summaryrefslogtreecommitdiff
path: root/tutorials/sndkit/samples/fulldup.c
blob: 91190c8af28edbc54358694a92a6a90dba0fd874 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*
 * Purpose: Full duplex sample program using the single device approach.
 *
 * Description:
 * This sample program explains how to use the one and twodevicefile based
 * methods for full duplex.
 *
 * This program uses full duplex for echo-like processing (usefull for
 * applications like guitar effect processors). However this task is
 * actually very challenging. Applications that require almost zero
 * latencies will need to be run on very high priority levels. The exact method
 * required for this depends on the operating system and is beyond the scope
 * of this simplistic sample program.
 */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/select.h>
#include <soundcard.h>

char *dspname = "/dev/dsp";
char *dspname_in = NULL;

int fd_out = -1, fd_in = -1;
char buffer[32 * 1024];		/* Max 32k local buffer */
int rate = 48000;
int fragsize;

static void
open_one_device (char *dspname)
{
/*
 * Open the device file. The one device full duplex scheme requires that
 * the device file is opened with O_RDWR. See the description of the
 * {!nlink open} system call for more info.
 */
  oss_audioinfo ai;
  int fd;
  int tmp;
  int devcaps;
  int channels = 2;
  int format;
  int frag;

  if ((fd = open (dspname, O_RDWR, 0)) == -1)
    {
      perror (dspname);
      exit (-1);
    }

  ai.dev = -1;
  if (ioctl (fd, SNDCTL_ENGINEINFO, &ai) != -1)
    {
      printf ("\nUsing audio engine %d=%s for duplex\n\n", ai.dev, ai.name);
    }

#ifdef USE_RAW_FORMATS
/*
 * In some cases it's recommended that all sample rate and format
 * conversions are disabled. These conversions may make timing very
 * tricky. However the drawback of disabling format conversions is that
 * the application must be able to handle the format and rate
 * conversions itself.
 *
 * We don't do any error checking because SNDCTL_DSP_COOKEDMODE is an optional
 * ioctl call that may not be supported by all OSS implementations (in such
 * cases there are no format conversions anyway).
 */

  tmp = 0;
  ioctl (fd, SNDCTL_DSP_COOKEDMODE, &tmp);
#endif

/*
 * Check that the device supports full duplex. Otherwise there is no point in
 * continuing.
 */

  if (ioctl (fd, SNDCTL_DSP_GETCAPS, &devcaps) == -1)
    {
      perror ("SNDCTL_DSP_GETCAPS");
      exit (-1);
    }

  if (!(devcaps & PCM_CAP_DUPLEX))
    {
      fprintf (stderr,
	       "%s doesn't support