. Created binary pkgs
will be in /usr/sandbox/usr/pkgsrc/packages (wherever that points/mounts to/
from).

6.3.7. Building a partial set of packages

In addition to building a complete set of all packages in pkgsrc, the pkgsrc/mk
/bulk/build script may be used to build a subset of the packages contained in
pkgsrc. By setting SPECIFIC_PKGS in /etc/mk.conf, the variables

  * SITE_SPECIFIC_PKGS

  * HOST_SPECIFIC_PKGS

  * GROUP_SPECIFIC_PKGS

  * USER_SPECIFIC_PKGS

will define the set of packages which should be built. The bulk build code will
also include any packages which are needed as dependencies for the explicitly
listed packages.

One use of this is to do a bulk build with SPECIFIC_PKGS in a chroot sandbox
periodically to have a complete set of the binary packages needed for your site
available without the overhead of building extra packages that are not needed.

6.3.8. Uploading results of a bulk build

This section describes how pkgsrc developers can upload binary pkgs built by
bulk builds to ftp.NetBSD.org.

If you would like to automatically create checksum files for the binary
packages you intend to upload, remember to set MKSUMS=yes in your mk/bulk/
build.conf.

If you would like to PGP sign the checksum files (highly recommended!),
remember to set SIGN_AS=username@NetBSD.org in your mk/bulk/build.conf. This
will prompt you for your GPG password to sign the files before uploading
everything.

Then, make sure that you have RSYNC_DST set properly in your mk/bulk/build.conf
file, i.e. adjust it to something like one of the following:

RSYNC_DST=ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

Please use appropriate values for "pkgsrc-200xQy", "NetBSD-a.b.c" and "arch"
here. If your login on ftp.NetBSD.org is different from your local login, write
your login directly into the variable, e.g. my local account is "feyrer", but
for my login "hubertf", I use:

RSYNC_DST=hubertf@ftp.NetBSD.org:/pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

A separate upload directory is used here to allow "closing" the directory
during upload. To do so, run the following command on ftp.NetBSD.org next:

nbftp% mkdir -p -m 750 /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch/upload

Please note that /pub/NetBSD/packages is only appropriate for packages for the
NetBSD operating system. Binary packages for other operating systems should go
into /pub/pkgsrc.

Before uploading the binary pkgs, ssh authentication needs to be set up. This
example shows how to set up temporary keys for the root account inside the
sandbox (assuming that no keys should be present there usually):

# chroot /usr/sandbox
chroot-# rm $HOME/.ssh/id-dsa*
chroot-# ssh-keygen -t dsa
chroot-# cat $HOME/.ssh/id-dsa.pub

Now take the output of id-dsa.pub and append it to your ~/.ssh/authorized_keys
file on ftp.NetBSD.org. You can remove the key after the upload is done!

Next, test if your ssh connection really works:

chroot-# ssh ftp.NetBSD.org date

Use "-l yourNetBSDlogin" here as appropriate!

Now after all this works, you can exit the sandbox and start the upload:

chroot-# exit
# cd /usr/sandbox/usr/pkgsrc
# sh mk/bulk/do-sandbox-upload

The upload process may take quite some time. Use ls(1) or du(1) on the FTP
server to monitor progress of the upload. The upload script will take care of
not uploading restricted packages and putting vulnerable packages into the
vulnerable subdirectory.

After the upload has ended, first thing is to revoke ssh access:

nbftp% vi ~/.ssh/authorized_keys
Gdd:x!

Use whatever is needed to remove the key you've entered before! Last, move the
uploaded packages out of the upload directory to have them accessible to
everyone:

nbftp% cd /pub/NetBSD/packages/pkgsrc-200xQy/NetBSD-a.b.c/arch
nbftp% mv upload/* .
nbftp% rmdir upload
nbftp% chmod 755 .

6.4. Creating a multiple CD-ROM packages collection

After your pkgsrc bulk-build has completed, you may wish to create a CD-ROM set
of the resulting binary packages to assist in installing packages on other
machines. The pkgtools/cdpack package provides a simple tool for creating the
ISO 9660 images. cdpack arranges the packages on the CD-ROMs in a way that
keeps all the dependencies for a given package on the same CD as that package.

6.4.1. Example of cdpack

Complete documentation for cdpack is found in the cdpack(1) man page. The
following short example assumes that the binary packages are left in /usr/
pkgsrc/packages/All and that sufficient disk space exists in /u2 to hold the
ISO 9660 images.

# mkdir /u2/images
# pkg_add /usr/pkgsrc/packages/All/cdpack
# cdpack /usr/pkgsrc/packages/All /u2/images

If you wish to include a common set of files (COPYRIGHT, README, etc.) on each
CD in the collection, then you need to create a directory which contains these
files. e.g.

# mkdir /tmp/common
# echo "This is a README" > /tmp/common/README
# echo "Another file" > /tmp/common/COPYING
# mkdir /tmp/common/bin
# echo "#!/bin/sh" > /tmp/common/bin/myscript
# echo "echo Hello world" >> /tmp/common/bin/myscript
# chmod 755 /tmp/common/bin/myscript

Now create the images:

# cdpack -x /tmp/common /usr/pkgsrc/packages/All /u2/images

Each image will contain README, COPYING, and bin/myscript in their root
directories.

Chapter 7. Frequently Asked Questions

Table of Contents

7.1. Are there any mailing lists for pkg-related discussion?
7.2. Where's the pkgviews documentation?
7.3. Utilities for package management (pkgtools)
7.4. How to use pkgsrc as non-root
7.5. How to resume transfers when fetching distfiles?
7.6. How can I install/use XFree86 from pkgsrc?
7.7. How can I install/use X.org from pkgsrc?
7.8. How to fetch files from behind a firewall
7.9. How do I tell make fetch to do passive FTP?
7.10. How to fetch all distfiles at once
7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?
7.12. What does "Could not find bsd.own.mk" mean?
7.13. Using 'sudo' with pkgsrc
7.14. How do I change the location of configuration files?
7.15. Automated security checks
7.16. Why do some packages ignore my CFLAGS?
7.17. A package does not build. What shall I do?

This section contains hints, tips & tricks on special things in pkgsrc that we
didn't find a better place for in the previous chapters, and it contains items
for both pkgsrc users and developers.

7.1. Are there any mailing lists for pkg-related discussion?

The following mailing lists may be of interest to pkgsrc users:

  * pkgsrc-users: This is a general purpose list for most issues regarding
    pkgsrc, regardless of platform, e.g. soliciting user help for pkgsrc
    configuration, unexpected build failures, using particular packages,
    upgrading pkgsrc installations, questions regarding the pkgsrc release
    branches, etc. General announcements or proposals for changes that impact
    the pkgsrc user community, e.g. major infrastructure changes, new features,
    package removals, etc., may also be posted.

  * pkgsrc-bulk: A list where the results of pkgsrc bulk builds are sent and
    discussed.

  * pkgsrc-changes: This list is for those who are interested in getting a
    commit message for every change committed to pkgsrc. It is also available
    in digest form, meaning one daily message containing all commit messages
    for changes to the package source tree in that 24 hour period.

To subscribe, do:

    % echo subscribe listname | mail majordomo@NetBSD.org

Archives for all these mailing lists are available from http://
mail-index.NetBSD.org/.

7.2. Where's the pkgviews documentation?

Pkgviews is tightly integrated with buildlink. You can find a pkgviews User's
guide in pkgsrc/mk/buildlink3/PKGVIEWS_UG.

7.3. Utilities for package management (pkgtools)

The directory pkgsrc/pkgtools contains a number of useful utilities for both
users and developers of pkgsrc. This section attempts only to make the reader
aware of the utilities and when they might be useful, and not to duplicate the
documentation that comes with each package.

Utilities used by pkgsrc (automatically installed when needed):

  * pkgtools/x11-links: Symlinks for use by buildlink.

OS tool augmentation (automatically installed when needed):

  * pkgtools/digest: Calculates various kinds of checksums (including SHA1).

  * pkgtools/libnbcompat: Compatibility library for pkgsrc tools.

  * pkgtools/mtree: Installed on non-BSD systems due to lack of native mtree.

  * pkgtools/pkg_install: Up-to-date replacement for /usr/sbin/pkg_install, or
    for use on operating systems where pkg_install is not present.

Utilities used by pkgsrc (not automatically installed):

  * pkgtools/pkg_tarup: Create a binary package from an already-installed
    package. Used by make replace to save the old package.

  * pkgtools/dfdisk: Adds extra functionality to pkgsrc, allowing it to fetch
    distfiles from multiple locations. It currently supports the following
    methods: multiple CD-ROMs and network FTP/HTTP connections.

  * pkgtools/xpkgwedge: Put X11 packages someplace else (enabled by default).

  * devel/cpuflags: Determine the best compiler flags to optimise code for your
    current CPU and compiler.

Utilities for keeping track of installed packages, being up to date, etc:

  * pkgtools/pkg_chk: Reports on packages whose installed versions do not match
    the latest pkgsrc entries.

  * pkgtools/pkgdep: Makes dependency graphs of packages, to aid in choosing a
    strategy for updating.

  * pkgtools/pkgdepgraph: Makes graphs from the output of pkgtools/pkgdep (uses
    graphviz).

  * pkgtools/pkglint: The pkglint(1) program checks a pkgsrc entry for errors,
    lintpkgsrc(1) does various checks on the complete pkgsrc system.

  * pkgtools/pkgsurvey: Report what packages you have installed.

Utilities for people maintaining or creating individual packages:

  * pkgtools/pkgdiff: Automate making and maintaining patches for a package
    (includes pkgdiff, pkgvi, mkpatches, etc.).

  * pkgtools/rpm2pkg, pkgtools/url2pkg: Aids in converting to pkgsrc.

  * pkgtools/gensolpkg: Convert pkgsrc to a Solaris package.

Utilities for people maintaining pkgsrc (or: more obscure pkg utilities)

  * pkgtools/pkg_comp: Build packages in a chrooted area.

  * pkgtools/libkver: Spoof kernel version for chrooted cross builds.

7.4. How to use pkgsrc as non-root

If you want to use pkgsrc as non-root user, you can set some variables to make
pkgsrc work under these conditions. At the very least, you need to set
UNPRIVILEGED to "yes"; this will turn on unprivileged mode and set multiple
related variables to allow installation of packages as non-root.

In case the defaults are not enough, you may want to tune some other variables
used. For example, if the automatic user/group detection leads to incorrect
values (or not the ones you would like to use), you can change them by setting
UNPRIVILEGED_USER and UNPRIVILEGED_GROUP respectively.

As regards bootstrapping, please note that the bootstrap script will ease
non-root configuration when given the "--ignore-user-check" flag, as it will
choose and use multiple default directories under ~/pkg as the installation
targets. These directories can be overriden by the "--prefix" flag provided by
the script, as well as some others that allow finer tuning of the tree layout.

7.5. How to resume transfers when fetching distfiles?

By default, resuming transfers in pkgsrc is disabled, but you can enable this
feature by adding the option PKG_RESUME_TRANSFERS=YES into /etc/mk.conf. If,
during a fetch step, an incomplete distfile is found, pkgsrc will try to resume
it.

You can also use a different program than the default ftp(1) by changing the
FETCH_CMD variable. Don't forget to set FETCH_RESUME_ARGS and FETCH_OUTPUT_ARGS
if you are not using default values.

For example, if you want to use wget to resume downloads, you'll have to use
something like:

    FETCH_CMD=             wget
    FETCH_BEFORE_ARGS=     --passive-ftp
    FETCH_RESUME_ARGS=     -c
    FETCH_OUTPUT_ARGS=     -O

7.6. How can I install/use XFree86 from pkgsrc?

If you want to use XFree86 from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...), you will have to add the following line into /etc/
mk.conf:

    X11_TYPE=XFree86

7.7. How can I install/use X.org from pkgsrc?

If you want to use X.org from pkgsrc instead of your system's own X11 (/usr/
X11R6, /usr/openwin, ...) you will have to add the following line into /etc/
mk.conf:

    X11_TYPE=xorg

Note

The DragonFly operating system defaults to using this X.org X11 implementation
from pkgsrc.

7.8. How to fetch files from behind a firewall

If you are sitting behind a firewall which does not allow direct connections to
Internet hosts (i.e. non-NAT), you may specify the relevant proxy hosts. This
is done using an environment variable in the form of a URL, e.g. in Amdahl, the
machine "orpheus.amdahl.com" is one of the firewalls, and it uses port 80 as
the proxy port number. So the proxy environment variables are:

    ftp_proxy=ftp://orpheus.amdahl.com:80/
    http_proxy=http://orpheus.amdahl.com:80/

7.9. How do I tell make fetch to do passive FTP?

This depends on which utility is used to retrieve distfiles. From bsd.pkg.mk,
FETCH_CMD is assigned the first available command from the following list:

  * ${LOCALBASE}/bin/ftp

  * /usr/bin/ftp

On a default NetBSD installation, this will be /usr/bin/ftp, which
automatically tries passive connections first, and falls back to active
connections if the server refuses to do passive. For the other tools, add the
following to your /etc/mk.conf file: PASSIVE_FETCH=1.

Having that option present will prevent /usr/bin/ftp from falling back to
active transfers.

7.10. How to fetch all distfiles at once

You would like to download all the distfiles in a single batch from work or
university, where you can't run a make fetch. There is an archive of distfiles
on ftp.NetBSD.org, but downloading the entire directory may not be appropriate.

The answer here is to do a make fetch-list in /usr/pkgsrc or one of its
subdirectories, carry the resulting list to your machine at work/school and use
it there. If you don't have a NetBSD-compatible ftp(1) (like tnftp) at work,
don't forget to set FETCH_CMD to something that fetches a URL:

At home:

% cd /usr/pkgsrc
% make fetch-list FETCH_CMD=wget DISTDIR=/tmp/distfiles >/tmp/fetch.sh
% scp /tmp/fetch.sh work:/tmp

At work:

% sh /tmp/fetch.sh

then tar up /tmp/distfiles and take it home.

If you have a machine running NetBSD, and you want to get all distfiles (even
ones that aren't for your machine architecture), you can do so by using the
above-mentioned make fetch-list approach, or fetch the distfiles directly by
running:

% make mirror-distfiles

If you even decide to ignore NO_{SRC,BIN}_ON_{FTP,CDROM}, then you can get
everything by running:

% make fetch NO_SKIP=yes

7.11. What does "Don't know how to make /usr/share/tmac/tmac.andoc" mean?

When compiling the pkgtools/pkg_install package, you get the error from make
that it doesn't know how to make /usr/share/tmac/tmac.andoc? This indicates
that you don't have installed the "text" set (nroff, ...) from the NetBSD base
distribution on your machine. It is recommended to do that to format man pages.

In the case of the pkgtools/pkg_install package, you can get away with setting
NOMAN=YES either in the environment or in /etc/mk.conf.

7.12. What does "Could not find bsd.own.mk" mean?

You didn't install the compiler set, comp.tgz, when you installed your NetBSD
machine. Please get and install it, by extracting it in /:

# cd /
# tar --unlink -zxvpf .../comp.tgz

comp.tgz is part of every NetBSD release. Get the one that corresponds to your
release (determine via uname -r).

7.13. Using 'sudo' with pkgsrc

When installing packages as non-root user and using the just-in-time su(1)
feature of pkgsrc, it can become annoying to type in the root password for each
required package installed. To avoid this, the sudo package can be used, which
does password caching over a limited time. To use it, install sudo (either as
binary package or from security/sudo) and then put the following into your /etc
/mk.conf:

    .if exists(${LOCALBASE}/bin/sudo)
    SU_CMD=        ${LOCALBASE}/bin/sudo /bin/sh -c
    .endif

7.14. How do I change the location of configuration files?

As the system administrator, you can choose where configuration files are
installed. The default settings make all these files go into ${PREFIX}/etc or
some of its subdirectories; this may be suboptimal depending on your
expectations (e.g., a read-only, NFS-exported PREFIX with a need of per-machine
configuration of the provided packages).

In order to change the defaults, you can modify the PKG_SYSCONFBASE variable
(in /etc/mk.conf) to point to your preferred configuration directory; some
common examples include /etc or /etc/pkg.

Furthermore, you can change this value on a per-package basis by setting the
PKG_SYSCONFDIR.${PKG_SYSCONFVAR} variable. PKG_SYSCONFVAR's value usually
matches the name of the package you would like to modify, that is, the contents
of PKGBASE.

Note that after changing these settings, you must rebuild and reinstall any
affected packages.

7.15. Automated security checks

Please be aware that there can often be bugs in third-party software, and some
of these bugs can leave a machine vulnerable to exploitation by attackers. In
an effort to lessen the exposure, the NetBSD packages team maintains a database
of known-exploits to packages which have at one time been included in pkgsrc.
The database can be downloaded automatically, and a security audit of all
packages installed on a system can take place. To do this, install the security
/audit-packages package. It has two components:

 1. download-vulnerability-list, an easy way to download a list of the security
    vulnerabilities information. This list is kept up to date by the NetBSD
    security officer and the NetBSD packages team, and is distributed from the
    NetBSD ftp server:

    ftp://ftp.NetBSD.org/pub/NetBSD/packages/distfiles/pkg-vulnerabilities

 2. audit-packages, an easy way to audit the current machine, checking each
    vulnerability which is known. If a vulnerable package is installed, it will
    be shown by output to stdout, including a description of the type of
    vulnerability, and a URL containing more information.

Use of the security/audit-packages package is strongly recommended! After
"audit-packages" is installed, please read the package's message, which you can
get by running pkg_info -D audit-packages.

If this package is installed, pkgsrc builds will use it to perform a security
check before building any package. See Section 5.2, "Variables affecting the
build process" for ways to control this check.

7.16. Why do some packages ignore my CFLAGS?

When you add your own preferences to the CFLAGS variable in your mk.conf, these
flags are passed in environment variables to the ./configure scripts and to
make(1). Some package authors ignore the CFLAGS from the environment variable
by overriding them in the Makefiles of their package.

Currently there is no solution to this problem. If you really need the package
to use your CFLAGS you should run make patch in the package directory and then
inspect any Makefile and Makefile.in for whether they define CFLAGS explicitly.
Usually you can remove these lines. But be aware that some "smart" programmers
write so bad code that it only works for the specific combination of CFLAGS
they have chosen.

7.17. A package does not build. What shall I do?

 1. Make sure that your copy of pkgsrc is consistent. A case that occurs often
    is that people only update pkgsrc in parts, because of performance reasons.
    Since pkgsrc is one large system, not a collection of many small systems,
    there are sometimes changes that only work when the whole pkgsrc tree is
    updated.

 2. Make sure that you don't have any CVS conflicts. Search for "<<<<<<" or
    ">>>>>>" in all your pkgsrc files.

 3. Make sure that you don't have old copies of the packages extracted. Run
    make clean clean-depends to verify this.

 4. If the problem still exists, write a mail to the pkgsrc-users mailing list.

Part II. The pkgsrc developer's guide

This part of the book deals with creating and modifying packages. It starts
with a "HOWTO"-like guide on creating a new package. The remaining chapters are
more like a reference manual for pkgsrc.

Table of Contents

8. Creating a new pkgsrc package from scratch
9. Package components - files, directories and contents

    9.1. Makefile
    9.2. distinfo
    9.3. patches/*
    9.4. Other mandatory files
    9.5. Optional files

        9.5.1. Files affecting the binary package
        9.5.2. Files affecting the build process
        9.5.3. Files affecting nothing at all

    9.6. work*
    9.7. files/*

10. Programming in Makefiles

    10.1. Makefile variables

        10.1.1. Naming conventions

    10.2. Code snippets

        10.2.1. Adding things to a list
        10.2.2. Converting an internal list into an external list
        10.2.3. Passing variables to a shell command
        10.2.4. Quoting guideline
        10.2.5. Workaround for a bug in BSD Make

11. PLIST issues

    11.1. RCS ID
    11.2. Semi-automatic PLIST generation
    11.3. Tweaking output of make print-PLIST
    11.4. Variable substitution in PLIST
    11.5. Man page compression
    11.6. Changing PLIST source with PLIST_SRC
    11.7. Platform-specific and differing PLISTs
    11.8. Sharing directories between packages

12. Buildlink methodology

    12.1. Converting packages to use buildlink3
    12.2. Writing buildlink3.mk files

        12.2.1. Anatomy of a buildlink3.mk file
        12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files

    12.3. Writing builtin.mk files

        12.3.1. Anatomy of a builtin.mk file
        12.3.2. Global preferences for native or pkgsrc software

13. The pkginstall framework

    13.1. Files and directories outside the installation prefix

        13.1.1. Directory manipulation
        13.1.2. File manipulation

    13.2. Configuration files

        13.2.1. How PKG_SYSCONFDIR is set
        13.2.2. Telling the software where configuration files are
        13.2.3. Patching installations
        13.2.4. Disabling handling of configuration files

    13.3. System startup scripts

        13.3.1. Disabling handling of system startup scripts

    13.4. System users and groups
    13.5. System shells

        13.5.1. Disabling shell registration

    13.6. Fonts

        13.6.1. Disabling automatic update of the fonts databases

14. Options handling

    14.1. Global default options
    14.2. Converting packages to use bsd.options.mk
    14.3. Option Names

15. The build process

    15.1. Introduction
    15.2. Program location
    15.3. Directories used during the build process
    15.4. Running a phase
    15.5. The fetch phase
    15.6. The checksum phase
    15.7. The extract phase
    15.8. The patch phase
    15.9. The tools phase
    15.10. The wrapper phase
    15.11. The configure phase
    15.12. The build phase
    15.13. The test phase
    15.14. The install phase
    15.15. The package phase
    15.16. Other helpful targets

16. Tools needed for building or running

    16.1. Tools for pkgsrc builds
    16.2. Tools needed by packages
    16.3. Tools provided by platforms

17. Making your package work

    17.1. General operation

        17.1.1. Portability of packages
        17.1.2. How to pull in user-settable variables from mk.conf
        17.1.3. User interaction
        17.1.4. Handling licenses
        17.1.5. Restricted packages
        17.1.6. Handling dependencies
        17.1.7. Handling conflicts with other packages
        17.1.8. Packages that cannot or should not be built
        17.1.9. Packages which should not be deleted, once installed
        17.1.10. Handling packages with security problems
        17.1.11. How to handle incrementing versions when fixing an existing
            package
        17.1.12. Substituting variable text in the package files (the SUBST
            framework)

    17.2. Fixing problems in the fetch phase

        17.2.1. Packages whose distfiles aren't available for plain downloading
        17.2.2. How to handle modified distfiles with the 'old' name

    17.3. Fixing problems in the configure phase

        17.3.1. Shared libraries - libtool
        17.3.2. Using libtool on GNU packages that already support libtool
        17.3.3. GNU Autoconf/Automake

    17.4. Fixing problems in the build phase

        17.4.1. Compiling C and C++ code conditionally
        17.4.2. How to handle compiler bugs
        17.4.3. Undefined reference to "..."

    17.5. Fixing problems in the install phase

        17.5.1. Creating needed directories
        17.5.2. Where to install documentation
        17.5.3. Installing score files
        17.5.4. Packages containing perl scripts
        17.5.5. Packages with hardcoded paths to other interpreters
        17.5.6. Packages installing perl modules
        17.5.7. Packages installing info files
        17.5.8. Packages installing man pages
        17.5.9. Packages installing GConf2 data files
        17.5.10. Packages installing scrollkeeper data files
        17.5.11. Packages installing X11 fonts
        17.5.12. Packages installing GTK2 modules
        17.5.13. Packages installing SGML or XML data
        17.5.14. Packages installing extensions to the MIME database
        17.5.15. Packages using intltool
        17.5.16. Packages installing startup scripts
        17.5.17. Packages installing TeX modules

    17.6. Feedback to the author

18. Debugging
19. Submitting and Committing

    19.1. Submitting binary packages
    19.2. Submitting source packages (for non-NetBSD-developers)
    19.3. General notes when adding, updating, or removing packages
    19.4. Committing: Importing a package into CVS
    19.5. Updating a package to a newer version
    19.6. Moving a package in pkgsrc

20. Frequently Asked Questions

Chapter 8. Creating a new pkgsrc package from scratch

When you find a package that is not yet in pkgsrc, you most likely have a URL
from where you can download the source code. Starting with this URL, creating a
package involves only a few steps.

 1. First, install the packages pkgtools/url2pkg and pkgtools/pkglint.

 2. Then, choose one of the top-level directories as the category in which you
    want to place your package. You can also create a directory of your own
    (maybe called local). In that category directory, create another directory
    for your package and change into it.

 3. Run the program url2pkg, which will ask you for a URL. Enter the URL of the
    distribution file (in most cases a .tar.gz file) and watch how the basic
    ingredients of your package are created automatically. The distribution
    file is extracted automatically to fill in some details in the Makefile
    that would otherwise have to be done manually.

 4. Examine the extracted files to determine the dependencies of your package.
    Ideally, this is mentioned in some README file, but things may differ. For
    each of these dependencies, look where it exists in pkgsrc, and if there is
    a file called buildlink3.mk in that directory, add a line to your package
    Makefile which includes that file just before the last line. If the
    buildlink3.mk file does not exist, add a DEPENDS line to the Makefile,
    which specifies the version of the dependency and where it can be found in
    pkgsrc. This line should be placed in the third paragraph. If the
    dependency is only needed for building the package, but not when using it,
    use BUILD_DEPENDS instead of DEPENDS. Your package may then look like this:

        [...]

        BUILD_DEPENDS+= lua>=5.0:../../lang/lua
        DEPENDS+=       screen-[0-9]*:../../misc/screen
        DEPENDS+=       screen>=4.0:../../misc/screen

        [...]

        .include "../../category/package/buildlink3.mk"
        .include "../../devel/glib2/buildlink3.mk"
        .include "../../mk/bsd.pkg.mk"

 5. Run pkglint to see what things still need to be done to make your package a
    "good" one. If you don't know what pkglint's warnings want to tell you, try
    pkglint --explain or pkglint -e, which outputs additional explanations.

 6. Now, run bmake to build the package. For the various things that can go
    wrong in this phase, consult Chapter 17, Making your package work.

 7. When the package builds fine, the next step is to install the package. Run
    bmake install and hope that everything works.

 8. Up to now, the file PLIST, which contains a list of the files that are
    installed by the package, is nearly empty. Run bmake print-PLIST >PLIST to
    generate a probably correct list. Check the file using your preferred text
    editor to see if the list of files looks plausible.

 9. Run pkglint again to see if the generated PLIST contains garbage or not.

10. When you ran bmake install, the package has been registered in the database
    of installed files, but with an empty list of files. To fix this, run bmake
    deinstall and bmake install again. Now the package is registered with the
    list of files from PLIST.

11. Run bmake package to create a binary package from the set of installed
    files.

Chapter 9. Package components - files, directories and contents

Table of Contents

9.1. Makefile
9.2. distinfo
9.3. patches/*
9.4. Other mandatory files
9.5. Optional files

    9.5.1. Files affecting the binary package
    9.5.2. Files affecting the build process
    9.5.3. Files affecting nothing at all

9.6. work*
9.7. files/*

Whenever you're preparing a package, there are a number of files involved which
are described in the following sections.

9.1. Makefile

Building, installation and creation of a binary package are all controlled by
the package's Makefile. The Makefile describes various things about a package,
for example from where to get it, how to configure, build, and install it.

A package Makefile contains several sections that describe the package.

In the first section there are the following variables, which should appear
exactly in the order given here.

  * DISTNAME is the basename of the distribution file to be downloaded from the
    package's website.

  * PKGNAME is the name of the package, as used by pkgsrc. You only need to
    provide it if it differs from DISTNAME. Usually it is the directory name
    together with the version number. It must match the regular expression ^
    [A-Za-z0-9][A-Za-z0-9-_.+]*$, that is, it starts with a letter or digit,
    and contains only letters, digits, dashes, underscores, dots and plus
    signs.

  * CATEGORIES is a list of categories which the package fits in. You can
    choose any of the top-level directories of pkgsrc for it.

    Currently the following values are available for CATEGORIES. If more than
    one is used, they need to be separated by spaces:

        archivers     cross         geography     meta-pkgs     security
        audio         databases     graphics      misc          shells
        benchmarks    devel         ham           multimedia    sysutils
        biology       editors       inputmethod   net           textproc
        cad           emulators     lang          news          time
        chat          finance       mail          parallel      wm
        comms         fonts         math          pkgtools      www
        converters    games         mbone         print         x11

  * MASTER_SITES is a list of URLs where the distribution files can be
    downloaded. Each URL must end with a slash.

    The MASTER_SITES may make use of the following predefined sites:

        ${MASTER_SITE_APACHE}
        ${MASTER_SITE_BACKUP}
        ${MASTER_SITE_CYGWIN}
        ${MASTER_SITE_DEBIAN}
        ${MASTER_SITE_FREEBSD}
        ${MASTER_SITE_FREEBSD_LOCAL}
        ${MASTER_SITE_GNOME}
        ${MASTER_SITE_GNU}
        ${MASTER_SITE_GNUSTEP}
        ${MASTER_SITE_IFARCHIVE}
        ${MASTER_SITE_MOZILLA}
        ${MASTER_SITE_OPENOFFICE}
        ${MASTER_SITE_PERL_CPAN}
        ${MASTER_SITE_R_CRAN}
        ${MASTER_SITE_SOURCEFORGE}
        ${MASTER_SITE_SUNSITE}
        ${MASTER_SITE_SUSE}
        ${MASTER_SITE_TEX_CTAN}
        ${MASTER_SITE_XCONTRIB}
        ${MASTER_SITE_XEMACS}

    If one of these predefined sites is chosen, you may want to specify a
    subdirectory of that site. Since these macros may expand to more than one
    actual site, you must use the following construct to specify a
    subdirectory:

        ${MASTER_SITE_GNU:=subdirectory/name/}
        ${MASTER_SITE_SOURCEFORGE:=project_name/}

    Note the trailing slash after the subdirectory name.

    If the package has multiple DISTFILES or multiple PATCHFILES from different
    sites, set SITES.foo to a list of URIs where file "foo" may be found. "foo"
    includes the suffix, e.g.:

        DISTFILES=      ${DISTNAME}${EXTRACT_SUFX}
        DISTFILES+=     foo-file.tar.gz
        SITES.foo-file.tar.gz= \
                http://www.somewhere.com/somehow/ \
                http://www.somewhereelse.com/mirror/somehow/

  * DISTFILES: Name(s) of archive file(s) containing distribution. The default
    is ${DISTNAME}${EXTRACT_SUFX}. Should only be set if you have more than one
    distfile.

    Note that the normal default setting of DISTFILES must be made explicit if
    you want to add to it (rather than replace it), as you usually would.

  * EXTRACT_SUFX: Suffix of the distribution file, will be appended to
    DISTNAME. Defaults to .tar.gz.

The second section contains information about separately downloaded patches, if
any.

  * PATCHFILES: Name(s) of additional files that contain distribution patches.
    There is no default. pkgsrc will look for them at PATCH_SITES. They will
    automatically be uncompressed before patching if the names end with .gz or
    .Z.

  * PATCH_SITES: Primary location(s) for distribution patch files (see
    PATCHFILES below) if not found locally.

The third section contains the following variables.

  * MAINTAINER is the email address of the person who feels responsible for
    this package, and who is most likely to look at problems or questions
    regarding this package which have been reported with send-pr(1). Other
    developers should contact the MAINTAINER before making major changes to the
    package. When packaging a new program, set MAINTAINER to yourself. If you
    really can't maintain the package for future updates, set it to <
    pkgsrc-users@NetBSD.org>.

  * HOMEPAGE is a URL where users can find more information about the package.

  * COMMENT is a one-line description of the package (should not include the
    package name).

Other variables that affect the build:

  * WRKSRC: The directory where the interesting distribution files of the
    package are found. The default is ${WRKDIR}/${DISTNAME}, which works for
    most packages.

    If a package doesn't create a subdirectory for itself (most GNU software
    does, for instance), but extracts itself in the current directory, you
    should set WRKSRC= ${WRKDIR}.

    If a package doesn't create a subdirectory with the name of DISTNAME but
    some different name, set WRKSRC to point to the proper name in ${WRKDIR},
    for example WRKSRC= ${WRKDIR}/${DISTNAME}/unix. See lang/tcl and x11/tk for
    other examples.

    The name of the working directory created by pkgsrc is taken from the
    WRKDIR_BASENAME variable. By default, its value is work. If you want to use
    the same pkgsrc tree for building different kinds of binary packages, you
    can change the variable according to your needs. Two other variables handle
    common cases of setting WRKDIR_BASENAME individually. If OBJHOSTNAME is
    defined in /etc/mk.conf, the first component of the host's name is attached
    to the directory name. If OBJMACHINE is defined, the platform name is
    attached, which might look like work.i386 or work.sparc.

Please pay attention to the following gotchas:

  * Add MANCOMPRESSED if man pages are installed in compressed form by the
    package; see comment in bsd.pkg.mk.

  * Replace /usr/local with "${PREFIX}" in all files (see patches, below).

  * If the package installs any info files, see Section 17.5.7, "Packages
    installing info files".

9.2. distinfo

The distinfo file contains the message digest, or checksum, of each distfile
needed for the package. This ensures that the distfiles retrieved from the
Internet have not been corrupted during transfer or altered by a malign force
to introduce a security hole. Due to recent rumor about weaknesses of digest
algorithms, all distfiles are protected using both SHA1 and RMD160 message
digests, as well as the file size.

The distinfo file also contains the checksums for all the patches found in the
patches directory (see Section 9.3, "patches/*").

To regenerate the distinfo file, use the make makedistinfo or make mdi command.

Some packages have different sets of distfiles depending on the platform, for
example www/navigator). These are kept in the same distinfo file and care
should be taken when upgrading such a package to ensure distfile information is
not lost.

9.3. patches/*

This directory contains files that are used by the patch(1) command to modify
the sources as distributed in the distribution file into a form that will
compile and run perfectly on NetBSD. The files are applied successively in
alphabetic order (as returned by a shell "patches/patch-*" glob expansion), so
patch-aa is applied before patch-ab, etc.

The patch-* files should be in diff -bu format, and apply without a fuzz to
avoid problems. (To force patches to apply with fuzz you can set
PATCH_FUZZ_FACTOR=-F2). Furthermore, do not put changes for more than one file
into a single patch file, as this will make future modifications more
difficult.

Similar, a file should be patched at most once, not several times by several
different patches. If a file needs several patches, they should be combined
into one file.

One important thing to mention is to pay attention that no RCS IDs get stored
in the patch files, as these will cause problems when later checked into the
NetBSD CVS tree. Use the pkgdiff from the pkgtools/pkgdiff package to avoid
these problems.

For even more automation, we recommend using mkpatches from the same package to
make a whole set of patches. You just have to backup files before you edit them
to filename.orig, e.g. with cp -p filename filename.orig or, easier, by using
pkgvi again from the same package. If you upgrade a package this way, you can
easily compare the new set of patches with the previously existing one with
patchdiff.

When you have finished a package, remember to generate the checksums for the
patch files by using the make makepatchsum command, see Section 9.2, "distinfo"
.

When adding a patch that corrects a problem in the distfile (rather than e.g.
enforcing pkgsrc's view of where man pages should go), send the patch as a bug
report to the maintainer. This benefits non-pkgsrc users of the package, and
usually enables removing the patch in future version.

Patch files that are distributed by the author or other maintainers can be
listed in $PATCHFILES.

If it is desired to store any patches that should not be committed into pkgsrc,
they can be kept outside the pkgsrc tree in the $LOCALPATCHES directory. The
directory tree there is expected to have the same "category/package" structure
as pkgsrc, and patches are expected to be stored inside these dirs (also known
as $LOCALPATCHES/$PKGPATH). For example, if you want to keep a private patch
for pkgsrc/graphics/png, keep it in $LOCALPATCHES/graphics/png/mypatch. All
files in the named directory are expected to be patch files, and they are
applied after pkgsrc patches are applied.

9.4. Other mandatory files

DESCR

    A multi-line description of the piece of software. This should include any
    credits where they are due. Please bear in mind that others do not share
    your sense of humour (or spelling idiosyncrasies), and that others will
    read everything that you write here.

PLIST

    This file governs the files that are installed on your system: all the
    binaries, manual pages, etc. There are other directives which may be
    entered in this file, to control the creation and deletion of directories,
    and the location of inserted files. See Chapter 11, PLIST issues for more
    information.

9.5. Optional files

9.5.1. Files affecting the binary package

INSTALL

    This shell script is invoked twice by pkg_add(1). First time after package
    extraction and before files are moved in place, the second time after the
    files to install are moved in place. This can be used to do any custom
    procedures not possible with @exec commands in PLIST. See pkg_add(1) and
    pkg_create(1) for more information.

DEINSTALL

    This script is executed before and after any files are removed. It is this
    script's responsibility to clean up any additional messy details around the
    package's installation, since all pkg_delete knows is how to delete the
    files created in the original distribution. See pkg_delete(1) and
    pkg_create(1) for more information.

MESSAGE

    This file is displayed after installation of the package. Useful for things
    like legal notices on almost-free software and hints for updating config
    files after installing modules for apache, PHP etc. Please note that you
    can modify variables in it easily by using MESSAGE_SUBST in the package's
    Makefile:

        MESSAGE_SUBST+=  SOMEVAR="somevalue"

    replaces "${SOMEVAR}" with "somevalue" in MESSAGE.

ALTERNATIVES

    FIXME: There is no documentation on the alternatives framework.

9.5.2. Files affecting the build process

Makefile.common

    This file contains arbitrary things that could also go into a Makefile, but
    its purpose is to be used by more than one package. This file should only
    be used when the packages that will use the file are known in advance. For
    other purposes it is often better to write a *.mk file and give it a good
    name that describes what it does.

buildlink3.mk

    This file contains the dependency information for the buildlink3 framework
    (see Chapter 12, Buildlink methodology).

hacks.mk

    This file contains workarounds for compiler bugs and similar things. It is
    included automatically by the pkgsrc infrastructure, so you don't need an
    extra .include line for it.

options.mk

    This file contains the code for the package-specific options (see
    Chapter 14, Options handling) that can be selected by the user. If a
    package has only one or two options, it is equally acceptable to put the
    code directly into the Makefile.

9.5.3. Files affecting nothing at all

README*

    These files do not take place in the creation of a package and thus are
    purely informative to the package developer.

TODO

    This file contains things that need to be done to make the package even
    better.

9.6. work*

When you type make, the distribution files are unpacked into the directory
denoted by WRKDIR. It can be removed by running make clean. Besides the
sources, this directory is also used to keep various timestamp files. The
directory gets removed completely on clean. The default is ${.CURDIR}/work or $
{.CURDIR}/work.${MACHINE_ARCH} if OBJMACHINE is set.

9.7. files/*

If you have any files that you wish to be placed in the package prior to
configuration or building, you could place these files here and use a "${CP}"
command in the "pre-configure" target to achieve this. Alternatively, you could
simply diff the file against /dev/null and use the patch mechanism to manage
the creation of this file.

Chapter 10. Programming in Makefiles

Table of Contents

10.1. Makefile variables

    10.1.1. Naming conventions

10.2. Code snippets

    10.2.1. Adding things to a list
    10.2.2. Converting an internal list into an external list
    10.2.3. Passing variables to a shell command
    10.2.4. Quoting guideline
    10.2.5. Workaround for a bug in BSD Make

Pkgsrc consists of many Makefile fragments, each of which forms a well-defined
part of the pkgsrc system. Using the make(1) system as a programming language
for a big system like pkgsrc requires some discipline to keep the code correct
and understandable.

The basic ingredients for Makefile programming are variables (which are
actually macros) and shell commands. Among these shell commands may even be
more complex ones like awk(1) programs. To make sure that every shell command
runs as intended it is necessary to quote all variables correctly when they are
used.

This chapter describes some patterns, that appear quite often in Makefiles,
including the pitfalls that come along with them.

10.1. Makefile variables

Makefile variables contain strings that can be processed using the five
operators ``='', ``+='', ``?='', ``:='', and ``!='', which are described in the
make(1) man page.

When a variable's value is parsed from a Makefile, the hash character ``#'' and
the backslash character ``\'' are handled specially. If a backslash is followed
by a newline, any whitespace immediately in front of the backslash, the
backslash, the newline, and any whitespace immediately behind the newline are
replaced with a single space. A backslash character and an immediately
following hash character are replaced with a single hash character. Otherwise,
the backslash is passed as is. In a variable assignment, any hash character
that is not preceded by a backslash starts a comment that continues upto the
end of the logical line.

Note: Because of this parsing algorithm the only way to create a variable
consisting of a single backslash is using the ``!='' operator, for example:
BACKSLASH!=echo "\\".

So far for defining variables. The other thing you can do with variables is
evaluating them. A variable is evaluated when it is part of the right side of
the ``:='' or the ``!='' operator, or directly before executing a shell command
which the variable is part of. In all other cases, make(1) performs lazy
evaluation, that is, variables are not evaluated until there's no other way.
The ``modifiers'' mentioned in the man page also evaluate the variable.

Some of the modifiers split the string into words and then operate on the
words, others operate on the string as a whole. When a string is split into
words, it is split as you would expect it from sh(1).

No rule without exception?the .for loop does not follow the shell quoting rules
but splits at sequences of whitespace.

There are several types of variables that should be handled differently.
Strings and two types of lists.

  * Strings can contain arbitrary characters. Nevertheless, you should restrict
    yourself to only using printable characters. Examples are PREFIX and
    COMMENT.

  * Internal lists are lists that are never exported to any shell command.
    Their elements are separated by whitespace. Therefore, the elements
    themselves cannot have embedded whitespace. Any other characters are
    allowed. Internal lists can be used in .for loops. Examples are DEPENDS and
    BUILD_DEPENDS.

  * External lists are lists that may be exported to a shell command. Their
    elements can contain any characters, including whitespace. That's why they
    cannot be used in .for loops. Examples are DISTFILES and MASTER_SITES.

10.1.1. Naming conventions

  * All variable names starting with an underscore are reserved for use by the
    pkgsrc infrastructure. They shall not be used by package Makefiles.

  * In .for loops you should use lowercase variable names for the iteration
    variables.

  * All list variables should have a ``plural'' name, e.g. PKG_OPTIONS or
    DISTFILES.

10.2. Code snippets

This section presents you with some code snippets you should use in your own
code. If you don't find anything appropriate here, you should test your code
and add it here.

10.2.1. Adding things to a list

    STRING=                 foo * bar `date`
    INT_LIST=               # empty
    ANOTHER_INT_LIST=       apache-[0-9]*:../../www/apache
    EXT_LIST=               # empty
    ANOTHER_EXT_LIST=       a=b c=d

    INT_LIST+=              ${STRING}               # 1
    INT_LIST+=              ${ANOTHER_INT_LIST}     # 2
    EXT_LIST+=              ${STRING:Q}             # 3
    EXT_LIST+=              ${ANOTHER_EXT_LIST}     # 4

When you add a string to an external list (example 3), it must be quoted. In
all other cases, you must not add a quoting level. You must not merge internal
and external lists, unless you are sure that all entries are correctly
interpreted in both lists.

10.2.2. Converting an internal list into an external list

    EXT_LIST=       # empty
    .for i in ${INT_LIST}
    EXT_LIST+=      ${i:Q}""
    .endfor

This code converts the internal list INT_LIST into the external list EXT_LIST.
As the elements of an internal list are unquoted they must be quoted here. The
reason for appending "" is explained below.

10.2.3. Passing variables to a shell command

Sometimes you may want to print an arbitrary string. There are many ways to get
it wrong and only few that can handle every nastiness.

    STRING=         foo bar <    > * `date` $$HOME ' "
    EXT_LIST=       string=${STRING:Q} x=second\ item

    all:
            echo ${STRING}                  # 1
            echo "${STRING}"                # 2
            echo "${STRING:Q}"              # 3
            echo ${STRING:Q}                # 4
            echo x${STRING:Q} | sed 1s,.,,  # 5
            printf "%s\\n" ${STRING:Q}""    # 6
            env ${EXT_LIST} /bin/sh -c 'echo "$$string"; echo "$$x"'

Example 1 leads to a syntax error in the shell, as the characters are just
copied.

Example 2 leads to a syntax error too, and if you leave out the last "
character from ${STRING}, date(1) will be executed. The $HOME shell variable
would be evaluated, too.

Example 3 outputs each space character preceded by a backslash (or not),
depending on the implementation of the echo(1) command.

Example 4 handles correctly every string that does not start with a dash. In
that case, the result depends on the implementation of the echo(1) command. As
long as you can guarantee that your input does not start with a dash, this form
is appropriate.

Example 5 handles even the case of a leading dash correctly.

Example 6 also works with every string and is the light-weight solution, since
it does not involve a pipe, which has its own problems.

The EXT_LIST does not need to be quoted because the quoting has already been
done when adding elements to the list.

As internal lists shall not be passed to the shell, there is no example for it.

10.2.4. Quoting guideline

There are many possible sources of wrongly quoted variables. This section lists
some of the commonly known ones.

  * Whenever you use the value of a list, think about what happens to leading
    or trailing whitespace. If the list is a well-formed shell expression, you
    can apply the :M* modifier to strip leading and trailing whitespace from
    each word. The :M operator first splits its argument according to the rules
    of the shell, and then creates a new list consisting of all words that
    match the shell glob expression *, that is: all. One class of situations
    where this is needed is when adding a variable like CPPFLAGS to
    CONFIGURE_ARGS. If the configure script invokes other configure scripts, it
    strips the leading and trailing whitespace from the variable and then
    passes it to the other configure scripts. But these configure scripts
    expect the (child) CPPFLAGS variable to be the same as the parent CPPFLAGS.
    That's why we better pass the CPPFLAGS value properly trimmed. And here is
    how we do it:

        CPPFLAGS=               # empty
        CPPFLAGS+=              -Wundef -DPREFIX=\"${PREFIX:Q}\"
        CPPFLAGS+=              ${MY_CPPFLAGS}

        CONFIGURE_ARGS+=        CPPFLAGS=${CPPFLAGS:M*:Q}

        all:
                echo x${CPPFLAGS:Q}x            # leading and trailing whitespace
                echo x${CONFIGURE_ARGS}x        # properly trimmed

  * The example above contains one bug: The ${PREFIX} is a properly quoted
    shell expression, but there is the C compiler after it, which also expects
    a properly quoted string (this time in C syntax). The version above is
    therefore only correct if ${PREFIX} does not have embedded backslashes or
    double quotes. If you want to allow these, you have to add another layer of
    quoting to each variable that is used as a C string literal. You cannot use
    the :Q operator for it, as this operator only works for the shell.

  * Whenever a variable can be empty, the :Q operator can have surprising
    results. Here are two completely different cases which can be solved with
    the same trick.

        EMPTY=                  # empty
        empty_test:
                for i in a ${EMPTY:Q} c; do \
                        echo "$$i"; \
                done

        for_test:
        .for i in a:\ a:\test.txt
                echo ${i:Q}
                echo "foo"
        .endfor

    The first example will only print two of the three lines we might have
    expected. This is because ${EMPTY:Q} expands to the empty string, which the
    shell cannot see. The workaround is to write ${EMPTY:Q}"". This pattern can
    be often found as ${TEST} -z ${VAR:Q} or as ${TEST} -f ${FNAME:Q} (both of
    these are wrong).

    The second example will only print three lines instead of four. The first
    line looks like a:\ echo foo. This is because the backslash of the value a:
    \ is interpreted as a line-continuation by make(1), which makes the second
    line the arguments of the echo(1) command from the first line. To avoid
    this, write ${i:Q}"".

10.2.5. Workaround for a bug in BSD Make

The pkgsrc bmake program does not handle the following assignment correctly. In
case _othervar_ contains a ``-'' character, one of the closing braces is
included in ${VAR} after this code executes.

    VAR:=   ${VAR:N${_othervar_:C/-//}}

For a more complex code snippet and a workaround, see the package regress/
make-quoting, testcase bug1.

Chapter 11. PLIST issues

Table of Contents

11.1. RCS ID
11.2. Semi-automatic PLIST generation
11.3. Tweaking output of make print-PLIST
11.4. Variable substitution in PLIST
11.5. Man page compression
11.6. Changing PLIST source with PLIST_SRC
11.7. Platform-specific and differing PLISTs
11.8. Sharing directories between packages

The PLIST file contains a package's "packing list", i.e. a list of files that
belong to the package (relative to the ${PREFIX} directory it's been installed
in) plus some additional statements - see the pkg_create(1) man page for a full
list. This chapter addresses some issues that need attention when dealing with
the PLIST file (or files, see below!).

11.1. RCS ID

Be sure to add a RCS ID line as the first thing in any PLIST file you write:

    @comment $NetBSD$

11.2. Semi-automatic PLIST generation

You can use the make print-PLIST command to output a PLIST that matches any new
files since the package was extracted. See Section 15.16, "Other helpful
targets" for more information on this target.

11.3. Tweaking output of make print-PLIST

If you have used any of the *-dirs packages, as explained in Section 11.8,
"Sharing directories between packages", you may have noticed that make
print-PLIST outputs a set of @comments instead of real @dirrm lines. You can
also do this for specific directories and files, so that the results of that
command are very close to reality. This helps a lot during the update of
packages.

The PRINT_PLIST_AWK variable takes a set of AWK patterns and actions that are
used to filter the output of print-PLIST. You can append any chunk of AWK
scripting you like to it, but be careful with quoting.

For example, to get all files inside the libdata/foo directory removed from the
resulting PLIST:

    PRINT_PLIST_AWK+=       /^libdata\/foo/ { next; }

And to get all the @dirrm lines referring to a specific (shared) directory
converted to @comments:

    PRINT_PLIST_AWK+=       /^@dirrm share\/specific/ { print "@comment " $$0; next; }

11.4. Variable substitution in PLIST

A number of variables are substituted automatically in PLISTs when a package is
installed on a system. This includes the following variables:

${MACHINE_ARCH}, ${MACHINE_GNU_ARCH}

    Some packages like emacs and perl embed information about which
    architecture they were built on into the pathnames where they install their
    files. To handle this case, PLIST will be preprocessed before actually
    used, and the symbol "${MACHINE_ARCH}" will be replaced by what uname -p
    gives. The same is done if the string ${MACHINE_GNU_ARCH} is embedded in
    PLIST somewhere - use this on packages that have GNU autoconf-created
    configure scripts.

    Legacy note

    There used to be a symbol "$ARCH" that was replaced by the output of uname
    -m, but that's no longer supported and has been removed.

${OPSYS}, ${LOWER_OPSYS}, ${OS_VERSION}

    Some packages want to embed the OS name and version into some paths. To do
    this, use these variables in the PLIST:

      * ${OPSYS} - output of "uname -s"

      * ${LOWER_OPSYS} - lowercase common name (eg. "solaris")

      * ${OS_VERSION} - "uname -r"

For a complete list of values which are replaced by default, please look in
bsd.pkg.mk (and search for PLIST_SUBST).

If you want to change other variables not listed above, you can add variables
and their expansions to this variable in the following way, similar to
MESSAGE_SUBST (see Section 9.5, "Optional files"):

    PLIST_SUBST+=   SOMEVAR="somevalue"

This replaces all occurrences of "${SOMEVAR}" in the PLIST with "somevalue".

11.5. Man page compression

Man pages should be installed in compressed form if MANZ is set (in
bsd.own.mk), and uncompressed otherwise. To handle this in the PLIST file, the
suffix ".gz" is appended/removed automatically for man pages according to MANZ
and MANCOMPRESSED being set or not, see above for details. This modification of
the PLIST file is done on a copy of it, not PLIST itself.

11.6. Changing PLIST source with PLIST_SRC

To use one or more files as source for the PLIST used in generating the binary
package, set the variable PLIST_SRC to the names of that file(s). The files are
later concatenated using cat(1), and order of things is important.

11.7. Platform-specific and differing PLISTs

Some packages decide to install a different set of files based on the operating
system being used. These differences can be automatically handled by using the
following files:

  * PLIST.common

  * PLIST.${OPSYS}

  * PLIST.${MACHINE_ARCH}

  * PLIST.${OPSYS}-${MACHINE_ARCH}

  * PLIST.common_end

11.8. Sharing directories between packages

A "shared directory" is a directory where multiple (and unrelated) packages
install files. These directories are problematic because you have to add
special tricks in the PLIST to conditionally remove them, or have some
centralized package handle them.

Within pkgsrc, you'll find both approaches. If a directory is shared by a few
unrelated packages, it's often not worth to add an extra package to remove it.
Therefore, one simply does:

    @unexec ${RMDIR} %D/path/to/shared/directory 2>/dev/null || ${TRUE}

in the PLISTs of all affected packages, instead of the regular "@dirrm" line.

However, if the directory is shared across many packages, two different
solutions are available:

 1. If the packages have a common dependency, the directory can be removed in
    that. For example, see textproc/scrollkeeper, which removes the shared
    directory share/omf.

 2. If the packages using the directory are not related at all (they have no
    common dependencies), a *-dirs package is used.

From now on, we'll discuss the second solution. To get an idea of the *-dirs
packages available, issue:

    % cd .../pkgsrc
    % ls -d */*-dirs

Their use from other packages is very simple. The USE_DIRS variable takes a
list of package names (without the "-dirs" part) together with the required
version number (always pick the latest one when writing new packages).

For example, if a package installs files under share/applications, it should
have the following line in it:

    USE_DIRS+=      xdg-1.1

After regenerating the PLIST using make print-PLIST, you should get the right
(commented out) lines.

Note that even if your package is using $X11BASE, it must not depend on the
*-x11-dirs packages. Just specify the name without that part and pkgsrc (in
particular, mk/dirs.mk) will take care of it.

Chapter 12. Buildlink methodology

Table of Contents

12.1. Converting packages to use buildlink3
12.2. Writing buildlink3.mk files

    12.2.1. Anatomy of a buildlink3.mk file
    12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files

12.3. Writing builtin.mk files

    12.3.1. Anatomy of a builtin.mk file
    12.3.2. Global preferences for native or pkgsrc software

Buildlink is a framework in pkgsrc that controls what headers and libraries are
seen by a package's configure and build processes. This is implemented in a two
step process:

 1. Symlink headers and libraries for dependencies into BUILDLINK_DIR, which by
    default is a subdirectory of WRKDIR.

 2. Create wrapper scripts that are used in place of the normal compiler tools
    that translate -I${LOCALBASE}/include and -L${LOCALBASE}/lib into
    references to BUILDLINK_DIR. The wrapper scripts also make native compiler
    on some operating systems look like GCC, so that packages that expect GCC
    won't require modifications to build with those native compilers.

This normalizes the environment in which a package is built so that the package
may be built consistently despite what other software may be installed. Please
note that the normal system header and library paths, e.g. /usr/include, /usr/
lib, etc., are always searched -- buildlink3 is designed to insulate the
package build from non-system-supplied software.

12.1. Converting packages to use buildlink3

The process of converting packages to use the buildlink3 framework
("bl3ifying") is fairly straightforward. The things to keep in mind are:

 1. Ensure that the build always calls the wrapper scripts instead of the
    actual toolchain. Some packages are tricky, and the only way to know for
    sure is the check ${WRKDIR}/.work.log to see if the wrappers are being
    invoked.

 2. Don't override PREFIX from within the package Makefile, e.g. Java VMs,
    standalone shells, etc., because the code to symlink files into $
    {BUILDLINK_DIR} looks for files relative to "pkg_info -qp pkgname".

 3. Remember that only the buildlink3.mk files that you list in a package's
    Makefile are added as dependencies for that package.

If a dependency on a particular package is required for its libraries and
headers, then we replace:

    DEPENDS+=   foo>=1.1.0:../../category/foo

with

    .include "../../category/foo/buildlink3.mk"

The buildlink3.mk files usually define the required dependencies. If you need a
newer version of the dependency when using buildlink3.mk files, then you can
define it in your Makefile; for example:

    BUILDLINK_API_DEPENDS.foo+=   foo>=1.1.0
    .include "../../category/foo/buildlink3.mk"

There are several buildlink3.mk files in pkgsrc/mk that handle special package
issues:

  * bdb.buildlink3.mk chooses either the native or a pkgsrc Berkeley DB
    implementation based on the values of BDB_ACCEPTED and BDB_DEFAULT.

  * curses.buildlink3.mk: If the system comes with neither Curses nor NCurses,
    this will take care to install the devel/ncurses package.

  * krb5.buildlink3.mk uses the value of KRB5_ACCEPTED to choose between adding
    a dependency on Heimdal or MIT-krb5 for packages that require a Kerberos 5
    implementation.

  * motif.buildlink3.mk checks for a system-provided Motif installation or adds
    a dependency on x11/lesstif or x11/openmotif.

  * oss.buildlink3.mk defines several variables that may be used by packages
    that use the Open Sound System (OSS) API.

  * pgsql.buildlink3.mk will accept either Postgres 7.3 or 7.4, whichever is
    found installed. See the file for more information.

  * pthread.buildlink3.mk uses the value of PTHREAD_OPTS and checks for native
    pthreads or adds a dependency on devel/pth as needed.

  * xaw.buildlink3.mk uses the value of XAW_TYPE to choose a particular Athena
    widgets library.

The comments in those buildlink3.mk files provide a more complete description
of how to use them properly.

12.2. Writing buildlink3.mk files

A package's buildlink3.mk file is included by Makefiles to indicate the need to
compile and link against header files and libraries provided by the package. A
buildlink3.mk file should always provide enough information to add the correct
type of dependency relationship and include any other buildlink3.mk files that
it needs to find headers and libraries that it needs in turn.

To generate an initial buildlink3.mk file for further editing, Rene Hexel's
pkgtools/createbuildlink package is highly recommended. For most packages, the
following command will generate a good starting point for buildlink3.mk files:

% cd pkgsrc/category/pkgdir
% createbuildlink >buildlink3.mk

12.2.1. Anatomy of a buildlink3.mk file

The following real-life example buildlink3.mk is taken from pkgsrc/graphics/
tiff:

    # $NetBSD: buildlink3.mk,v 1.7 2004/03/18 09:12:12 jlam Exp $

    BUILDLINK_DEPTH:=       ${BUILDLINK_DEPTH}+
    TIFF_BUILDLINK3_MK:=    ${TIFF_BUILDLINK3_MK}+

    .if !empty(BUILDLINK_DEPTH:M+)
    BUILDLINK_DEPENDS+=     tiff
    .endif

    BUILDLINK_PACKAGES:=    ${BUILDLINK_PACKAGES:Ntiff}
    BUILDLINK_PACKAGES+=    tiff

    .if !empty(TIFF_BUILDLINK3_MK:M+)
    BUILDLINK_API_DEPENDS.tiff+=        tiff>=3.6.1
    BUILDLINK_PKGSRCDIR.tiff?=      ../../graphics/tiff
    .endif  # TIFF_BUILDLINK3_MK

    .include "../../devel/zlib/buildlink3.mk"
    .include "../../graphics/jpeg/buildlink3.mk"

    BUILDLINK_DEPTH:=       ${BUILDLINK_DEPTH:S/+$//}

The header and footer manipulate BUILDLINK_DEPTH, which is common across all
buildlink3.mk files and is used to track at what depth we are including
buildlink3.mk files.

The first section controls if the dependency on pkg is added. BUILDLINK_DEPENDS
is the global list of packages for which dependencies are added by buildlink3.

The second section advises pkgsrc that the buildlink3.mk file for pkg has been
included at some point. BUILDLINK_PACKAGES is the global list of packages for
which buildlink3.mk files have been included. It must always be appended to
within a buildlink3.mk file.

The third section is protected from multiple inclusion and controls how the
dependency on pkg is added. Several important variables are set in the section:

  * BUILDLINK_API_DEPENDS.pkg is the actual dependency recorded in the
    installed package; this should always be set using += to ensure that we're
    appending to any pre-existing list of values. This variable should be set
    to the first version of the package that had an API change.

  * BUILDLINK_PKGSRCDIR.pkg is the location of the pkg pkgsrc directory.

  * BUILDLINK_DEPMETHOD.pkg (not shown above) controls whether we use
    BUILD_DEPENDS or DEPENDS to add the dependency on pkg. The build dependency
    is selected by setting BUILDLINK_DEPMETHOD.pkg to "build". By default, the
    full dependency is used.

  * BUILDLINK_INCDIRS.pkg and BUILDLINK_LIBDIRS.pkg (not shown above) are lists
    of subdirectories of ${BUILDLINK_PREFIX.pkg} to add to the header and
    library search paths. These default to "include" and "lib" respectively.

  * BUILDLINK_CPPFLAGS.pkg (not shown above) is the list of preprocessor flags
    to add to CPPFLAGS, which are passed on to the configure and build phases.
    The "-I" option should be avoided and instead be handled using
    BUILDLINK_INCDIRS.pkg as above.

The following variables are all optionally defined within this second section
(protected against multiple inclusion) and control which package files are
symlinked into ${BUILDLINK_DIR} and how their names are transformed during the
symlinking:

  * BUILDLINK_FILES.pkg (not shown above) is a shell glob pattern relative to $
    {BUILDLINK_PREFIX.pkg} to be symlinked into ${BUILDLINK_DIR}, e.g. include/
    *.h.

  * BUILDLINK_FILES_CMD.pkg (not shown above) is a shell pipeline that outputs
    to stdout a list of files relative to ${BUILDLINK_PREFIX.pkg}. The
    resulting files are to be symlinked into ${BUILDLINK_DIR}. By default, this
    takes the +CONTENTS of a pkg and filters it through $
    {BUILDLINK_CONTENTS_FILTER.pkg}.

  * BUILDLINK_CONTENTS_FILTER.pkg (not shown above) is a filter command that
    filters +CONTENTS input into a list of files relative to $
    {BUILDLINK_PREFIX.pkg} on stdout. By default for overwrite packages,
    BUILDLINK_CONTENTS_FILTER.pkg outputs the contents of the include and lib
    directories in the package +CONTENTS, and for pkgviews packages, it outputs
    any libtool archives in lib directories.

  * BUILDLINK_TRANSFORM.pkg (not shown above) is a list of sed arguments used
    to transform the name of the source filename into a destination filename,
    e.g. -e "s|/curses.h|/ncurses.h|g".

The last section includes any buildlink3.mk needed for pkg's library
dependencies. Including these buildlink3.mk files means that the headers and
libraries for these dependencies are also symlinked into ${BUILDLINK_DIR}
whenever the pkg buildlink3.mk file is included.

12.2.2. Updating BUILDLINK_API_DEPENDS.pkg in buildlink3.mk files

The situation that requires increasing the dependency listed in
BUILDLINK_API_DEPENDS.pkg after a package update is when the API or interface
to the header files change.

In this case, BUILDLINK_API_DEPENDS.pkg should be adjusted to require at least
the new package version. In some cases, the packages that depend on this new
version may need their PKGREVISIONs increased and, if they have buildlink3.mk
files, their BUILDLINK_API_DEPENDS.pkg adjusted, too. This is needed so pkgsrc
will require the correct package dependency and not settle for an older one
when building the source.

BUILDLINK_ABI_DEPENDS.pkg should be increased when the binary interface or
sonames (major number of the library version) of any installed shared libraries
change. This is needed so that binary packages made using it will require the
correct package dependency and not settle for an older one which will not
contain the necessary shared libraries.

See Section 17.1.6, "Handling dependencies" for more information about
dependencies on other packages, including the BUILDLINK_ABI_DEPENDS and
ABI_DEPENDS definitions.

Please take careful consideration before adjusting BUILDLINK_API_DEPENDS.pkg or
BUILDLINK_ABI_DEPENDS.pkg as we don't want to cause unneeded package deletions
and rebuilds. In many cases, new versions of packages work just fine with older
dependencies.

Also it is not needed to set BUILDLINK_ABI_DEPENDS.pkg when it is identical to
BUILDLINK_API_DEPENDS.pkg.

12.3. Writing builtin.mk files

Some packages in pkgsrc install headers and libraries that coincide with
headers and libraries present in the base system. Aside from a buildlink3.mk
file, these packages should also include a builtin.mk file that includes the
necessary checks to decide whether using the built-in software or the pkgsrc
software is appropriate.

The only requirements of a builtin.mk file for pkg are:

 1. It should set USE_BUILTIN.pkg to either "yes" or "no" after it is included.

 2. It should not override any USE_BUILTIN.pkg which is already set before the
    builtin.mk file is included.

 3. It should be written to allow multiple inclusion. This is very important
    and takes careful attention to Makefile coding.

12.3.1. Anatomy of a builtin.mk file

The following is the recommended template for builtin.mk files:

    .if !defined(IS_BUILTIN.foo)
    #
    # IS_BUILTIN.foo is set to "yes" or "no" depending on whether "foo"
    # genuinely exists in the system or not.
    #
    IS_BUILTIN.foo?=        no

    # BUILTIN_PKG.foo should be set here if "foo" is built-in and its package
    # version can be determined.
    #
    .  if !empty(IS_BUILTIN.foo:M[yY][eE][sS])
    BUILTIN_PKG.foo?=       foo-1.0
    .  endif
    .endif  # IS_BUILTIN.foo

    .if !defined(USE_BUILTIN.foo)
    USE_BUILTIN.foo?=       ${IS_BUILTIN.foo}
    .  if defined(BUILTIN_PKG.foo)
    .    for _depend_ in ${BUILDLINK_API_DEPENDS.foo}
    .      if !empty(USE_BUILTIN.foo:M[yY][eE][sS])
    USE_BUILTIN.foo!=                                                       \
          if ${PKG_ADMIN} pmatch '${_depend_}' ${BUILTIN_PKG.foo}; then     \
                  ${ECHO} "yes";                                            \
          else                                                              \
                  ${ECHO} "no";                                             \
          fi
    .      endif
    .    endfor
    .  endif
    .endif  # USE_BUILTIN.foo

    CHECK_BUILTIN.foo?=     no
    .if !empty(CHECK_BUILTIN.foo:M[nN][oO])
    #
    # Here we place code that depends on whether USE_BUILTIN.foo is set to
    # "yes" or "no".
    #
    .endif  # CHECK_BUILTIN.foo

The first section sets IS_BUILTIN.pkg depending on if pkg really exists in the
base system. This should not be a base system software with similar
functionality to pkg; it should only be "yes" if the actual package is included
as part of the base system. This variable is only used internally within the
builtin.mk file.

The second section sets BUILTIN_PKG.pkg to the version of pkg in the base
system if it exists (if IS_BUILTIN.pkg is "yes"). This variable is only used
internally within the builtin.mk file.

The third section sets USE_BUILTIN.pkg and is required in all builtin.mk files.
The code in this section must make the determination whether the built-in
software is adequate to satisfy the dependencies listed in
BUILDLINK_API_DEPENDS.pkg. This is typically done by comparing BUILTIN_PKG.pkg
against each of the dependencies in BUILDLINK_API_DEPENDS.pkg. USE_BUILTIN.pkg
must be set to the correct value by the end of the builtin.mk file. Note that
USE_BUILTIN.pkg may be "yes" even if IS_BUILTIN.pkg is "no" because we may make
the determination that the built-in version of the software is similar enough
to be used as a replacement.

The last section is guarded by CHECK_BUILTIN.pkg, and includes code that uses
the value of USE_BUILTIN.pkg set in the previous section. This typically
includes, e.g., adding additional dependency restrictions and listing
additional files to symlink into ${BUILDLINK_DIR} (via BUILDLINK_FILES.pkg).

12.3.2. Global preferences for native or pkgsrc software

When building packages, it's possible to choose whether to set a global
preference for using either the built-in (native) version or the pkgsrc version
of software to satisfy a dependency. This is controlled by setting
PREFER_PKGSRC and PREFER_NATIVE. These variables take values of either "yes",
"no", or a list of packages. PREFER_PKGSRC tells pkgsrc to use the pkgsrc
versions of software, while PREFER_NATIVE tells pkgsrc to use the built-in
versions. Preferences are determined by the most specific instance of the
package in either PREFER_PKGSRC or PREFER_NATIVE. If a package is specified in
neither or in both variables, then PREFER_PKGSRC has precedence over
PREFER_NATIVE. For example, to require using pkgsrc versions of software for
all but the most basic bits on a NetBSD system, you can set:

    PREFER_PKGSRC=  yes
    PREFER_NATIVE=  getopt skey tcp_wrappers

A package must have a builtin.mk file to be listed in PREFER_NATIVE, otherwise
it is simply ignored in that list.

Chapter 13. The pkginstall framework

Table of Contents

13.1. Files and directories outside the installation prefix

    13.1.1. Directory manipulation
    13.1.2. File manipulation

13.2. Configuration files

    13.2.1. How PKG_SYSCONFDIR is set
    13.2.2. Telling the software where configuration files are
    13.2.3. Patching installations
    13.2.4. Disabling handling of configuration files

13.3. System startup scripts

    13.3.1. Disabling handling of system startup scripts

13.4. System users and groups
13.5. System shells

    13.5.1. Disabling shell registration

13.6. Fonts

    13.6.1. Disabling automatic update of the fonts databases

This chapter describes the framework known as pkginstall, whose key features
are:

  * Generic installation and manipulation of directories and files outside the
    pkgsrc-handled tree, LOCALBASE.

  * Automatic handling of configuration files during installation, provided
    that packages are correctly designed.

  * Generation and installation of system startup scripts.

  * Registration of system users and groups.

  * Registration of system shells.

  * Automatic updating of fonts databases.

The following sections inspect each of the above points in detail.

You may be thinking that many of the things described here could be easily done
with simple code in the package's post-installation target (post-install). This
is incorrect, as the code in them is only executed when building from source.
Machines using binary packages could not benefit from it at all (as the code
itself could be unavailable). Therefore, the only way to achieve any of the
items described above is by means of the installation scripts, which are
automatically generated by pkginstall.

13.1. Files and directories outside the installation prefix

As you already know, the PLIST file holds a list of files and directories that
belong to a package. The names used in it are relative to the installation
prefix (${PREFIX}), which means that it cannot register files outside this
directory (absolute path names are not allowed). Despite this restriction, some
packages need to install files outside this location; e.g., under ${VARBASE} or
${PKG_SYSCONFDIR}.

The only way to achieve this is to create such files during installation time
by using the installation scripts. These scripts can run arbitrary commands, so
they have the potential to create and manage files anywhere in the file system.
Here is where pkginstall comes into play: it provides generic scripts to
abstract the manipulation of such files and directories based on variables set
in the package's Makefile. The rest of this section describes these variables.

13.1.1. Directory manipulation

The following variables can be set to request the creation of directories
anywhere in the file system:

  * MAKE_DIRS and OWN_DIRS contain a list of directories that should be created
    and should attempt to be destroyed by the installation scripts. The
    difference between the two is that the latter prompts the administrator to
    remove any directories that may be left after deinstallation (because they
    were not empty), while the former does not.

  * MAKE_DIRS_PERMS and OWN_DIRS_PERMS contain a list of tuples describing
    which directories should be created and should attempt to be destroyed by
    the installation scripts. Each tuple holds the following values, separated
    by spaces: the directory name, its owner, its group and its numerical mode.
    For example:

        MAKE_DIRS_PERMS+=         ${VARBASE}/foo/private ${ROOT_USER} ${ROOT_GROUP} 0700

    The difference between the two is exactly the same as their non-PERMS
    counterparts.

13.1.2. File manipulation

Creating non-empty files outside the installation prefix is tricky because the
PLIST forces all files to be inside it. To overcome this problem, the only
solution is to extract the file in the known place (i.e., inside the
installation prefix) and copy it to the appropriate location during
installation (done by the installation scripts generated by pkginstall). We
will call the former the master file in the following paragraphs, which
describe the variables that can be used to automatically and consistently
handle files outside the installation prefix:

  * CONF_FILES and SUPPORT_FILES are pairs of master and target files. During
    installation time, the master file is copied to the target one if and only
    if the latter does not exist. Upon deinstallation, the target file is
    removed provided that it was not modified by the installation.

    The difference between the two is that the latter prompts the administrator
    to remove any files that may be left after deinstallation (because they
    were not empty), while the former does not.

  * CONF_FILES_PERMS and SUPPORT_FILES_PERMS contain tuples describing master
    files as well as their target locations. For each of them, it also
    specifies their owner, their group and their numeric permissions, in this
    order. For example:

        SUPPORT_FILES_PERMS+= ${PREFIX}/share/somefile ${VARBASE}/somefile ${ROOT_USER} ${ROOT_GROUP} 0700

    The difference between the two is exactly the same as their non-PERMS
    counterparts.

13.2. Configuration files

Configuration files are special in the sense that they are installed in their
own specific directory, PKG_SYSCONFDIR, and need special treatment during
installation (most of which is automated by pkginstall). The main concept you
must bear in mind is that files marked as configuration files are automatically
copied to the right place (somewhere inside PKG_SYSCONFDIR) during installation
if and only if they didn't exist before. Similarly, they will not be removed if
they have local modifications. This ensures that administrators never lose any
custom changes they may have made.

13.2.1. How PKG_SYSCONFDIR is set

As said before, the PKG_SYSCONFDIR variable specifies where configuration files
shall be installed. Its contents are set based upon the following variables:

  * PKG_SYSCONFBASE: The configuration's root directory. Defaults to ${PREFIX}/
    etc although it may be overridden by the user to point to his preferred
    location (e.g., /etc, /etc/pkg, etc.). Packages must not use it directly.

  * PKG_SYSCONFSUBDIR: A subdirectory of PKG_SYSCONFBASE under which the
    configuration files for the package being built shall be installed. The
    definition of this variable only makes sense in the package's Makefile
    (i.e., it is not user-customizable).

    As an example, consider the Apache package, www/apache2, which places its
    configuration files under the httpd/ subdirectory of PKG_SYSCONFBASE. This
    should be set in the package Makefile.

  * PKG_SYSCONFVAR: Specifies the name of the variable that holds this
    package's configuration directory (if different from PKG_SYSCONFBASE). It
    defaults to PKGBASE's value, and is always prefixed with PKG_SYSCONFDIR.

  * PKG_SYSCONFDIR.${PKG_SYSCONFVAR}: Holds the directory where the
    configuration files for the package identified by PKG_SYSCONFVAR's shall be
    placed.

Based on the above variables, pkginstall determines the value of
PKG_SYSCONFDIR, which is the only variable that can be used within a package to
refer to its configuration directory. The algorithm used to set its value is
basically the following:

 1. If PKG_SYSCONFDIR.${PKG_SYSCONFVAR} is set, its value is used.

 2. If the previous variable is not defined but PKG_SYSCONFSUBDIR is set in the
    package's Makefile, the resulting value is ${PKG_SYSCONFBASE}/$
    {PKG_SYSCONFSUBDIR}.

 3. Otherwise, it is set to ${PKG_SYSCONFBASE}.

It is worth mentioning that ${PKG_SYSCONFDIR} is automatically added to
OWN_DIRS. See Section 13.1.1, "Directory manipulation" what this means.

13.2.2. Telling the software where configuration files are

Given that pkgsrc (and users!) expect configuration files to be in a known
place, you need to teach each package where it shall install its files. In some
cases you will have to patch the package Makefiles to achieve it. If you are
lucky, though, it may be as easy as passing an extra flag to the configuration
script; this is the case of GNU Autoconf- generated files:

    CONFIGURE_ARGS+= --sysconfdir=${PKG_SYSCONFDIR}

Note that this specifies where the package has to look for its configuration
files, not where they will be originally installed (although the difference is
never explicit, unfortunately).

13.2.3. Patching installations

As said before, pkginstall automatically handles configuration files. This
means that the packages themselves must not touch the contents of $
{PKG_SYSCONFDIR} directly. Bad news is that many software installation scripts
will, out of the box, mess with the contents of that directory. So what is the
correct procedure to fix this issue?

You must teach the package (usually by manually patching it) to install any
configuration files under the examples hierarchy, share/examples/${PKGBASE}/.
This way, the PLIST registers them and the administrator always has the
original copies available.

Once the required configuration files are in place (i.e., under the examples
hierarchy), the pkginstall framework can use them as master copies during the
package installation to update what is in ${PKG_SYSCONFDIR}. To achieve this,
the variables CONF_FILES and CONF_FILES_PERMS are used. Check out
Section 13.1.2, "File manipulation" for information about their syntax and
their purpose. Here is an example, taken from the mail/mutt package:

    EGDIR=        ${PREFIX}/share/doc/mutt/samples
    CONF_FILES=   ${EGDIR}/Muttrc ${PKG_SYSCONFDIR}/Muttrc

Note that the EGDIR variable is specific to that package and has no meaning
outside it.

13.2.4. Disabling handling of configuration files

The automatic copying of config files can be toggled by setting the environment
variable PKG_CONFIG prior to package installation.

13.3. System startup scripts

System startup scripts are special files because they must be installed in a
place known by the underlying OS, usually outside the installation prefix.
Therefore, the same rules described in Section 13.1, "Files and directories
outside the installation prefix" apply, and the same solutions can be used.
However, pkginstall provides a special mechanism to handle these files.

In order to provide system startup scripts, the package has to:

 1. Store the script inside ${FILESDIR}, with the .sh suffix appended.
    Considering the print/cups package as an example, it has a cupsd.sh in its
    files directory.

 2. Tell pkginstall to handle it, appending the name of the script, without its
    extension, to the RCD_SCRIPTS variable. Continuing the previous example:

        RCD_SCRIPTS+=   cupsd


Once this is done, pkginstall will do the following steps for each script in an
automated fashion:

 1. Process the file found in the files directory applying all the
    substitutions described in the FILES_SUBST variable.

 2. Copy the script from the files directory to the examples hierarchy, $
    {PREFIX}/share/examples/rc.d/. Note that this master file must be
    explicitly registered in the PLIST.

 3. Add code to the installation scripts to copy the startup script from the
    examples hierarchy into the system-wide startup scripts directory.

13.3.1. Disabling handling of system startup scripts

The automatic copying of config files can be toggled by setting the environment
variable PKG_RCD_SCRIPTS prior to package installation. Note that the scripts
will be always copied inside the examples hierarchy, ${PREFIX}/share/examples/
rc.d/, no matter what the value of this variable is.

13.4. System users and groups

If a package needs to create special users and/or groups during installation,
it can do so by using the pkginstall framework.

Users can be created by adding entries to the PKG_USERS variable. Each entry
has the following syntax:

    user:group

Further specification of user details may be done by setting per-user
variables. PKG_UID.user is the numeric UID for the user. PKG_GECOS.user is the
user's description or comment. PKG_HOME.user is the user's home directory, and
defaults to /nonexistent if not specified. PKG_SHELL.user is the user's shell,
and defaults to /sbinno/login if not specified.

Similarly, groups can be created by adding entries to the PKG_GROUPS variable,
whose syntax is:

    group

The numeric GID of the group may be set by defining PKG_GID.group.

If a package needs to create the users and groups at an earlier stage, then it
can set USERGROUP_PHASE to either configure or build to indicate the phase
before which the users and groups are created. In this case, the numeric UIDs
and GIDs of the created users and groups are automatically hardcoded into the
final installation scripts.

13.5. System shells

Packages that install system shells should register them in the shell database,
/etc/shells, to make things easier to the administrator. This must be done from
the installation scripts to keep binary packages working on any system.
pkginstall provides an easy way to accomplish this task.

When a package provides a shell interpreter, it has to set the PKG_SHELL
variable to its absolute file name. This will add some hooks to the
installation scripts to handle it. Consider the following example, taken from
shells/zsh:

    PKG_SHELL=      ${PREFIX}/bin/zsh

13.5.1. Disabling shell registration

The automatic registration of shell interpreters can be disabled by the
administrator by setting the PKG_REGISTER_SHELLS environment variable to NO.

13.6. Fonts

Packages that install X11 fonts should update the database files that index the
fonts within each fonts directory. This can easily be accomplished within the
pkginstall framework.

When a package installs X11 fonts, it must list the directories in which fonts
are installed in the FONTS_DIRS.type variables, where type can be one of "ttf",
"type1" or "x11". This will add hooks to the installation scripts to run the
appropriate commands to update the fonts database files within each of those
directories. For convenience, if the directory path is relative, it is taken to
be relative to the package's installation prefix. Consider the following
example, taken from fonts/dbz-ttf:

    FONTS_DIRS.ttf= ${PREFIX}/lib/X11/fonts/TTF

13.6.1. Disabling automatic update of the fonts databases

The automatic update of fonts databases can be disabled by the administrator by
setting the PKG_UPDATE_FONTS_DB environment variable to NO.

Chapter 14. Options handling

Table of Contents

14.1. Global default options
14.2. Converting packages to use bsd.options.mk
14.3. Option Names

Many packages have the ability to be built to support different sets of
features. bsd.options.mk is a framework in pkgsrc that provides generic
handling of those options that determine different ways in which the packages
can be built. It's possible for the user to specify exactly which sets of
options will be built into a package or to allow a set of global default
options apply.

14.1. Global default options

Global default options are listed in PKG_DEFAULT_OPTIONS, which is a list of
the options that should be built into every package if that option is
supported. This variable should be set in /etc/mk.conf.

14.2. Converting packages to use bsd.options.mk

The following example shows how bsd.options.mk should be used by the
hypothetical ``wibble'' package, either in the package Makefile, or in a file,
e.g. options.mk, that is included by the main package Makefile.

    PKG_OPTIONS_VAR=                PKG_OPTIONS.wibble
    PKG_SUPPORTED_OPTIONS=          wibble-foo ldap
    PKG_OPTIONS_OPTIONAL_GROUPS=    database
    PKG_OPTIONS_GROUP.database=     mysql pgsql
    PKG_SUGGESTED_OPTIONS=          wibble-foo
    PKG_OPTIONS_LEGACY_VARS+=       WIBBLE_USE_OPENLDAP:ldap
    PKG_OPTIONS_LEGACY_OPTS+=       foo:wibble-foo

    .include "../../mk/bsd.prefs.mk"

    # this package was previously named wibble2
    .if defined(PKG_OPTIONS.wibble2)
    PKG_LEGACY_OPTIONS+=            ${PKG_OPTIONS.wibble2}
    PKG_OPTIONS_DEPRECATED_WARNINGS+= \
            "Deprecated variable PKG_OPTIONS.wibble2 used, use ${PKG_OPTIONS_VAR} instead."
    .endif

    .include "../../mk/bsd.options.mk"

    # Package-specific option-handling

    ###
    ### FOO support
    ###
    .if !empty(PKG_OPTIONS:Mwibble-foo)
    CONFIGURE_ARGS+=    --enable-foo
    .endif

    ###
    ### LDAP support
    ###
    .if !empty(PKG_OPTIONS:Mldap)
    .  include "../../databases/openldap-client/buildlink3.mk"
    CONFIGURE_ARGS+=    --enable-ldap=${BUILDLINK_PREFIX.openldap-client}
    .endif

    ###
    ### database support
    ###
    .if !empty(PKG_OPTIONS:Mmysql)
    .  include "../../mk/mysql.buildlink3.mk"
    .endif
    .if !empty(PKG_OPTIONS:Mpgsql)
    .  include "../../mk/pgsql.buildlink3.mk"
    .endif

The first section contains the information about which build options are
supported by the package, and any default options settings if needed.

 1. PKG_OPTIONS_VAR is the name of the make(1) variable that the user can set
    to override the default options. It should be set to PKG_OPTIONS.pkgbase.
    Do not set it to PKG_OPTIONS.${PKGBASE}, since PKGBASE is not defined at
    the point where the options are processed.

 2. PKG_SUPPORTED_OPTIONS is a list of build options supported by the package.

 3. PKG_OPTIONS_OPTIONAL_GROUPS is a list of names of groups of mutually
    exclusive options. The options in each group are listed in
    PKG_OPTIONS_GROUP.groupname. The most specific setting of any option from
    the group takes precedence over all other options in the group. Options
    from the groups will be automatically added to PKG_SUPPORTED_OPTIONS.

 4. PKG_OPTIONS_REQUIRED_GROUPS is like PKG_OPTIONS_OPTIONAL_GROUPS, but
    building the packages will fail if no option from the group is selected.

 5. PKG_OPTIONS_NONEMPTY_SETS is a list of names of sets of options. At least
    one option from each set must be selected. The options in each set are
    listed in PKG_OPTIONS_SET.setname. Options from the sets will be
    automatically added to PKG_SUPPORTED_OPTIONS. Building the package will
    fail if no option from the set is selected.

 6. PKG_SUGGESTED_OPTIONS is a list of build options which are enabled by
    default.

 7. PKG_OPTIONS_LEGACY_VARS is a list of "USE_VARIABLE:option" pairs that map
    legacy /etc/mk.conf variables to their option counterparts. Pairs should be
    added with "+=" to keep the listing of global legacy variables. A warning
    will be issued if the user uses a legacy variable.

 8. PKG_OPTIONS_LEGACY_OPTS is a list of "old-option:new-option" pairs that map
    options that have been renamed to their new counterparts. Pairs should be
    added with "+=" to keep the listing of global legacy options. A warning
    will be issued if the user uses a legacy option.

 9. PKG_LEGACY_OPTIONS is a list of options implied by deprecated variables
    used. This can be used for cases that neither PKG_OPTIONS_LEGACY_VARS nor
    PKG_OPTIONS_LEGACY_OPTS can handle, e. g. when PKG_OPTIONS_VAR is renamed.

10. PKG_OPTIONS_DEPRECATED_WARNINGS is a list of warnings about deprecated
    variables or options used, and what to use instead.

A package should never modify PKG_DEFAULT_OPTIONS or the variable named in
PKG_OPTIONS_VAR. These are strictly user-settable. To suggest a default set of
options, use PKG_SUGGESTED_OPTIONS.

PKG_OPTIONS_VAR must be defined before including bsd.options.mk. If none of
PKG_SUPPORTED_OPTIONS, PKG_OPTIONS_OPTIONAL_GROUPS, and
PKG_OPTIONS_REQUIRED_GROUPS are defined (as can happen with platform-specific
options if none of them is supported on the current platform), PKG_OPTIONS is
set to the empty list and the package is otherwise treated as not using the
options framework.

After the inclusion of bsd.options.mk, the variable PKG_OPTIONS contains the
list of selected build options, properly filtered to remove unsupported and
duplicate options.

The remaining sections contain the logic that is specific to each option. The
correct way to check for an option is to check whether it is listed in
PKG_OPTIONS:

    .if !empty(PKG_OPTIONS:Moption)

14.3. Option Names

Options that enable similar features in different packages (like optional
support for a library) should use a common name in all packages that support it
(like the name of the library). If another package already has an option with
the same meaning, use the same name.

Options that enable features specific to one package, where it's unlikely that
another (unrelated) package has the same (or a similar) optional feature,
should use a name prefixed with pkgname-.

If a group of related packages share an optional feature specific to that
group, prefix it with the name of the "main" package (e. g.
djbware-errno-hack).

For new options, add a line to mk/defaults/options.description. Lines have two
fields, separated by tab. The first field is the option name, the second its
description. The description should be a whole sentence (starting with an
uppercase letter and ending with a period) that describes what enabling the
option does. E. g. "Enable ispell support." The file is sorted by option names.

Chapter 15. The build process

Table of Contents

15.1. Introduction
15.2. Program location
15.3. Directories used during the build process
15.4. Running a phase
15.5. The fetch phase
15.6. The checksum phase
15.7. The extract phase
15.8. The patch phase
15.9. The tools phase
15.10. The wrapper phase
15.11. The configure phase
15.12. The build phase
15.13. The test phase
15.14. The install phase
15.15. The package phase
15.16. Other helpful targets

15.1. Introduction

This chapter gives a detailed description on how a package is built. Building a
package is separated into different phases (for example fetch, build, install),
all of which are described in the following sections. Each phase is splitted
into so-called stages, which take the name of the containing phase, prefixed by
one of pre-, do- or post-. (Examples are pre-configure, post-build.) Most of
the actual work is done in the do-* stages.

The basic steps for building a program are always the same. First the program's
source (distfile) must be brought to the local system and then extracted. After
any pkgsrc-specific patches to compile properly are applied, the software can
be configured, then built (usually by compiling), and finally the generated
binaries, etc. can be put into place on the system.

15.2. Program location

Before outlining the process performed by the NetBSD package system in the next
section, here's a brief discussion on where programs are installed, and which
variables influence this.

The automatic variable PREFIX indicates where all files of the final program
shall be installed. It is usually set to LOCALBASE (/usr/pkg), or CROSSBASE for
pkgs in the "cross" category. The value of PREFIX needs to be put into the
various places in the program's source where paths to these files are encoded.
See Section 9.3, "patches/*" and Section 17.3.1, "Shared libraries - libtool"
for more details.

When choosing which of these variables to use, follow the following rules:

  * PREFIX always points to the location where the current pkg will be
    installed. When referring to a pkg's own installation path, use "${PREFIX}
    ".

  * LOCALBASE is where all non-X11 pkgs are installed. If you need to construct
    a -I or -L argument to the compiler to find includes and libraries
    installed by another non-X11 pkg, use "${LOCALBASE}". The name LOCALBASE
    stems from FreeBSD, which installed all packages in /usr/local. As pkgsrc
    leaves /usr/local for the system administrator, this variable is a
    misnomer.

  * X11BASE is where the actual X11 distribution (from xsrc, etc.) is
    installed. When looking for standard X11 includes (not those installed by a
    pkg), use "${X11BASE}".

  * X11-based packages are special in that they may be installed in either
    X11BASE or LOCALBASE.

    Usually, X11 packages should be installed under LOCALBASE whenever
    possible. Note that you will need to include ../../mk/x11.buildlink3.mk in
    them to request the presence of X11 and to get the right compilation flags.

    Even though, there are some packages that cannot be installed under
    LOCALBASE: those that come with app-defaults files. These packages are
    special and they must be placed under X11BASE. To accomplish this, set
    either USE_X11BASE or USE_IMAKE in your package.

    Some notes: If you need to find includes or libraries installed by a pkg
    that has USE_IMAKE or USE_X11BASE in its pkg Makefile, you need to look in
    both ${X11BASE} and ${LOCALBASE}. To force installation of all X11 packages
    in LOCALBASE, the pkgtools/xpkgwedge package is enabled by default.

  * X11PREFIX should be used to refer to the installed location of an X11
    package. X11PREFIX will be set to X11BASE if xpkgwedge is not installed,
    and to LOCALBASE if xpkgwedge is installed.

  * If xpkgwedge is installed, it is possible to have some packages installed
    in X11BASE and some in LOCALBASE. To determine the prefix of an installed
    package, the EVAL_PREFIX definition can be used. It takes pairs in the
    format "DIRNAME=<package>", and the make(1) variable DIRNAME will be set to
    the prefix of the installed package <package>, or "${X11PREFIX}" if the
    package is not installed.

    This is best illustrated by example.

    The following lines are taken from pkgsrc/wm/scwm/Makefile:

        EVAL_PREFIX+=           GTKDIR=gtk+
        CONFIGURE_ARGS+=        --with-guile-prefix=${LOCALBASE:Q}
        CONFIGURE_ARGS+=        --with-gtk-prefix=${GTKDIR:Q}
        CONFIGURE_ARGS+=        --enable-multibyte

    Specific defaults can be defined for the packages evaluated using
    EVAL_PREFIX, by using a definition of the form:

        GTKDIR_DEFAULT= ${LOCALBASE}

    where GTKDIR corresponds to the first definition in the EVAL_PREFIX pair.

  * Within ${PREFIX}, packages should install files according to hier(7), with
    the exception that manual pages go into ${PREFIX}/man, not ${PREFIX}/share/
    man.

15.3. Directories used during the build process

When building a package, a number of directories is used to store source files,
temporary files, pkgsrc-internal files, and so on. These directories are
explained here.

Some of the directory variables contain relative pathnames. There are two
common base directories for these relative directories: PKGSRCDIR/PKGPATH is
used for directories that are pkgsrc-specific. WRKSRC is used for directories
inside the package itself.

PKGSRCDIR

    This is an absolute pathname that points to the pkgsrc root directory.
    Generally, you don't need it.

PKGPATH

    This is a pathname relative to PKGSRCDIR that points to the current
    package.

WRKDIR

    This is an absolute pathname pointing to the directory where all work takes
    place. The distfiles are extraced to this directory. It also contains
    temporary directories and log files used by the various pkgsrc frameworks,
    like buildlink or the wrappers.

WRKSRC

    This is an absolute pathname pointing to the directory where the distfiles
    are extracted. It is usually a direct subdirectory of WRKDIR, and often
    it's the only directory entry that isn't hidden. This variable may be
    changed by a package Makefile.

15.4. Running a phase

You can run a particular phase by typing make phase, where phase is the name of
the phase. This will automatically run all phases that are required for this
phase. The default phase is build, that is, when you run make without
parameters in a package directory, the package will be built, but not
installed.

15.5. The fetch phase

This will check if the file(s) given in the variables DISTFILES and PATCHFILES
(as defined in the package's Makefile) are present on the local system in /usr/
pkgsrc/distfiles. If they are not present, an attempt will be made to fetch
them using commands of the form:

    ${FETCH_CMD} ${FETCH_BEFORE_ARGS} ${site}${file} ${FETCH_AFTER_ARGS}

where ${site} varies through several possibilities in turn: first,
MASTER_SITE_OVERRIDE is tried, then the sites specified in either SITES.file if
defined, else MASTER_SITES or PATCH_SITES, as applies, then finally the value
of MASTER_SITE_BACKUP. The order of all except the first can be optionally
sorted by the user, via setting either MASTER_SORT_AWK or MASTER_SORT_REGEX.

15.6. The checksum phase

After the distfile(s) are fetched, their checksum is generated and compared
with the checksums stored in the distinfo file. If the checksums don't match,
the build is aborted. This is to ensure the same distfile is used for building,
and that the distfile wasn't changed, e.g. by some malign force, deliberately
changed distfiles on the master distribution site or network lossage.

15.7. The extract phase

When the distfiles are present on the local system, they need to be extracted,
as they usually come in the form of some compressed archive format.

By default, all DISTFILES are extracted. If you only need some of them, you can
set the EXTRACT_ONLY variable to the list of those files.

Extracting the files is usually done by a little program, mk/scripts/extract,
which already knows how to extract various archive formats, so most likely you
will not need to change anything here. But if you need, the following variables
may help you:

EXTRACT_OPTS_{BIN,LHA,PAX,RAR,TAR,ZIP,ZOO}

    Use these variables to override the default options for an extract command,
    which are defined in mk/scripts/extract.

EXTRACT_USING

    This variable can be set to pax, tar or an absolute pathname pointing to
    the command with which tar archives should be extracted.

If the extract program doesn't serve your needs, you can also override the
EXTRACT_CMD variable, which holds the command used for extracting the files.
This command is executed in the ${WRKSRC} directory. During execution of this
command, the shell variable extract_file holds the absolute pathname of the
file that is going to be extracted.

And if that still does not suffice, you can override the do-extract target in
the package Makefile.

15.8. The patch phase

After extraction, all the patches named by the PATCHFILES, those present in the
patches subdirectory of the package as well as in $LOCALPATCHES/$PKGPATH (e.g.
/usr/local/patches/graphics/png) are applied. Patchfiles ending in .Z or .gz
are uncompressed before they are applied, files ending in .orig or .rej are
ignored. Any special options to patch(1) can be handed in PATCH_DIST_ARGS. See
Section 9.3, "patches/*" for more details.

By default patch(1) is given special args to make it fail if the patches apply
with some lines of fuzz. Please fix (regen) the patches so that they apply
cleanly. The rationale behind this is that patches that don't apply cleanly may
end up being applied in the wrong place, and cause severe harm there.

15.9. The tools phase

This is covered in Chapter 16, Tools needed for building or running.

15.10. The wrapper phase

This phase creates wrapper programs for the compilers and linkers. The
following variables can be used to tweak the wrappers.

ECHO_WRAPPER_MSG

    The command used to print progress messages. Does nothing by default. Set
    to ${ECHO} to see the progress messages.

WRAPPER_DEBUG

    This variable can be set to yes (default) or no, depending on whether you
    want additional information in the wrapper log file.

WRAPPER_UPDATE_CACHE

    This variable can be set to yes or no, depending on whether the wrapper
    should use its cache, which will improve the speed. The default value is
    yes, but is forced to no if the platform does not support it.

WRAPPER_REORDER_CMDS

    A list of reordering commands. A reordering command has the form reorder:l:
    lib1:lib2. It ensures that that -llib1 occurs before -llib2.

WRAPPER_TRANSFORM_CMDS

    A list of transformation commands. [TODO: investigate further]

15.11. The configure phase

Most pieces of software need information on the header files, system calls, and
library routines which are available on the platform they run on. The process
of determining this information is known as configuration, and is usually
automated. In most cases, a script is supplied with the distfiles, and its
invocation results in generation of header files, Makefiles, etc.

If the package contains a configure script, this can be invoked by setting
HAS_CONFIGURE to "yes". If the configure script is a GNU autoconf script, you
should set GNU_CONFIGURE to "yes" instead. What happens in the configure phase
is roughly:

    .for d in ${CONFIGURE_DIRS}
            cd ${WRKSRC} && cd ${d} && env ${CONFIGURE_ENV} \
                ${CONFIGURE_SCRIPT} ${CONFIGURE_ARGS}
    .endfor

CONFIGURE_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In
each of these directories, the configure script is run with the environment
CONFIGURE_ENV and arguments CONFIGURE_ARGS. The variables CONFIGURE_ENV,
CONFIGURE_SCRIPT (default: "./configure") and CONFIGURE_ARGS may all be changed
by the package.

If the program uses an Imakefile for configuration, the appropriate steps can
be invoked by setting USE_IMAKE to "yes". (If you only want the package
installed in ${X11PREFIX} but xmkmf not being run, set USE_X11BASE instead.)

15.12. The build phase

For building a package, a rough equivalent of the following code is executed.

    .for d in ${BUILD_DIRS}
            cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
                ${MAKE_PROGRAM} ${BUILD_MAKE_FLAGS} \
                    -f ${MAKEFILE} ${BUILD_TARGET}
    .endfor

BUILD_DIRS (default: ".") is a list of pathnames relative to WRKSRC. In each of
these directories, MAKE_PROGRAM is run with the environment MAKE_ENV and
arguments BUILD_MAKE_FLAGS. The variables MAKE_ENV, BUILD_MAKE_FLAGS, MAKEFILE
and BUILD_TARGET may all be changed by the package.

The default value of MAKE_PROGRAM is "gmake" if USE_TOOLS contains "gmake",
"make" otherwise. The default value of MAKEFILE is "Makefile", and BUILD_TARGET
defaults to "all".

15.13. The test phase

[TODO]

15.14. The install phase

Once the build stage has completed, the final step is to install the software
in public directories, so users can access the programs and files.

In the install phase, a rough equivalent of the following code is executed.
Additionally, before and after this code, much magic is performed to do
consistency checks, registering the package, and so on.

    .for d in ${INSTALL_DIRS}
            cd ${WRKSRC} && cd ${d} && env ${MAKE_ENV} \
                ${MAKE_PROGRAM} ${INSTALL_MAKE_FLAGS} \
                    -f ${MAKEFILE} ${BUILD_TARGET}
    .endfor

The variable's meanings are analogous to the ones in the build phase.
INSTALL_DIRS defaults to BUILD_DIRS. INSTALL_TARGET is "install" by default,
plus "install.man" if USE_IMAKE is defined.

In the install phase, the following variables are useful. They are all
variations of the install(1) command that have the owner, group and permissions
preset. INSTALL is the plain install command. The specialized variants,
together with their intended use, are:

INSTALL_PROGRAM_DIR

    directories that contain binaries

INSTALL_SCRIPT_DIR

    directories that contain scripts

INSTALL_LIB_DIR

    directories that contain shared and static libraries

INSTALL_DATA_DIR

    directories that contain data files

INSTALL_MAN_DIR

    directories that contain man pages

INSTALL_PROGRAM

    binaries that can be stripped from debugging symbols

INSTALL_SCRIPT

    binaries that cannot be stripped

INSTALL_GAME

    game binaries

INSTALL_LIB

    shared and static libraries

INSTALL_DATA

    data files

INSTALL_GAME_DATA

    data files for games

INSTALL_MAN

    man pages

Some other variables are:

INSTALLATION_DIRS

    A list of directories relative to PREFIX that are created by pkgsrc at the
    beginning of the install phase. If this variable is set, NO_MTREE="yes" is
    assumed, which means that the package claims to create all needed
    directories itself before installing files to it. Therefore this variable
    should only be set in Makefiles that are under control of the package's
    author. The directories are created with the correct ownership, depending
    on their name.

15.15. The package phase

[TODO]

15.16. Other helpful targets

pre/post-*

    For any of the main targets described in the previous section, two
    auxiliary targets exist with "pre-" and "post-" used as a prefix for the
    main target's name. These targets are invoked before and after the main
    target is called, allowing extra configuration or installation steps be
    performed from a package's Makefile, for example, which a program's
    configure script or install target omitted.

do-*

    Should one of the main targets do the wrong thing, and should there be no
    variable to fix this, you can redefine it with the do-* target. (Note that
    redefining the target itself instead of the do-* target is a bad idea, as
    the pre-* and post-* targets won't be called anymore, etc.) You will not
    usually need to do this.

reinstall

    If you did a make install and you noticed some file was not installed
    properly, you can repeat the installation with this target, which will
    ignore the "already installed" flag.

deinstall

    This target does a pkg_delete(1) in the current directory, effectively
    de-installing the package. The following variables can be used to tune the
    behaviour:

    PKG_VERBOSE

        Add a "-v" to the pkg_delete(1) command.

    DEINSTALLDEPENDS

        Remove all packages that require (depend on) the given package. This
        can be used to remove any packages that may have been pulled in by a
        given package, e.g. if make deinstall DEINSTALLDEPENDS=1 is done in
        pkgsrc/x11/kde, this is likely to remove whole KDE. Works by adding
        "-R" to the pkg_delete(1) command line.

update

    This target causes the current package to be updated to the latest version.
    The package and all depending packages first get de-installed, then current
    versions of the corresponding packages get compiled and installed. This is
    similar to manually noting which packages are currently installed, then
    performing a series of make deinstall and make install (or whatever
    UPDATE_TARGET is set to) for these packages.

    You can use the "update" target to resume package updating in case a
    previous make update was interrupted for some reason. However, in this
    case, make sure you don't call make clean or otherwise remove the list of
    dependent packages in WRKDIR. Otherwise, you lose the ability to
    automatically update the current package along with the dependent packages
    you have installed.

    Resuming an interrupted make update will only work as long as the package
    tree remains unchanged. If the source code for one of the packages to be
    updated has been changed, resuming make update will most certainly fail!

    The following variables can be used either on the command line or in /etc/
    mk.conf to alter the behaviour of make update:

    UPDATE_TARGET

        Install target to recursively use for the updated package and the
        dependent packages. Defaults to DEPENDS_TARGET if set, "install"
        otherwise for make update. e.g. make update UPDATE_TARGET=package

    NOCLEAN

        Don't clean up after updating. Useful if you want to leave the work
        sources of the updated packages around for inspection or other
        purposes. Be sure you eventually clean up the source tree (see the
        "clean-update" target below) or you may run into troubles with old
        source code still lying around on your next make or make update.

    REINSTALL

        Deinstall each package before installing (making DEPENDS_TARGET). This
        may be necessary if the "clean-update" target (see below) was called
        after interrupting a running make update.

    DEPENDS_TARGET

        Allows you to disable recursion and hardcode the target for packages.
        The default is "update" for the update target, facilitating a recursive
        update of prerequisite packages. Only set DEPENDS_TARGET if you want to
        disable recursive updates. Use UPDATE_TARGET instead to just set a
        specific target for each package to be installed during make update
        (see above).

clean-update

    Clean the source tree for all packages that would get updated if make
    update was called from the current directory. This target should not be
    used if the current package (or any of its depending packages) have already
    been de-installed (e.g., after calling make update) or you may lose some
    packages you intended to update. As a rule of thumb: only use this target
    before the first time you run make update and only if you have a dirty
    package tree (e.g., if you used NOCLEAN).

    If you are unsure about whether your tree is clean, you can either perform
    a make clean at the top of the tree, or use the following sequence of
    commands from the directory of the package you want to update (before
    running make update for the first time, otherwise you lose all the packages
    you wanted to update!):

    # make clean-update
    # make clean CLEANDEPENDS=YES
    # make update

    The following variables can be used either on the command line or in /etc/
    mk.conf to alter the behaviour of make clean-update:

    CLEAR_DIRLIST

        After make clean, do not reconstruct the list of directories to update
        for this package. Only use this if make update successfully installed
        all packages you wanted to update. Normally, this is done automatically
        on make update, but may have been suppressed by the NOCLEAN variable
        (see above).

info

    This target invokes pkg_info(1) for the current package. You can use this
    to check which version of a package is installed.

readme

    This target generates a README.html file, which can be viewed using a
    browser such as www/mozilla or www/links. The generated files contain
    references to any packages which are in the PACKAGES directory on the local
    host. The generated files can be made to refer to URLs based on
    FTP_PKG_URL_HOST and FTP_PKG_URL_DIR. For example, if I wanted to generate
    README.html files which pointed to binary packages on the local machine, in
    the directory /usr/packages, set FTP_PKG_URL_HOST=file://localhost and
    FTP_PKG_URL_DIR=/usr/packages. The ${PACKAGES} directory and its
    subdirectories will be searched for all the binary packages.

readme-all

    Use this target to create a file README-all.html which contains a list of
    all packages currently available in the NetBSD Packages Collection,
    together with the category they belong to and a short description. This
    file is compiled from the pkgsrc/*/README.html files, so be sure to run
    this after a make readme.

cdrom-readme

    This is very much the same as the "readme" target (see above), but is to be
    used when generating a pkgsrc tree to be written to a CD-ROM. This target
    also produces README.html files, and can be made to refer to URLs based on
    CDROM_PKG_URL_HOST and CDROM_PKG_URL_DIR.

show-distfiles

    This target shows which distfiles and patchfiles are needed to build the
    package. (DISTFILES and PATCHFILES, but not patches/*)

show-downlevel

    This target shows nothing if the package is not installed. If a version of
    this package is installed, but is not the version provided in this version
    of pkgsrc, then a warning message is displayed. This target can be used to
    show which of your installed packages are downlevel, and so the old
    versions can be deleted, and the current ones added.

show-pkgsrc-dir

    This target shows the directory in the pkgsrc hierarchy from which the
    package can be built and installed. This may not be the same directory as
    the one from which the package was installed. This target is intended to be
    used by people who may wish to upgrade many packages on a single host, and
    can be invoked from the top-level pkgsrc Makefile by using the
    "show-host-specific-pkgs" target.

show-installed-depends

    This target shows which installed packages match the current package's
    DEPENDS. Useful if out of date dependencies are causing build problems.

check-shlibs

    After a package is installed, check all its binaries and (on ELF platforms)
    shared libraries to see if they find the shared libs they need. Run by
    default if PKG_DEVELOPER is set in /etc/mk.conf.

print-PLIST

    After a "make install" from a new or upgraded pkg, this prints out an
    attempt to generate a new PLIST from a find -newer work/.extract_done. An
    attempt is made to care for shared libs etc., but it is strongly
    recommended to review the result before putting it into PLIST. On upgrades,
    it's useful to diff the output of this command against an already existing
    PLIST file.

    If the package installs files via tar(1) or other methods that don't update
    file access times, be sure to add these files manually to your PLIST, as
    the "find -newer" command used by this target won't catch them!

    See Section 11.3, "Tweaking output of make print-PLIST" for more
    information on this target.

bulk-package

    Used to do bulk builds. If an appropriate binary package already exists, no
    action is taken. If not, this target will compile, install and package it
    (and its depends, if PKG_DEPENDS is set properly. See Section 6.3.1,
    "Configuration"). After creating the binary package, the sources, the
    just-installed package and its required packages are removed, preserving
    free disk space.

    Beware that this target may deinstall all packages installed on a system!

bulk-install

    Used during bulk-installs to install required packages. If an up-to-date
    binary package is available, it will be installed via pkg_add(1). If not,
    make bulk-package will be executed, but the installed binary won't be
    removed.

    A binary package is considered "up-to-date" to be installed via pkg_add(1)
    if:

      * None of the package's files (Makefile, ...) were modified since it was
        built.

      * None of the package's required (binary) packages were modified since it
        was built.

    Beware that this target may deinstall all packages installed on a system!

Chapter 16. Tools needed for building or running

Table of Contents

16.1. Tools for pkgsrc builds
16.2. Tools needed by packages
16.3. Tools provided by platforms

The USE_TOOLS definition is used both internally by pkgsrc and also for
individual packages to define what commands are needed for building a package
(like BUILD_DEPENDS) or for later run-time of an installed packaged (such as
DEPENDS). If the native system provides an adequate tool, then in many cases, a
pkgsrc package will not be used.

When building a package, the replacement tools are made available in a
directory (as symlinks or wrapper scripts) that is early in the executable
search path. Just like the buildlink system, this helps with consistent builds.

A tool may be needed to help build a specific package. For example, perl, GNU
make (gmake) or yacc may be needed.

Also a tool may be needed, for example, because the native system's supplied
tool may be inefficient for building a package with pkgsrc. For example, a
package may need GNU awk, bison (instead of yacc) or a better sed.

The tools used by a package can be listed by running make show-tools.

16.1. Tools for pkgsrc builds

The default set of tools used by pkgsrc is defined in bsd.pkg.mk. This includes
standard Unix tools, such as: cat, awk, chmod, test, and so on. These can be
seen by running: make show-var VARNAME=USE_TOOLS.

If a package needs a specific program to build then the USE_TOOLS variable can
be used to define the tools needed.

16.2. Tools needed by packages

In the following examples, the :pkgsrc means to use the pkgsrc version and not
the native version for a build dependency. And the :run means that it is used
for a run-time dependencies also (and becomes a DEPENDS). The default is a
build dependency which can be set with :build. (So in this example, it is the
same as gmake:build and pkg-config:build.)

USE_TOOLS+=     mktemp:pkgsrc
USE_TOOLS+=     gmake perl:run pkg-config

When using the tools framework, a TOOLS_PATH.foo variable is defined which
contains the full path to the appropriate tool. For example, TOOLS_PATH.bash
could be "/bin/bash" on Linux systems.

If you always need a pkgsrc version of the tool at run-time, then just use
DEPENDS instead.

16.3. Tools provided by platforms

When improving or porting pkgsrc to a new platform, have a look at (or create)
the corresponding platform specific make file fragment under pkgsrc/mk/tools/
tools.${OPSYS}.mk which defines the name of the common tools. For example:

.if exists(/usr/bin/bzcat)
TOOLS_PLATFORM.bzcat?=          /usr/bin/bzcat
.elif exists(/usr/bin/bzip2)
TOOLS_PLATFORM.bzcat?=          /usr/bin/bzip2 -cd
.endif

TOOLS_PLATFORM.true?=           true                    # shell builtin

Chapter 17. Making your package work

Table of Contents

17.1. General operation

    17.1.1. Portability of packages
    17.1.2. How to pull in user-settable variables from mk.conf
    17.1.3. User interaction
    17.1.4. Handling licenses
    17.1.5. Restricted packages
    17.1.6. Handling dependencies
    17.1.7. Handling conflicts with other packages
    17.1.8. Packages that cannot or should not be built
    17.1.9. Packages which should not be deleted, once installed
    17.1.10. Handling packages with security problems
    17.1.11. How to handle incrementing versions when fixing an existing
        package
    17.1.12. Substituting variable text in the package files (the SUBST
        framework)

17.2. Fixing problems in the fetch phase

    17.2.1. Packages whose distfiles aren't available for plain downloading
    17.2.2. How to handle modified distfiles with the 'old' name

17.3. Fixing problems in the configure phase

    17.3.1. Shared libraries - libtool
    17.3.2. Using libtool on GNU packages that already support libtool
    17.3.3. GNU Autoconf/Automake

17.4. Fixing problems in the build phase

    17.4.1. Compiling C and C++ code conditionally
    17.4.2. How to handle compiler bugs
    17.4.3. Undefined reference to "..."

17.5. Fixing problems in the install phase

    17.5.1. Creating needed directories
    17.5.2. Where to install documentation
    17.5.3. Installing score files
    17.5.4. Packages containing perl scripts
    17.5.5. Packages with hardcoded paths to other interpreters
    17.5.6. Packages installing perl modules
    17.5.7. Packages installing info files
    17.5.8. Packages installing man pages
    17.5.9. Packages installing GConf2 data files
    17.5.10. Packages installing scrollkeeper data files
    17.5.11. Packages installing X11 fonts
    17.5.12. Packages installing GTK2 modules
    17.5.13. Packages installing SGML or XML data
    17.5.14. Packages installing extensions to the MIME database
    17.5.15. Packages using intltool
    17.5.16. Packages installing startup scripts
    17.5.17. Packages installing TeX modules

17.6. Feedback to the author

17.1. General operation

17.1.1. Portability of packages

One appealing feature of pkgsrc is that it runs on many different platforms. As
a result, it is important to ensure, where possible, that packages in pkgsrc
are portable. This chapter mentions some particular details you should pay
attention to while working on pkgsrc.

17.1.2. How to pull in user-settable variables from mk.conf

The pkgsrc user can configure pkgsrc by overriding several variables in the
file pointed to by MAKECONF, which is /etc/mk.conf by default. When you want to
use those variables in the preprocessor directives of make(1) (for example .if
or .for), you need to include the file ../../mk/bsd.prefs.mk before, which in
turn loads the user preferences.

But note that some variables may not be completely defined after ../../mk/
bsd.prefs.mk has been included, as they may contain references to variables
that are not yet defined. In shell commands this is no problem, since variables
are actually macros, which are only expanded when they are used. But in the
preprocessor directives mentioned above and in dependency lines (of the form
target: dependencies) the variables are expanded at load time.

Note

Currently there is no exhaustive list of all variables that tells you whether
they can be used at load time or only at run time, but it is in preparation.

17.1.3. User interaction

Occasionally, packages require interaction from the user, and this can be in a
number of ways:

  * When fetching the distfiles, some packages require user interaction such as
    entering username/password or accepting a license on a web page.

  * When extracting the distfiles, some packages may ask for passwords.

  * help to configure the package before it is built

  * help during the build process

  * help during the installation of a package

The INTERACTIVE_STAGE definition is provided to notify the pkgsrc mechanism of
an interactive stage which will be needed, and this should be set in the
package's Makefile, e.g.:

    INTERACTIVE_STAGE=      build

Multiple interactive stages can be specified:

    INTERACTIVE_STAGE=      configure install

17.1.4. Handling licenses

A package may be covered by a license which the user has or has not agreed to
accept. For these cases, pkgsrc contains a mechanism to note that a package is
covered by a particular license, and the package cannot be built unless the
user has accepted the license. (Installation of binary packages are not
currently subject to this mechanism.) Packages with licenses that are either
Open Source according to the Open Source Initiative or Free according to the
Free Software Foundation will not be marked with a license tag. Packages with
licenses that have not been determined to meet either definition will be marked
with a license tag referring to the license. This will prevent building unless
pkgsrc is informed that the license is acceptable, and enables displaying the
license.

The license tag mechanism is intended to address copyright-related issues
surrounding building, installing and using a package, and not to address
redistribution issues (see RESTRICTED and NO_SRC_ON_FTP, etc.). However, the
above definition of licenses for which tags are not needed implies that
packages with redistribution restrictions should have tags.

Denoting that a package is covered by a particular license is done by placing
the license in pkgsrc/licenses and setting the LICENSE variable to a string
identifying the license, e.g. in graphics/xv:

    LICENSE=        xv-license

When trying to build, the user will get a notice that the package is covered by
a license which has not been accepted:

    % make
    ===> xv-3.10anb9 has an unacceptable license: xv-license.
    ===>     To view the license, enter "/usr/bin/make show-license".
    ===>     To indicate acceptance, add this line to your /etc/mk.conf:
    ===>     ACCEPTABLE_LICENSES+=xv-license
    *** Error code 1

The license can be viewed with make show-license, and if it is considered
appropriate, the line printed above can be added to /etc/mk.conf to indicate
acceptance of the particular license:

    ACCEPTABLE_LICENSES+=xv-license

When adding a package with a new license, the license text should be added to
pkgsrc/licenses for displaying. A list of known licenses can be seen in this
directory as well as by looking at the list of (commented out)
ACCEPTABLE_LICENSES variable settings in pkgsrc/mk/defaults/mk.conf.

The use of LICENSE=shareware, LICENSE=no-commercial-use, and similar language
is deprecated because it does not crisply refer to a particular license text.
Another problem with such usage is that it does not enable a user to denote
acceptance of the license for a single package without accepting the same
license text for another package. In particular, this can be inappropriate when
e.g. one accepts a particular license to indicate to pkgsrc that a fee has been
paid.

17.1.5. Restricted packages

Some licenses restrict how software may be re-distributed. In order to satisfy
these restrictions, the package system defines five make variables that can be
set to note these restrictions:

  * RESTRICTED

    This variable should be set whenever a restriction exists (regardless of
    its kind). Set this variable to a string containing the reason for the
    restriction.

  * NO_BIN_ON_CDROM

    Binaries may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
    whenever a binary package may not be included on a CD-ROM.

  * NO_BIN_ON_FTP

    Binaries may not be placed on an FTP server. Set this variable to $
    {RESTRICTED} whenever a binary package may not not be made available on the
    Internet.

  * NO_SRC_ON_CDROM

    Distfiles may not be placed on CD-ROM. Set this variable to ${RESTRICTED}
    if re-distribution of the source code or other distfile(s) is not allowed
    on CD-ROMs.

  * NO_SRC_ON_FTP

    Distfiles may not be placed on FTP. Set this variable to ${RESTRICTED} if
    re-distribution of the source code or other distfile(s) via the Internet is
    not allowed.

Please note that the use of NO_PACKAGE, IGNORE, NO_CDROM, or other generic make
variables to denote restrictions is deprecated, because they unconditionally
prevent users from generating binary packages!

17.1.6. Handling dependencies

Your package may depend on some other package being present - and there are
various ways of expressing this dependency. pkgsrc supports the BUILD_DEPENDS
and DEPENDS definitions, the USE_TOOLS definition, as well as dependencies via
buildlink3.mk, which is the preferred way to handle dependencies, and which
uses the variables named above. See Chapter 12, Buildlink methodology for more
information.

The basic difference between the two variables is as follows: The DEPENDS
definition registers that pre-requisite in the binary package so it will be
pulled in when the binary package is later installed, whilst the BUILD_DEPENDS
definition does not, marking a dependency that is only needed for building the
package.

This means that if you only need a package present whilst you are building, it
should be noted as a BUILD_DEPENDS.

The format for a BUILD_DEPENDS and a DEPENDS definition is:

    <pre-req-package-name>:../../<category>/<pre-req-package>

Please note that the "pre-req-package-name" may include any of the wildcard
version numbers recognized by pkg_info(1).

 1. If your package needs another package's binaries or libraries to build or
    run, and if that package has a buildlink3.mk file available, use it:

        .include "../../graphics/jpeg/buildlink3.mk"

 2. If your package needs to use another package to build itself and there is
    no buildlink3.mk file available, use the BUILD_DEPENDS definition:

        BUILD_DEPENDS+= autoconf-2.13:../../devel/autoconf

 3. If your package needs a library with which to link and again there is no
    buildlink3.mk file available, this is specified using the DEPENDS
    definition. For example:

        DEPENDS+=       xpm-3.4j:../../graphics/xpm

    You can also use wildcards in package dependences:

        DEPENDS+=       xpm-[0-9]*:../../graphics/xpm

    Note that such wildcard dependencies are retained when creating binary
    packages. The dependency is checked when installing the binary package and
    any package which matches the pattern will be used. Wildcard dependencies
    should be used with care.

    The "-[0-9]*" should be used instead of "-*" to avoid potentially ambiguous
    matches such as "tk-postgresql" matching a "tk-*" DEPENDS.

    Wildcards can also be used to specify that a package will only build
    against a certain minimum version of a pre-requisite:

        DEPENDS+=       tiff>=3.5.4:../../graphics/tiff

    This means that the package will build against version 3.5.4 of the tiff
    library or newer. Such a dependency may be warranted if, for example, the
    API of the library has changed with version 3.5.4 and a package would not
    compile against an earlier version of tiff.

    Please note that such dependencies should only be updated if a package
    requires a newer pre-requisite, but not to denote recommendations such as
    ABI changes that do not prevent a package from building correctly. Such
    recommendations can be expressed using ABI_DEPENDS:

        ABI_DEPENDS+=   tiff>=3.6.1:../../graphics/tiff

    In addition to the above DEPENDS line, this denotes that while a package
    will build against tiff>=3.5.4, at least version 3.6.1 is recommended.
    ABI_DEPENDS entries will be turned into dependencies unless explicitly
    ignored (in which case a warning will be printed).

    To ignore these ABI dependency recommendations and just use the required
    DEPENDS, set USE_ABI_DEPENDS=NO. This may make it easier and faster to
    update packages built using pkgsrc, since older compatible dependencies can
    continue to be used. This is useful for people who watch their rebuilds
    very carefully; it is not very good as a general-purpose hammer. If you use
    it, you need to be mindful of possible ABI changes, including those from
    the underlying OS.

    Packages that are built with recommendations ignored may not be uploaded to
    ftp.NetBSD.org by developers and should not be used across different
    systems that may have different versions of binary packages installed.

    For security fixes, please update the package vulnerabilities file. See
    Section 17.1.10, "Handling packages with security problems" for more
    information.

 4. If your package needs some executable to be able to run correctly and if
    there's no buildlink3.mk file, this is specified using the DEPENDS
    variable. The print/lyx package needs to be able to execute the latex
    binary from the teTeX package when it runs, and that is specified:

        DEPENDS+=        teTeX-[0-9]*:../../print/teTeX

    The comment about wildcard dependencies from previous paragraph applies
    here, too.

If your package needs files from another package to build, add the relevant
distribution files to DISTFILES, so they will be extracted automatically. See
the print/ghostscript package for an example. (It relies on the jpeg sources
being present in source form during the build.)

Please also note the BUILD_USES_MSGFMT and BUILD_USES_GETTEXT_M4 definitions,
which are provided as convenience definitions. The former works out whether
msgfmt(1) is part of the base system, and, if it isn't, installs the devel/
gettext package. The latter adds a build dependency on either an installed
version of an older gettext package, or if it isn't, installs the devel/
gettext-m4 package.

17.1.7. Handling conflicts with other packages

Your package may conflict with other packages a user might already have
installed on his system, e.g. if your package installs the same set of files
like another package in our pkgsrc tree.

In this case you can set CONFLICTS to a space-separated list of packages
(including version string) your package conflicts with.

For example, x11/Xaw3d and x11/Xaw-Xpm install the same shared library, thus
you set in pkgsrc/x11/Xaw3d/Makefile:

    CONFLICTS=      Xaw-Xpm-[0-9]*

and in pkgsrc/x11/Xaw-Xpm/Makefile:

    CONFLICTS=      Xaw3d-[0-9]*

Packages will automatically conflict with other packages with the name prefix
and a different version string. "Xaw3d-1.5" e.g. will automatically conflict
with the older version "Xaw3d-1.3".

17.1.8. Packages that cannot or should not be built

There are several reasons why a package might be instructed to not build under
certain circumstances. If the package builds and runs on most platforms, the
exceptions should be noted with NOT_FOR_PLATFORM. If the package builds and
runs on a small handful of platforms, set ONLY_FOR_PLATFORM instead. Both
ONLY_FOR_PLATFORM and NOT_FOR_PLATFORM are OS triples (OS-version-platform)
that can use glob-style wildcards.

If the package should be skipped (for example, because it provides
functionality already provided by the system), set PKG_SKIP_REASON to a
descriptive message. If the package should fail because some preconditions are
not met, set PKG_FAIL_REASON to a descriptive message.

17.1.9. Packages which should not be deleted, once installed

To ensure that a package may not be deleted, once it has been installed, the
PKG_PRESERVE definition should be set in the package Makefile. This will be
carried into any binary package that is made from this pkgsrc entry. A
"preserved" package will not be deleted using pkg_delete(1) unless the "-f"
option is used.

17.1.10. Handling packages with security problems

When a vulnerability is found, this should be noted in localsrc/security/
advisories/pkg-vulnerabilities, and after committing that file, use make upload
in the same directory to update the file on ftp.NetBSD.org.

After fixing the vulnerability by a patch, its PKGREVISION should be increased
(this is of course not necessary if the problem is fixed by using a newer
release of the software).

Also, if the fix should be applied to the stable pkgsrc branch, be sure to
submit a pullup request!

Binary packages already on ftp.NetBSD.org will be handled semi-automatically by
a weekly cron job.

17.1.11. How to handle incrementing versions when fixing an existing package

When making fixes to an existing package it can be useful to change the version
number in PKGNAME. To avoid conflicting with future versions by the original
author, a "nb1", "nb2", ... suffix can be used on package versions by setting
PKGREVISION=1 (2, ...). The "nb" is treated like a "." by the pkg tools. e.g.

    DISTNAME=       foo-17.42
    PKGREVISION=    9

will result in a PKGNAME of "foo-17.42nb9".

When a new release of the package is released, the PKGREVISION should be
removed, e.g. on a new minor release of the above package, things should be
like:

    DISTNAME=       foo-17.43

PKGREVISION should be incremented for any non-trivial change in the resulting
binary package. Without a PKGREVISION bump, someone with the previous version
installed has no way of knowing that their package is out of date. Thus,
changes without increasing PKGREVISION are essentially labeled "this is so
trivial that no reasonable person would want to upgrade", and this is the rough
test for when increasing PKGREVISION is appropriate. Examples of changes that
do not merit increasing PKGREVISION are:

Changing HOMEPAGE, MAINTAINER, or comments in Makefile.
Changing build variables if the resulting binary package is the same.
Changing DESCR.
Adding PKG_OPTIONS if the default options don't change.

Examples of changes that do merit an increase to PKGREVISION include:

Security fixes
Changes or additions to a patch file
Changes to the PLIST

PKGREVISION must also be incremented when dependencies have ABI changes.

17.1.12. Substituting variable text in the package files (the SUBST framework)

When you want to replace the same text in multiple files or when the
replacement text varies, patches alone cannot help. This is where the SUBST
framework comes in. It provides an easy-to-use interface for replacing text in
files. Example:

    SUBST_CLASSES+=                 fix-paths
    SUBST_STAGE.fix-paths=          pre-configure
    SUBST_MESSAGE.fix-paths=        Fixing absolute paths.
    SUBST_FILES.fix-paths=          src/*.c
    SUBST_FILES.fix-paths+=         scripts/*.sh
    SUBST_SED.fix-paths=            -e 's,"/usr/local,"${PREFIX},g'
    SUBST_SED.fix-paths+=           -e 's,"/var/log,"${VARBASE}/log,g'

SUBST_CLASSES is a list of identifiers that are used to identify the different
SUBST blocks that are defined. The SUBST framework is heavily used by pkgsrc,
so it is important to always use the += operator with this variable. Otherwise
some substitutions may be skipped.

The remaining variables of each SUBST block are parameterized with the
identifier from the first line (fix-paths in this case.) They can be seen as
parameters to a function call.

SUBST_STAGE.* specifies the stage at which the replacement will take place. All
combinations of pre-, do- and post- together with a phase name are possible,
though only few are actually used. Most commonly used are post-patch and
pre-configure. Of these two, pre-configure should be preferred because then it
is possible to run bmake patch and have the state after applying the patches
but before making any other changes. This is especially useful when you are
debugging a package in order to create new patches for it. Similarly,
post-build is preferred over pre-install, because the install phase should
generally be kept as simple as possible. When you use post-build, you have the
same files in the working directory that will be installed later, so you can
check if the substitution has succeeded.

SUBST_MESSAGE.* is an optional text that is printed just before the
substitution is done.

SUBST_FILES.* is the list of shell globbing patterns that specifies the files
in which the substitution will take place. The patterns are interpreted
relatively to the WRKSRC directory.

SUBST_SED.* is a list of arguments to sed(1) that specify the actual
substitution. Every sed command should be prefixed with -e, so that all SUBST
blocks look uniform.

There are some more variables, but they are so seldomly used that they are only
documented in the mk/subst.mk file.

17.2. Fixing problems in the fetch phase

17.2.1. Packages whose distfiles aren't available for plain downloading

If you need to download from a dynamic URL you can set DYNAMIC_MASTER_SITES and
a make fetch will call files/getsite.sh with the name of each file to download
as an argument, expecting it to output the URL of the directory from which to
download it. graphics/ns-cult3d is an example of this usage.

If the download can't be automated, because the user must submit personal
information to apply for a password, or must pay for the source, or whatever,
you can set FETCH_MESSAGE to a list of lines that are displayed to the user
before aborting the build. Example:

    FETCH_MESSAGE=  "Please download the files"
    FETCH_MESSAGE+= "    "${DISTFILES:Q}
    FETCH_MESSAGE+= "manually from "${MASTER_SITES:Q}"."

17.2.2. How to handle modified distfiles with the 'old' name

Sometimes authors of a software package make some modifications after the
software was released, and they put up a new distfile without changing the
package's version number. If a package is already in pkgsrc at that time, the
checksum will no longer match. The contents of the new distfile should be
compared against the old one before changing anything, to make sure the
distfile was really updated on purpose, and that no trojan horse or so crept
in. Then, the correct way to work around this is to set DIST_SUBDIR to a unique
directory name, usually based on PKGNAME_NOREV. In case this happens more
often, PKGNAME can be used (thus including the nbX suffix) or a date stamp can
be appended, like ${PKGNAME_NOREV}-YYYYMMDD. Do not forget regenerating the
distinfo file after that, since it contains the DIST_SUBDIR path in the
filenames. Furthermore, a mail to the package's authors seems appropriate
telling them that changing distfiles after releases without changing the file
names is not good practice.

17.3. Fixing problems in the configure phase

17.3.1. Shared libraries - libtool

pkgsrc supports many different machines, with different object formats like
a.out and ELF, and varying abilities to do shared library and dynamic loading
at all. To accompany this, varying commands and options have to be passed to
the compiler, linker, etc. to get the Right Thing, which can be pretty annoying
especially if you don't have all the machines at your hand to test things. The
devel/libtool pkg can help here, as it just "knows" how to build both static
and dynamic libraries from a set of source files, thus being
platform-independent.

Here's how to use libtool in a pkg in seven simple steps:

 1. Add USE_LIBTOOL=yes to the package Makefile.

 2. For library objects, use "${LIBTOOL} --mode=compile ${CC}" in place of "$
    {CC}". You could even add it to the definition of CC, if only libraries are
    being built in a given Makefile. This one command will build both PIC and
    non-PIC library objects, so you need not have separate shared and
    non-shared library rules.

 3. For the linking of the library, remove any "ar", "ranlib", and "ld
    -Bshareable" commands, and instead use:

        ${LIBTOOL} --mode=link ${CC} -o ${.TARGET:.a=.la} ${OBJS:.o=.lo} \
            -rpath ${PREFIX}/lib -version-info major:minor

    Note that the library is changed to have a .la extension, and the objects
    are changed to have a .lo extension. Change OBJS as necessary. This
    automatically creates all of the .a, .so.major.minor, and ELF symlinks (if
    necessary) in the build directory. Be sure to include "-version-info",
    especially when major and minor are zero, as libtool will otherwise strip
    off the shared library version.

    From the libtool manual:

        So, libtool library versions are described by three integers:

        CURRENT
            The most recent interface number that this library implements.

        REVISION
            The implementation number of the CURRENT interface.

        AGE
            The difference between the newest and oldest interfaces that
            this library implements.  In other words, the library implements
            all the interface numbers in the range from number `CURRENT -
            AGE' to `CURRENT'.

        If two libraries have identical CURRENT and AGE numbers, then the
        dynamic linker chooses the library with the greater REVISION number.

    The "-release" option will produce different results for a.out and ELF
    (excluding symlinks) in only one case. An ELF library of the form
    "libfoo-release.so.x.y" will have a symlink of "libfoo.so.x.y" on an a.out
    platform. This is handled automatically.

    The "-rpath argument" is the install directory of the library being built.

    In the PLIST, include only the .la file, the other files will be added
    automatically.

 4. When linking shared object (.so) files, i.e. files that are loaded via
    dlopen(3), NOT shared libraries, use "-module -avoid-version" to prevent
    them getting version tacked on.

    The PLIST file gets the foo.so entry.

 5. When linking programs that depend on these libraries before they are
    installed, preface the cc(1) or ld(1) line with "${LIBTOOL} --mode=link",
    and it will find the correct libraries (static or shared), but please be
    aware that libtool will not allow you to specify a relative path in -L
    (such as "-L../somelib"), because it expects you to change that argument to
    be the .la file. e.g.

        ${LIBTOOL} --mode=link ${CC} -o someprog -L../somelib -lsomelib

    should be changed to:

        ${LIBTOOL} --mode=link ${CC} -o someprog ../somelib/somelib.la

    and it will do the right thing with the libraries.

 6. When installing libraries, preface the install(1) or cp(1) command with "$
    {LIBTOOL} --mode=install", and change the library name to .la. e.g.

        ${LIBTOOL} --mode=install ${BSD_INSTALL_DATA} ${SOMELIB:.a=.la} ${PREFIX}/lib

    This will install the static .a, shared library, any needed symlinks, and
    run ldconfig(8).

 7. In your PLIST, include only the .la file (this is a change from previous
    behaviour).

17.3.2. Using libtool on GNU packages that already support libtool

Add USE_LIBTOOL=yes to the package Makefile. This will override the package's
own libtool in most cases. For older libtool using packages, libtool is made by
ltconfig script during the do-configure step; you can check the libtool script
location by doing make configure; find work*/ -name libtool.

LIBTOOL_OVERRIDE specifies which libtool scripts, relative to WRKSRC, to
override. By default, it is set to "libtool */libtool */*/libtool". If this
does not match the location of the package's libtool script(s), set it as
appropriate.

If you do not need *.a static libraries built and installed, then use
SHLIBTOOL_OVERRIDE instead.

If your package makes use of the platform-independent library for loading
dynamic shared objects, that comes with libtool (libltdl), you should include
devel/libltdl/buildlink3.mk.

Some packages use libtool incorrectly so that the package may not work or build
in some circumstances. Some of the more common errors are:

  * The inclusion of a shared object (-module) as a dependent library in an
    executable or library. This in itself isn't a problem if one of two things
    has been done:

     1. The shared object is named correctly, i.e. libfoo.la, not foo.la

     2. The -dlopen option is used when linking an executable.

  * The use of libltdl without the correct calls to initialisation routines.
    The function lt_dlinit() should be called and the macro
    LTDL_SET_PRELOADED_SYMBOLS included in executables.

17.3.3. GNU Autoconf/Automake

If a package needs GNU autoconf or automake to be executed to regenerate the
configure script and Makefile.in makefile templates, then they should be
executed in a pre-configure target.

For packages that need only autoconf:

    AUTOCONF_REQD=  2.50            # if default version is not good enough
    USE_TOOLS+=     autoconf        # use "autoconf213" for autoconf-2.13
    ...

    pre-configure:
            cd ${WRKSRC}; autoconf

    ...

and for packages that need automake and autoconf:

    AUTOMAKE_REQD=  1.7.1           # if default version is not good enough
    USE_TOOLS+=     automake        # use "automake14" for automake-1.4
    ...

    pre-configure:
            cd ${WRKSRC};                          \
            aclocal; autoheader;                   \
            automake -a --foreign -i; autoconf

    ...

Packages which use GNU Automake will almost certainly require GNU Make.

There are times when the configure process makes additional changes to the
generated files, which then causes the build process to try to re-execute the
automake sequence. This is prevented by touching various files in the configure
stage. If this causes problems with your package you can set AUTOMAKE_OVERRIDE=
NO in the package Makefile.

17.4. Fixing problems in the build phase

The most common failures when building a package are that some platforms do not
provide certain header files, functions or libraries, or they provide the
functions in a library that the original package author didn't know. To work
around this, you can rewrite the source code in most cases so that it does not
use the missing functions or provides a replacement function.

17.4.1. Compiling C and C++ code conditionally

If a package already comes with a GNU configure script, the preferred way to
fix the build failure is to change the configure script, not the code. In the
other cases, you can utilize the C preprocessor, which defines certain macros
depending on the operating system and hardware architecture it compiles for.
These macros can be queried using for example #if defined(__i386). Almost every
operating system, hardware architecture and compiler has its own macro. For
example, if the macros __GNUC__, __i386__ and __NetBSD__ are all defined, you
know that you are using NetBSD on an i386 compatible CPU, and your compiler is
GCC.

The list of the following macros for hardware and operating system depends on
the compiler that is used. For example, if you want to conditionally compile
code on Solaris, don't use __sun__, as the SunPro compiler does not define it.
Use __sun instead.

17.4.1.1. C preprocessor macros to identify the operating system

To distinguish between 4.4 BSD-derived systems and the rest of the world, you
should use the following code.

    #include <sys/param.h>
    #if (defined(BSD) && BSD >= 199306)
      /* BSD-specific code goes here */
    #else
      /* non-BSD-specific code goes here */
    #endif

If this distinction is not fine enough, you can also test for the following
macros.

    FreeBSD     __FreeBSD__
    DragonFly   __DragonFly__
    Interix     __INTERIX
    Linux       linux, __linux, __linux__
    NetBSD      __NetBSD__
    OpenBSD     __OpenBSD__
    Solaris     sun, __sun

17.4.1.2. C preprocessor macros to identify the hardware architecture

    i386        i386, __i386, __i386__
    MIPS        __mips
    SPARC       sparc, __sparc

17.4.1.3. C preprocessor macros to identify the compiler

    GCC         __GNUC__ (major version), __GNUC_MINOR__
    SunPro      __SUNPRO_C (0x570 for version 5.7)

17.4.2. How to handle compiler bugs

Some source files trigger bugs in the compiler, based on combinations of
compiler version and architecture and almost always relation to optimisation
being enabled. Common symptoms are gcc internal errors or never finishing
compiling a file.

Typically, a workaround involves testing the MACHINE_ARCH and compiler version,
disabling optimisation for that combination of file, MACHINE_ARCH and compiler,
and documenting it in pkgsrc/doc/HACKS. See that file for a number of examples.

17.4.3. Undefined reference to "..."

This compiler error often means that a package did not link to a shared library
it needs. The following functions are known to cause this error message over
and over.

+-----------------------------------------------------+
|        Function         |Library |Affected platforms|
|-------------------------+--------+------------------|
|accept, bind, connect    |-lsocket|Solaris           |
|-------------------------+--------+------------------|
|crypt                    |-lcrypt |DragonFly, NetBSD |
|-------------------------+--------+------------------|
|dlopen, dlsym            |-ldl    |Linux             |
|-------------------------+--------+------------------|
|gethost*                 |-lnsl   |Solaris           |
|-------------------------+--------+------------------|
|inet_aton                |-lresolv|Solaris           |
|-------------------------+--------+------------------|
|nanosleep, sem_*, timer_*|-lrt    |Solaris           |
|-------------------------+--------+------------------|
|openpty                  |-lutil  |Linux             |
+-----------------------------------------------------+

To fix these linker errors, it is often sufficient to say LIBS.OperatingSystem+
= -lfoo to the package Makefile and then say bmake clean; bmake.

17.5. Fixing problems in the install phase

17.5.1. Creating needed directories

The BSD-compatible install supplied with some operating systems cannot create
more than one directory at a time. As such, you should call ${INSTALL_*_DIR}
like this:

    ${INSTALL_DATA_DIR} ${PREFIX}/dir1
    ${INSTALL_DATA_DIR} ${PREFIX}/dir2

You can also just append "dir1 dir2" to the INSTALLATION_DIRS variable, which
will automatically do the right thing.

17.5.2. Where to install documentation

Documentation should be installed into ${PREFIX}/share/doc/${PKGBASE} or $
{PREFIX}/share/doc/${PKGNAME} (the latter includes the version number of the
package).

17.5.3. Installing score files

Certain packages, most of them in the games category, install a score file that
allows all users on the system to record their highscores. In order for this to
work, the binaries need to be installed setgid and the score files owned by the
appropriate group and/or owner (traditionally the "games" user/group). The
following variables, documented in more detail in mk/defaults/mk.conf, control
this behaviour: SETGIDGAME, GAMEDATAMODE, GAMEGRP, GAMEMODE, GAMEOWN.

Note that per default, setgid installation of games is disabled; setting
SETGIDGAME=YES will set all the other variables accordingly.

A package should therefor never hard code file ownership or access permissions
but rely on INSTALL_GAME and INSTALL_GAME_DATA to set these correctly.

17.5.4. Packages containing perl scripts

If your package contains interpreted perl scripts, set REPLACE_PERL to ensure
that the proper interpreter path is set. REPLACE_PERL should contain a list of
scripts, relative to WRKSRC, that you want adjusted.

17.5.5. Packages with hardcoded paths to other interpreters

Your package may also contain scripts with hardcoded paths to other
interpreters besides (or as well as) perl. To correct the full pathname to the
script interpreter, you need to set the following definitions in your Makefile
(we shall use tclsh in this example):

    REPLACE_INTERPRETER+=   tcl
    REPLACE.tcl.old=        .*/bin/tclsh
    REPLACE.tcl.new=        ${PREFIX}/bin/tclsh
    REPLACE_FILES.tcl=      # list of tcl scripts which need to be fixed,
                            # relative to ${WRKSRC}, just as in REPLACE_PERL

Note

Before March 2006, these variables were called _REPLACE.* and _REPLACE_FILES.*.

17.5.6. Packages installing perl modules

Makefiles of packages providing perl5 modules should include the Makefile
fragment ../../lang/perl5/module.mk. It provides a do-configure target for the
standard perl configuration for such modules as well as various hooks to tune
this configuration. See comments in this file for details.

Perl5 modules will install into different places depending on the version of
perl used during the build process. To address this, pkgsrc will append lines
to the PLIST corresponding to the files listed in the installed .packlist file
generated by most perl5 modules. This is invoked by defining PERL5_PACKLIST to
a space-separated list of paths to packlist files, e.g.:

    PERL5_PACKLIST= ${PERL5_SITEARCH}/auto/Pg/.packlist

The variables PERL5_SITELIB, PERL5_SITEARCH, and PERL5_ARCHLIB represent the
three locations in which perl5 modules may be installed, and may be used by
perl5 packages that don't have a packlist. These three variables are also
substituted for in the PLIST.

17.5.7. Packages installing info files

Some packages install info files or use the "makeinfo" or "install-info"
commands. INFO_FILES should be defined in the package Makefile so that INSTALL
and DEINSTALL scripts will be generated to handle registration of the info
files in the Info directory file. The "install-info" command used for the info
files registration is either provided by the system, or by a special purpose
package automatically added as dependency if needed.

PKGINFODIR is the directory under ${PREFIX} where info files are primarily
located. PKGINFODIR defaults to "info" and can be overridden by the user.

The info files for the package should be listed in the package PLIST; however
any split info files need not be listed.

A package which needs the "makeinfo" command at build time must add "makeinfo"
to USE_TOOLS in its Makefile. If a minimum version of the "makeinfo" command is
needed it should be noted with the TEXINFO_REQD variable in the package
Makefile. By default, a minimum version of 3.12 is required. If the system does
not provide a makeinfo command or if it does not match the required minimum, a
build dependency on the devel/gtexinfo package will be added automatically.

The build and installation process of the software provided by the package
should not use the install-info command as the registration of info files is
the task of the package INSTALL script, and it must use the appropriate
makeinfo command.

To achieve this goal, the pkgsrc infrastructure creates overriding scripts for
the install-info and makeinfo commands in a directory listed early in PATH.

The script overriding install-info has no effect except the logging of a
message. The script overriding makeinfo logs a message and according to the
value of TEXINFO_REQD either runs the appropriate makeinfo command or exit on
error.

17.5.8. Packages installing man pages

Many packages install manual pages. The man pages are installed under ${PREFIX}
/${PKGMANDIR} which is /usr/pkg/man by default. PKGMANDIR defaults to "man".
For example, you can set PKGMANDIR to "share/man" to have man pages install
under /usr/pkg/share/man/ by default.

Note

The support for a custom PKGMANDIR is not complete.

The PLIST files can just use man/ as the top level directory for the man page
file entries and the pkgsrc framework will convert as needed.

Packages that are configured with GNU_CONFIGURE set as "yes", by default will
use the ./configure --mandir switch to set where the man pages should be
installed. The path is GNU_CONFIGURE_MANDIR which defaults to ${PREFIX}/$
{PKGMANDIR}.

Packages that use GNU_CONFIGURE but do not use --mandir, can set
CONFIGURE_HAS_MANDIR to "no". Or if the ./configure script uses a non-standard
use of --mandir, you can set GNU_CONFIGURE_MANDIR as needed.

See Section 11.5, "Man page compression" for information on installation of
compressed manual pages.

17.5.9. Packages installing GConf2 data files

If a package installs .schemas or .entries files, used by GConf2, you need to
take some extra steps to make sure they get registered in the database:

 1. Include ../../devel/GConf2/schemas.mk instead of its buildlink3.mk file.
    This takes care of rebuilding the GConf2 database at installation and
    deinstallation time, and tells the package where to install GConf2 data
    files using some standard configure arguments. It also disallows any access
    to the database directly from the package.

 2. Ensure that the package installs its .schemas files under ${PREFIX}/share/
    gconf/schemas. If they get installed under ${PREFIX}/etc, you will need to
    manually patch the package.

 3. Check the PLIST and remove any entries under the etc/gconf directory, as
    they will be handled automatically. See Section 7.14, "How do I change the
    location of configuration files?" for more information.

 4. Define the GCONF2_SCHEMAS variable in your Makefile with a list of all
    .schemas files installed by the package, if any. Names must not contain any
    directories in them.

 5. Define the GCONF2_ENTRIES variable in your Makefile with a list of all
    .entries files installed by the package, if any. Names must not contain any
    directories in them.

17.5.10. Packages installing scrollkeeper data files

If a package installs .omf files, used by scrollkeeper, you need to take some
extra steps to make sure they get registered in the database:

 1. Include ../../textproc/scrollkeeper/omf.mk instead of its buildlink3.mk
    file. This takes care of rebuilding the scrollkeeper database at
    installation and deinstallation time, and disallows any access to it
    directly from the package.

 2. Check the PLIST and remove any entries under the libdata/scrollkeeper
    directory, as they will be handled automatically.

 3. Remove the share/omf directory from the PLIST. It will be handled by
    scrollkeeper.

17.5.11. Packages installing X11 fonts

If a package installs font files, you will need to rebuild the fonts database
in the directory where they get installed at installation and deinstallation
time. This can be automatically done by using the pkginstall framework.

You can list the directories where fonts are installed in the FONTS_DIRS.type
variables, where type can be one of "ttf", "type1" or "x11". Also make sure
that the database file fonts.dir is not listed in the PLIST.

Note that you should not create new directories for fonts; instead use the
standard ones to avoid that the user needs to manually configure his X server
to find them.

17.5.12. Packages installing GTK2 modules

If a package installs GTK2 immodules or loaders, you need to take some extra
steps to get them registered in the GTK2 database properly:

 1. Include ../../x11/gtk2/modules.mk instead of its buildlink3.mk file. This
    takes care of rebuilding the database at installation and deinstallation
    time.

 2. Set GTK2_IMMODULES=YES if your package installs GTK2 immodules.

 3. Set GTK2_LOADERS=YES if your package installs GTK2 loaders.

 4. Patch the package to not touch any of the GTK2 databases directly. These
    are:

      * libdata/gtk-2.0/gdk-pixbuf.loaders

      * libdata/gtk-2.0/gtk.immodules

 5. Check the PLIST and remove any entries under the libdata/gtk-2.0 directory,
    as they will be handled automatically.

17.5.13. Packages installing SGML or XML data

If a package installs SGML or XML data files that need to be registered in
system-wide catalogs (like DTDs, sub-catalogs, etc.), you need to take some
extra steps:

 1. Include ../../textproc/xmlcatmgr/catalogs.mk in your Makefile, which takes
    care of registering those files in system-wide catalogs at installation and
    deinstallation time.

 2. Set SGML_CATALOGS to the full path of any SGML catalogs installed by the
    package.

 3. Set XML_CATALOGS to the full path of any XML catalogs installed by the
    package.

 4. Set SGML_ENTRIES to individual entries to be added to the SGML catalog.
    These come in groups of three strings; see xmlcatmgr(1) for more
    information (specifically, arguments recognized by the 'add' action). Note
    that you will normally not use this variable.

 5. Set XML_ENTRIES to individual entries to be added to the XML catalog. These
    come in groups of three strings; see xmlcatmgr(1) for more information
    (specifically, arguments recognized by the 'add' action). Note that you
    will normally not use this variable.

17.5.14. Packages installing extensions to the MIME database

If a package provides extensions to the MIME database by installing .xml files
inside ${PREFIX}/share/mime/packages, you need to take some extra steps to
ensure that the database is kept consistent with respect to these new files:

 1. Include ../../databases/shared-mime-info/mimedb.mk (avoid using the
    buildlink3.mk file from this same directory, which is reserved for
    inclusion from other buildlink3.mk files). It takes care of rebuilding the
    MIME database at installation and deinstallation time, and disallows any
    access to it directly from the package.

 2. Check the PLIST and remove any entries under the share/mime directory,
    except for files saved under share/mime/packages. The former are handled
    automatically by the update-mime-database program, but the latter are
    package-dependent and must be removed by the package that installed them in
    the first place.

 3. Remove any share/mime/* directories from the PLIST. They will be handled by
    the shared-mime-info package.

17.5.15. Packages using intltool

If a package uses intltool during its build, include the ../../textproc/
intltool/buildlink3.mk file, which forces it to use the intltool package
provided by pkgsrc, instead of the one bundled with the distribution file.

This tracks intltool's build-time dependencies and uses the latest available
version; this way, the package benefits of any bug fixes that may have appeared
since it was released.

17.5.16. Packages installing startup scripts

If a package contains a rc.d script, it won't be copied into the startup
directory by default, but you can enable it, by adding the option
PKG_RCD_SCRIPTS=YES in /etc/mk.conf. This option will copy the scripts into /
etc/rc.d when a package is installed, and it will automatically remove the
scripts when the package is deinstalled.

17.5.17. Packages installing TeX modules

If a package installs TeX packages into the texmf tree, the ls-R database of
the tree needs to be updated.

Note

Except the main TeX packages such as teTeX-texmf, packages should install files
into PKG_LOCALTEXMFPREFIX, not PKG_TEXMFPREFIX.

 1. Include ../../print/teTeX/module.mk instead of ../../mk/tex.buildlink3.mk.
    This takes care of rebuilding the ls-R database at installation and
    deinstallation time.

 2. If your package installs files into a texmf tree other than the one at
    PKG_LOCALTEXMFPREFIX, set TEXMFDIRS to the list of all texmf trees that
    need database update.

    If your package also installs font map files that need to be registered
    using updmap, set TEX_FONTMAPS to the list of all such font map files. Then
    updmap will be run automatically at installation/deinstallation to enable/
    disable font map files for TeX output drivers.

 3. Make sure that none of ls-R databases are included in PLIST, as they will
    be removed only by the teTeX-bin package.

17.6. Feedback to the author

If you have found any bugs in the package you make available, if you had to do
special steps to make it run under NetBSD or if you enhanced the software in
various other ways, be sure to report these changes back to the original author
of the program! With that kind of support, the next release of the program can
incorporate these fixes, and people not using the NetBSD packages system can
win from your efforts.

Support the idea of free software!

Chapter 18. Debugging

To check out all the gotchas when building a package, here are the steps that I
do in order to get a package working. Please note this is basically the same as
what was explained in the previous sections, only with some debugging aids.

  * Be sure to set PKG_DEVELOPER=1 in /etc/mk.conf

  * Install pkgtools/url2pkg, create a directory for a new package, change into
    it, then run url2pkg:

    % mkdir /usr/pkgsrc/category/examplepkg
    % cd /usr/pkgsrc/category/examplepkg
    % url2pkg http://www.example.com/path/to/distfile.tar.gz

  * Edit the Makefile as requested.

  * Fill in the DESCR file

  * Run make configure

  * Add any dependencies glimpsed from documentation and the configure step to
    the package's Makefile.

  * Make the package compile, doing multiple rounds of

    % make
    % pkgvi ${WRKSRC}/some/file/that/does/not/compile
    % mkpatches
    % patchdiff
    % mv ${WRKDIR}/.newpatches/* patches
    % make mps
    % make clean

    Doing as non-root user will ensure that no files are modified that
    shouldn't be, especially during the build phase. mkpatches, patchdiff and
    pkgvi are from the pkgtools/pkgdiff package.

  * Look at the Makefile, fix if necessary; see Section 9.1, "Makefile".

  * Generate a PLIST:

    # make install
    # make print-PLIST >PLIST
    # make deinstall
    # make install
    # make deinstall

    You usually need to be root to do this. Look if there are any files left:

    # make print-PLIST

    If this reveals any files that are missing in PLIST, add them.

  * Now that the PLIST is OK, install the package again and make a binary
    package:

    # make reinstall
    # make package

  * Delete the installed package:

    # pkg_delete blub

  * Repeat the above make print-PLIST command, which shouldn't find anything
    now:

    # make print-PLIST

  * Reinstall the binary package:

    # pkgadd .../blub.tgz

  * Play with it. Make sure everything works.

  * Run pkglint from pkgtools/pkglint, and fix the problems it reports:

    # pkglint

  * Submit (or commit, if you have cvs access); see Chapter 19, Submitting and
    Committing.

Chapter 19. Submitting and Committing

Table of Contents

19.1. Submitting binary packages
19.2. Submitting source packages (for non-NetBSD-developers)
19.3. General notes when adding, updating, or removing packages
19.4. Committing: Importing a package into CVS
19.5. Updating a package to a newer version
19.6. Moving a package in pkgsrc

19.1. Submitting binary packages

Our policy is that we accept binaries only from pkgsrc developers to guarantee
that the packages don't contain any trojan horses etc. This is not to annoy
anyone but rather to protect our users! You're still free to put up your
home-made binary packages and tell the world where to get them. NetBSD
developers doing bulk builds and wanting to upload them please see
Section 6.3.8, "Uploading results of a bulk build".

19.2. Submitting source packages (for non-NetBSD-developers)

First, check that your package is complete, compiles and runs well; see
Chapter 18, Debugging and the rest of this document. Next, generate an
uuencoded gzipped tar(1) archive, preferably with all files in a single
directory. Finally, send-pr with category "pkg", a synopsis which includes the
package name and version number, a short description of your package (contents
of the COMMENT variable or DESCR file are OK) and attach the archive to your
PR.

If you want to submit several packages, please send a separate PR for each one,
it's easier for us to track things that way.

Alternatively, you can also import new packages into pkgsrc-wip ("pkgsrc
work-in-progress"); see the homepage at http://pkgsrc-wip.sourceforge.net/ for
details.

19.3. General notes when adding, updating, or removing packages

Please note all package additions, updates, moves, and removals in pkgsrc/doc/
CHANGES. It's very important to keep this file up to date and conforming to the
existing format, because it will be used by scripts to automatically update
pages on www.NetBSD.org and other sites. Additionally, check the pkgsrc/doc/
TODO file and remove the entry for the package you updated or removed, in case
it was mentioned there.

When the PKGREVISION of a package is bumped, the change should appear in pkgsrc
/doc/CHANGES if it is security related or otherwise relevant. Mass bumps that
result from a dependency being updated should not be mentioned. In all other
cases it's the developer's decision.

There is a make target that helps in creating proper CHANGES entries: make
changes-entry. It uses the optional CTYPE and NETBSD_LOGIN_NAME variables. The
general usage is to first make sure that your CHANGES file is up-to-date (to
avoid having to resolve conflicts later-on) and then to cd to the package
directory. For package updates, make changes-entry is enough. For new packages,
or package moves or removals, set the CTYPE variable on the command line to
"Added", "Moved", or "Removed". You can set NETBSD_LOGIN_NAME in /etc/mk.conf
if your local login name is not the same as your NetBSD login name. Don't
forget to commit the changes to pkgsrc/doc/CHANGES!

19.4. Committing: Importing a package into CVS

This section is only of interest for pkgsrc developers with write access to the
pkgsrc repository. Please remember that cvs imports files relative to the
current working directory, and that the pathname that you give the cvs import
command is so that it knows where to place the files in the repository. Newly
created packages should be imported with a vendor tag of "TNF" and a release
tag of "pkgsrc-base", e.g:

    $ cd .../pkgsrc/category/pkgname
    $ cvs import pkgsrc/category/pkgname TNF pkgsrc-base

Remember to move the directory from which you imported out of the way, or cvs
will complain the next time you "cvs update" your source tree. Also don't
forget to add the new package to the category's Makefile.

The commit message of the initial import should include part of the DESCR file,
so people reading the mailing lists know what the package is/does.

For new packages, "cvs import" is preferred to "cvs add" because the former
gets everything with a single command, and provides a consistent tag.

19.5. Updating a package to a newer version

Please always put a concise, appropriate and relevant summary of the changes
between old and new versions into the commit log when updating a package. There
are various reasons for this:

  * A URL is volatile, and can change over time. It may go away completely or
    its information may be overwritten by newer information.

  * Having the change information between old and new versions in our CVS
    repository is very useful for people who use either cvs or anoncvs.

  * Having the change information between old and new versions in our CVS
    repository is very useful for people who read the pkgsrc-changes mailing
    list, so that they can make tactical decisions about when to upgrade the
    package.

Please also recognize that, just because a new version of a package has been
released, it should not automatically be upgraded in the CVS repository. We
prefer to be conservative in the packages that are included in pkgsrc -
development or beta packages are not really the best thing for most places in
which pkgsrc is used. Please use your judgement about what should go into
pkgsrc, and bear in mind that stability is to be preferred above new and
possibly untested features.

19.6. Moving a package in pkgsrc

 1. Make a copy of the directory somewhere else.

 2. Remove all CVS dirs.

    Alternatively to the first two steps you can also do:

    % cvs -d user@cvs.NetBSD.org:/cvsroot export -D today pkgsrc/category/package

    and use that for further work.

 3. Fix CATEGORIES and any DEPENDS paths that just did "../package" instead of
    "../../category/package".

 4. cvs import the modified package in the new place.

 5. Check if any package depends on it:

    % cd /usr/pkgsrc
    % grep /package */*/Makefile* */*/buildlink*

 6. Fix paths in packages from step 5 to point to new location.

 7. cvs rm (-f) the package at the old location.

 8. Remove from oldcategory/Makefile.

 9. Add to newcategory/Makefile.

10. Commit the changed and removed files:

    % cvs commit oldcategory/package oldcategory/Makefile newcategory/Makefile

    (and any packages from step 5, of course).

Chapter 20. Frequently Asked Questions

This section contains the answers to questions that may arise when you are
writing a package. If you don't find your question answered here, first have a
look in the other chapters, and if you still don't have the answer, ask on the
pkgsrc-users mailing list.

20.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?
20.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?
20.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?
20.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
    BUILDLINK_LIBS?
20.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?
20.6. What does ${MASTER_SITE_SOURCEFORGE:=package/} mean? I don't understand
    the := inside it.
20.7. Which mailing lists are there for package developers?
20.8. Where is the pkgsrc documentation?

20.1. What is the difference between MAKEFLAGS, .MAKEFLAGS and MAKE_FLAGS?

      MAKEFLAGS are the flags passed to the pkgsrc-internal invocations of make
      (1), while MAKE_FLAGS are the flags that are passed to the MAKE_PROGRAM
      when building the package. [FIXME: What is .MAKEFLAGS for?]

20.2. What is the difference between MAKE, GMAKE and MAKE_PROGRAM?

      MAKE is the path to the make(1) program that is used in the pkgsrc
      infrastructure. GMAKE is the path to GNU Make, but you need to say
      USE_TOOLS+=gmake to use that. MAKE_PROGRAM is the path to the Make
      program that is used for building the package.

20.3. What is the difference between CC, PKG_CC and PKGSRC_COMPILER?

      CC is the path to the real C compiler, which can be configured by the
      pkgsrc user. PKG_CC is the path to the compiler wrapper. PKGSRC_COMPILER
      is not a path to a compiler, but the type of compiler that should be
      used. See mk/compiler.mk for more information about the latter variable.

20.4. What is the difference between BUILDLINK_LDFLAGS, BUILDLINK_LDADD and
      BUILDLINK_LIBS?

      [FIXME]

20.5. Why does make show-var VARNAME=BUILDLINK_PREFIX.foo say it's empty?

      For optimization reasons, some variables are only available in the
      "wrapper" phase and later. To "simulate" the wrapper phase, append
      PKG_PHASE=wrapper to the above command.

20.6. What does ${MASTER_SITE_SOURCEFORGE:=package/} mean? I don't understand
      the := inside it.

      The := is not really an assignment operator, like you might expect at
      first sight. Instead, it is a degenerate form of ${LIST:old_string=
      new_string}, which is documented in the make(1) man page and which you
      may have seen as in ${SRCS:.c=.o}. In the case of MASTER_SITE_*,
      old_string is the empty string and new_string is package/. That's where
      the : and the = fall together.

20.7. Which mailing lists are there for package developers?

      tech-pkg

          This is a list for technical discussions related to pkgsrc
          development, e.g. soliciting feedback for changes to pkgsrc
          infrastructure, proposed new features, questions related to porting
          pkgsrc to a new platform, advice for maintaining a package, patches
          that affect many packages, help requests moved from pkgsrc-users when
          an infrastructure bug is found, etc.

      pkgsrc-bugs

          All bug reports in category "pkg" sent with send-pr(1) appear here.
          Please do not report your bugs here directly; use one of the other
          mailing lists.

20.8. Where is the pkgsrc documentation?

      There are many places where you can find documentation about pkgsrc:

        * The pkgsrc guide (this document) is a collection of chapters that
          explain large parts of pkgsrc, but some chapters tend to be outdated.
          Which ones they are is hard to say.

        * On the mailing list archives (see http://mail-index.NetBSD.org/), you
          can find discussions about certain features, announcements of new
          parts of the pkgsrc infrastructure and sometimes even announcements
          that a certain feature has been marked as obsolete. The benefit here
          is that each message has a date appended to it.

        * Many of the files in the mk/ directory start with a comment that
          describes the purpose of the file and how it can be used by the
          pkgsrc user and package authors.

        * The CVS log messages are a rich source of information, but they tend
          to be highly abbreviated, especially for actions that occur often.
          Some contain a detailed description of what has changed, but they are
          geared towards the other pkgsrc developers, not towards an average
          pkgsrc user. They also only document changes, so if you don't know
          what has been before, these messages may not be worth too much to
          you.

        * Some parts of pkgsrc are only "implicitly documented", that is the
          documentation exists only in the mind of the developer who wrote the
          code. To get this information, use the the cvs annotate command to
          see who has written it and ask on the tech-pkg mailing list, so that
          others can find your questions later (see above). To be sure that the
          developer in charge reads the mail, you may CC him or her.

Part III. The pkgsrc infrastructure internals

This part of the guide deals with everything from the infrastructure that is
behind the interfaces described in the developer's guide. A casual package
maintainer should not need anything from this part.

Table of Contents

21. Design of the pkgsrc infrastructure

    21.1. Variable evaluation

        21.1.1. At load time
        21.1.2. At runtime

    21.2. How can variables be specified?
    21.3. Designing interfaces for Makefile fragments

        21.3.1. Procedures with parameters
        21.3.2. Actions taken on behalf of parameters

22. Regression tests

    22.1. The regression tests framework
    22.2. Running the regression tests
    22.3. Adding a new regression test

        22.3.1. Overridable functions
        22.3.2. Helper functions

23. Porting pkgsrc

    23.1. Porting pkgsrc to a new operating system
    23.2. Adding support for a new compiler

Chapter 21. Design of the pkgsrc infrastructure

Table of Contents

21.1. Variable evaluation

    21.1.1. At load time
    21.1.2. At runtime

21.2. How can variables be specified?
21.3. Designing interfaces for Makefile fragments

    21.3.1. Procedures with parameters
    21.3.2. Actions taken on behalf of parameters

The pkgsrc infrastructure consists of many small Makefile fragments. Each such
fragment needs a properly specified interface. This chapter explains how such
an interface looks like.

21.1. Variable evaluation

21.1.1. At load time

Variable evaluation takes place either at load time or at runtime, depending on
the context in which they occur. The contexts where variables are evaluated at
load time are:

  * The right hand side of the := and != operators,

  * Make directives like .if or .for,

  * Dependency lines.

A special exception are references to the iteration variables of .for loops,
which are expanded inline, no matter in which context they appear.

As the values of variables may change during load time, care must be taken not
to evaluate them by accident. Typical examples for variables that should not be
evaluated at load time are DEPENDS and CONFIGURE_ARGS. To make the effect more
clear, here is an example:

    CONFIGURE_ARGS=         # none
    CFLAGS=                 -O
    CONFIGURE_ARGS+=        CFLAGS=${CFLAGS:Q}

    CONFIGURE_ARGS:=        ${CONFIGURE_ARGS}

    CFLAGS+=                -Wall


This code shows how the use of the := operator can quickly lead to unexpected
results. The first paragraph is fairly common code. The second paragraph
evaluates the CONFIGURE_ARGS variable, which results in CFLAGS=-O. In the third
paragraph, the -Wall is appended to the CFLAGS, but this addition will not
appear in CONFIGURE_ARGS. In actual code, the three paragraphs from above
typically occur in completely unrelated files.

21.1.2. At runtime

After all the files have been loaded, the values of the variables cannot be
changed anymore. Variables that are used in the shell commands are expanded at
this point.

21.2. How can variables be specified?

There are many ways in which the definition and use of a variable can be
restricted in order to detect bugs and violations of the (mostly unwritten)
policies. See the pkglint developer's documentation for further details.

21.3. Designing interfaces for Makefile fragments

Most of the .mk files fall into one of the following classes. Cases where a
file falls into more than one class should be avoided as it often leads to
subtle bugs.

21.3.1. Procedures with parameters

In a traditional imperative programming language some of the .mk files could be
described as procedures. They take some input parameters and?after inclusion?
provide a result in output parameters. Since all variables in Makefiles have
global scope care must be taken not to use parameter names that have already
another meaning. For example, PKGNAME is a bad choice for a parameter name.

Procedures are completely evaluated at preprocessing time. That is, when
calling a procedure all input parameters must be completely resolvable. For
example, CONFIGURE_ARGS should never be an input parameter since it is very
likely that further text will be added after calling the procedure, which would
effectively apply the procedure to only a part of the variable. Also,
references to other variables wit will be modified after calling the procedure.

A procedure can declare its output parameters either as suitable for use in
preprocessing directives or as only available at runtime. The latter
alternative is for variables that contain references to other runtime
variables.

Procedures shall be written such that it is possible to call the procedure more
than once. That is, the file must not contain multiple-inclusion guards.

Examples for procedures are mk/bsd.options.mk and mk/buildlink3/bsd.builtin.mk.
To express that the parameters are evaluated at load time, they should be
assigned using the := operator, which should be used only for this purpose.

21.3.2. Actions taken on behalf of parameters

Action files take some input parameters and may define runtime variables. They
shall not define loadtime variables. There are action files that are included
implicitly by the pkgsrc infrastructure, while other must be included
explicitly.

An example for action files is mk/subst.mk.

Chapter 22. Regression tests

Table of Contents

22.1. The regression tests framework
22.2. Running the regression tests
22.3. Adding a new regression test

    22.3.1. Overridable functions
    22.3.2. Helper functions

The pkgsrc infrastructure consists of a large codebase, and there are many
corners where every little bit of a file is well thought out, making pkgsrc
likely to fail as soon as anything is changed near those parts. To prevent most
changes from breaking anything, a suite of regression tests should go along
with every important part of the pkgsrc infrastructure. This chapter describes
how regression tests work in pkgsrc and how you can add new tests.

22.1. The regression tests framework

22.2. Running the regression tests

You first need to install the pkgtools/pkg_regress package, which provides the
pkg_regress command. Then you can simply run that command, which will run all
tests in the regress category.

22.3. Adding a new regression test

Every directory in the regress category that contains a file called spec is
considered a regression test. This file is a shell program that is included by
the pkg_regress command. The following functions can be overridden to suit your
needs.

22.3.1. Overridable functions

These functions do not take any parameters. They are all called in "set -e"
mode, so you should be careful to check the exitcodes of any commands you run
in the test.

do_setup()

    This function prepares the environment for the test. By default it does
    nothing.

do_test()

    This function runs the actual test. By default, it calls TEST_MAKE with the
    arguments MAKEARGS_TEST and writes its output including error messages into
    the file TEST_OUTFILE.

check_result()

    This function is run after the test and is typically used to compare the
    actual output from the one that is expected. It can make use of the various
    helper functions from the next section.

do_cleanup()

    This function cleans everything up after the test has been run. By default
    it does nothing.

22.3.2. Helper functions

exit_status(expected)

    This function compares the exitcode of the do_test() function with its
    first parameter. If they differ, the test will fail.

output_require(regex...)

    This function checks for each of its parameters if the output from do_test
    () matches the extended regular expression. If it does not, the test will
    fail.

output_prohibit(regex...)

    This function checks for each of its parameters if the output from do_test
    () does not match the extended regular expression. If any of the regular
    expressions matches, the test will fail.

Chapter 23. Porting pkgsrc

Table of Contents

23.1. Porting pkgsrc to a new operating system
23.2. Adding support for a new compiler

The pkgsrc system has already been ported to many operating systems, hardware
architectures and compilers. This chapter explains the necessary steps to make
pkgsrc even more portable.

23.1. Porting pkgsrc to a new operating system

To port pkgsrc to a new operating system (called MyOS in this example), you
need to touch the following files:

bootstrap/mods/mk/MyOS.sys.mk

    This file contains some basic definitions, for example the name of the C
    compiler.

mk/bsd.prefs.mk

    Insert code that defines the variables OPSYS, OS_VERSION, LOWER_OS_VERSION,
    LOWER_VENDOR, MACHINE_ARCH, OBJECT_FMT, APPEND_ELF, and the other variables
    that appear in this file.

mk/platform/MyOS.mk

    This file contains the platform-specific definitions that are used by
    pkgsrc. Start by copying one of the other files and edit it to your needs.

mk/platform/MyOS.pkg.dist

    This file contains a list of directories, together with their permission
    bits and ownership. These directories will be created automatically with
    every package that does not explicitly set NO_MTREE. There have been some
    discussions about whether this file is needed at all, but with no result.

mk/platform/MyOS.x11.dist

    Just copy one of the pre-existing x11.dist files to your MyOS.x11.dist.

mk/tools/bootstrap.mk

    On some operating systems, the tools that are provided with the base system
    are not good enough for pkgsrc. For example, there are many versions of sed
    (1) that have a narrow limit on the line length they can process. Therefore
    pkgsrc brings its own tools, which can be enabled here.

mk/tools/MyOS.mk

    This file defines the paths to all the tools that are needed by one or the
    other package in pkgsrc, as well as by pkgsrc itself. Find out where these
    tools are on your platform and add them.

Now, you should be able to build some basic packages, like lang/perl5, shells/
bash.

23.2. Adding support for a new compiler

TODO

Appendix A. A simple example package: bison

Table of Contents

A.1. files

    A.1.1. Makefile
    A.1.2. DESCR
    A.1.3. PLIST
    A.1.4. Checking a package with pkglint

A.2. Steps for building, installing, packaging

We checked to find a piece of software that wasn't in the packages collection,
and picked GNU bison. Quite why someone would want to have bison when Berkeley
yacc is already present in the tree is beyond us, but it's useful for the
purposes of this exercise.

A.1. files

A.1.1. Makefile

    # $NetBSD$
    #

    DISTNAME=       bison-1.25
    CATEGORIES=     devel
    MASTER_SITES=   ${MASTER_SITE_GNU}

    MAINTAINER=     thorpej@NetBSD.org
    HOMEPAGE=       http://www.gnu.org/software/bison/bison.html
    COMMENT=        GNU yacc clone

    GNU_CONFIGURE=  yes
    INFO_FILES=     bison.info

    .include "../../mk/bsd.pkg.mk"

A.1.2. DESCR

    GNU version of yacc.  Can make re-entrant parsers, and numerous other
    improvements.  Why you would want this when Berkeley yacc(1) is part
    of the NetBSD source tree is beyond me.

A.1.3. PLIST

    @comment $NetBSD$
    bin/bison
    man/man1/bison.1.gz
    share/bison.simple
    share/bison.hairy

A.1.4. Checking a package with pkglint

The NetBSD package system comes with pkgtools/pkglint which helps to check the
contents of these files. After installation it is quite easy to use, just
change to the directory of the package you wish to examine and execute pkglint:

$ pkglint
looks fine.

Depending on the supplied command line arguments (see pkglint(1)), more checks
will be performed. Use e.g. pkglint -Call -Wall for a very thorough check.

A.2. Steps for building, installing, packaging

Create the directory where the package lives, plus any auxiliary directories:

# cd /usr/pkgsrc/lang
# mkdir bison
# cd bison
# mkdir patches

Create Makefile, DESCR and PLIST (see Chapter 9, Package components - files,
directories and contents) then continue with fetching the distfile:

# make fetch
>> bison-1.25.tar.gz doesn't seem to exist on this system.
>> Attempting to fetch from ftp://prep.ai.mit.edu/pub/gnu//.
Requesting ftp://prep.ai.mit.edu/pub/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://wuarchive.wustl.edu/systems/gnu//.
Requesting ftp://wuarchive.wustl.edu/systems/gnu//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
ftp: Error retrieving file: 500 Internal error

>> Attempting to fetch from ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//.
Requesting ftp://ftp.freebsd.org/pub/FreeBSD/distfiles//bison-1.25.tar.gz (via ftp://orpheus.amdahl.com:80/)
Successfully retrieved file.

Generate the checksum of the distfile into distinfo:

# make makesum

Now compile:

# make
>> Checksum OK for bison-1.25.tar.gz.
===>  Extracting for bison-1.25
===>  Patching for bison-1.25
===>   Ignoring empty patch directory
===>  Configuring for bison-1.25
creating cache ./config.cache
checking for gcc... cc
checking whether we are using GNU C... yes
checking for a BSD compatible install... /usr/bin/install -c -o bin -g bin
checking how to run the C preprocessor... cc -E
checking for minix/config.h... no
checking for POSIXized ISC... no
checking whether cross-compiling... no
checking for ANSI C header files... yes
checking for string.h... yes
checking for stdlib.h... yes
checking for memory.h... yes
checking for working const... yes
checking for working alloca.h... no
checking for alloca... yes
checking for strerror... yes
updating cache ./config.cache
creating ./config.status
creating Makefile
===>  Building for bison-1.25
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g LR0.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g allocate.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g closure.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g conflicts.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g derives.c
cc -c -DXPFILE=\"/usr/pkg/share/bison.simple\"  -DXPFILE1=\"/usr/pkg/share/bison.hairy\" -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1  -g  ./files.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getargs.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g gram.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g lalr.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g lex.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g main.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g nullable.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g output.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g print.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g reader.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g reduce.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g symtab.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g warshall.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g version.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getopt.c
cc -c -DSTDC_HEADERS=1 -DHAVE_STRING_H=1 -DHAVE_STDLIB_H=1 -DHAVE_MEMORY_H=1 -DHAVE_ALLOCA=1 -DHAVE_STRERROR=1 -I./../include  -g getopt1.c
cc  -g -o bison LR0.o allocate.o closure.o conflicts.o derives.o files.o         getargs.o gram.o lalr.o lex.o                                   main.o nullable.o output.o print.o reader.o reduce.o symtab.o   warshall.o version.o getopt.o getopt1.o
./files.c:240: warning: mktemp() possibly used unsafely, consider using mkstemp()
rm -f bison.s1
sed -e "/^#line/ s|bison|/usr/pkg/share/bison|" < ./bison.simple > bison.s1

Everything seems OK, so install the files:

# make install
>> Checksum OK for bison-1.25.tar.gz.
===>  Installing for bison-1.25
sh ./mkinstalldirs /usr/pkg/bin /usr/pkg/share  /usr/pkg/info /usr/pkg/man/man1
rm -f /usr/pkg/bin/bison
cd /usr/pkg/share; rm -f bison.simple bison.hairy
rm -f /usr/pkg/man/man1/bison.1 /usr/pkg/info/bison.info*
install -c  -o bin -g bin -m 555 bison /usr/pkg/bin/bison
/usr/bin/install -c -o bin -g bin -m 644 bison.s1 /usr/pkg/share/bison.simple
/usr/bin/install -c -o bin -g bin -m 644 ./bison.hairy /usr/pkg/share/bison.hairy
cd .; for f in bison.info*;  do /usr/bin/install -c -o bin -g bin -m 644 $f /usr/pkg/info/$f; done
/usr/bin/install -c -o bin -g bin -m 644 ./bison.1 /usr/pkg/man/man1/bison.1
===>  Registering installation for bison-1.25

You can now use bison, and also - if you decide so - remove it with pkg_delete
bison. Should you decide that you want a binary package, do this now:

# make package
>> Checksum OK for bison-1.25.tar.gz.
===>  Building package for bison-1.25
Creating package bison-1.25.tgz
Registering depends:.
Creating gzip'd tar ball in '/u/pkgsrc/lang/bison/bison-1.25.tgz'

Now that you don't need the source and object files any more, clean up:

# make clean
===>  Cleaning for bison-1.25

Appendix B. Build logs

Table of Contents

B.1. Building figlet
B.2. Packaging figlet

B.1. Building figlet

# make
===> Checking for vulnerabilities in figlet-2.2.1nb2
=> figlet221.tar.gz doesn't seem to exist on this system.
=> Attempting to fetch figlet221.tar.gz from ftp://ftp.figlet.org/pub/figlet/program/unix/.
=> [172219 bytes]
Connected to ftp.plig.net.
220 ftp.plig.org NcFTPd Server (licensed copy) ready.
331 Guest login ok, send your complete e-mail address as password.
230-You are user #5 of 500 simultaneous users allowed.
230-
230-  ___ _             _ _
230- |  _| |_ ___   ___| |_|___   ___ ___ ___
230- |  _|  _| . |_| . | | | . |_| . |  _| . |
230- |_| |_| |  _|_|  _|_|_|_  |_|___|_| |_  |
230-         |_|   |_|     |___|         |___|
230-
230-** Welcome to ftp.plig.org **
230-
230-Please note that all transfers from this FTP site are logged. If you
230-do not like this, please disconnect now.
230-
230-This arhive is available via
230-
230-HTTP:  http://ftp.plig.org/
230-FTP:   ftp://ftp.plig.org/     (max 500 connections)
230-RSYNC: rsync://ftp.plig.org/   (max  30 connections)
230-
230-Please email comments, bug reports and requests for packages to be
230-mirrored to ftp-admin@plig.org.
230-
230-
230 Logged in anonymously.
Remote system type is UNIX.
Using binary mode to transfer files.
200 Type okay.
250 "/pub" is new cwd.
250-"/pub/figlet" is new cwd.
250-
250-Welcome to the figlet archive at ftp.figlet.org
250-
250-    ftp://ftp.figlet.org/pub/figlet/
250-
250-The official FIGlet web page is:
250-    http://www.figlet.org/
250-
250-If you have questions, please mailto:info@figlet.org. If you want to
250-contribute a font or something else, you can email us.
250
250 "/pub/figlet/program" is new cwd.
250 "/pub/figlet/program/unix" is new cwd.
local: figlet221.tar.gz remote: figlet221.tar.gz
502 Unimplemented command.
227 Entering Passive Mode (195,40,6,41,246,104)
150 Data connection accepted from 84.128.86.72:65131; transfer starting for figlet221.tar.gz (172219 bytes).
38% |**************                       | 65800      64.16 KB/s    00:01 ETA
226 Transfer completed.
172219 bytes received in 00:02 (75.99 KB/s)
221 Goodbye.
=> Checksum OK for figlet221.tar.gz.
===> Extracting for figlet-2.2.1nb2
===> Required installed package ccache-[0-9]*: ccache-2.3nb1 found
===> Patching for figlet-2.2.1nb2
===> Applying pkgsrc patches for figlet-2.2.1nb2
===> Overriding tools for figlet-2.2.1nb2
===> Creating toolchain wrappers for figlet-2.2.1nb2
===> Configuring for figlet-2.2.1nb2
===> Building for figlet-2.2.1nb2
gcc -O2 -DDEFAULTFONTDIR=\"/usr/pkg/share/figlet\"  -DDEFAULTFONTFILE=\"standard.flf\"  figlet.c zipio.c crc.c inflate.c -o figlet
chmod a+x figlet
gcc -O2 -o chkfont chkfont.c
=> Unwrapping files-to-be-installed.
#
# make install
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Installing for figlet-2.2.1nb2
install -d -o root -g wheel -m 755 /usr/pkg/bin
install -d -o root -g wheel -m 755 /usr/pkg/man/man6
mkdir -p /usr/pkg/share/figlet
cp figlet /usr/pkg/bin
cp chkfont /usr/pkg/bin
chmod 555 figlist showfigfonts
cp figlist /usr/pkg/bin
cp showfigfonts /usr/pkg/bin
cp fonts/*.flf /usr/pkg/share/figlet
cp fonts/*.flc /usr/pkg/share/figlet
cp figlet.6 /usr/pkg/man/man6
===> Registering installation for figlet-2.2.1nb2
#

B.2. Packaging figlet

# make package
===> Checking for vulnerabilities in figlet-2.2.1nb2
===> Packaging figlet-2.2.1nb2
===> Building binary package for figlet-2.2.1nb2
Creating package /home/cvs/pkgsrc/packages/i386/All/figlet-2.2.1nb2.tgz
Using SrcDir value of /usr/pkg
Registering depends:.
#

Appendix C. Directory layout of the pkgsrc FTP server

Table of Contents

C.1. bootstrap-pkgsrc: Bootstrap kits
C.2. distfiles: The distributed source files
C.3. iso: Currently empty
C.4. misc: Miscellaneous things
C.5. packages*: Binary packages
C.6. current, 200xQy: source packages

As in other big projects, the directory layout of pkgsrc is quite complex for
newbies. This chapter explains where you find things on the FTP server. The
base directory on ftp.NetBSD.org is /pub/pkgsrc. This directory contains some
subdirectories, which are explained below.

C.1. bootstrap-pkgsrc: Bootstrap kits

For those who only want to manage binary packages on systems other than NetBSD,
we provide the package management tools in a separate, small tar file.

C.2. distfiles: The distributed source files

The directory distfiles contains lots of archive files from all pkgsrc
packages, which are mirrored here. The subdirectories are called after their
package names and are used when the distributed files have names that don't
explicitly contain a version number or are otherwise too generic (for example
release.tar.gz).

C.3. iso: Currently empty

This directory is currently not in use.

C.4. misc: Miscellaneous things

This directory contains things that individual pkgsrc developers find worth
publishing.

C.5. packages*: Binary packages

These directories contain binary packages. Those directories that have a branch
name (200xQy) contain packages from that particular branch. The directory
packages contains binary packages from pkgsrc-current. (However, this does not
necessarily mean that the packages are still current anymore.)

Below the packages* directories are directories that distinguish the packages
by operating system and version, the next directory level specifies the
hardware architecture.

In each of the platform-specific directories, there is a whole binary packages
collection. It has a directory called All which contains all binary packages.
Besides that, there are various category directories that contain symbolic
links to the real binary packages.

C.6. current, 200xQy: source packages

These directories contain the "real" pkgsrc, that is the files that define how
to create binary packages from source archives.

The directory pkgsrc contains a snapshot of the CVS repository, which is
updated on a regularly basis. The file pkgsrc.tar.gz contains the same as the
directory, ready to be downloaded as a whole.

In the directories for the quarterly branches, there is an additional file
called pkgsrc-200xQy.tar.gz, which contains the state of pkgsrc when it was
branched.

Appendix D. Editing guidelines for the pkgsrc guide

Table of Contents

D.1. Make targets
D.2. Procedure

This section contains information on editing the pkgsrc guide itself.

D.1. Make targets

The pkgsrc guide's source code is stored in pkgsrc/doc/guide/files, and several
files are created from it:

  * pkgsrc/doc/pkgsrc.txt

  * pkgsrc/doc/pkgsrc.html

  * http://www.NetBSD.org/Documentation/pkgsrc/

  * http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.pdf: The PDF version of
    the pkgsrc guide.

  * http://www.NetBSD.org/Documentation/pkgsrc/pkgsrc.ps: PostScript version of
    the pkgsrc guide.

D.2. Procedure

The procedure to edit the pkgsrc guide is:

 1. Make sure you have the packages needed to re-generate the pkgsrc guide (and
    other XML-based NetBSD documentation) installed. These are meta-pkgs/
    netbsd-doc for creating the ASCII and HTML versions, and meta-pkgs/
    netbsd-doc-print for the PostScript and PDF versions. You will need both
    packages installed, to make sure documentation is consistent across all
    formats.

 2. Run cd doc/guide to get to the right directory. All further steps will take
    place here.

 3. Edit the XML file(s) in files/.

 4. Run bmake to check the pkgsrc guide for valid XML and to build the final
    output files. If you get any errors at this stage, you can just edit the
    files, as there are only symbolic links in the working directory, pointing
    to the files in files/.

 5. (cd files && cvs commit)

 6. Run bmake clean && bmake to regenerate the output files with the proper RCS
    Ids.

 7. Run (cd .. && cvs update pkgsrc.*) && bmake install-doc to put the
    generated files into pkgsrc/doc.

 8. Run (cd .. && cvs commit -m "regenerated." pkgsrc.{html,txt}) to commit the
    generated documentation.

 9. Run (cd ../../../htdocs/Documentation/pkgsrc && cvs update) && bmake
    install-htdocs to generate all the files for the web server.

10. Run (cd ../../../htdocs/Documentation/pkgsrc && cvs commit -m
    "regenerated.") to update the files on the web server. If you have added a
    chapter, don't forget to run cvs add *.html before you commit the files.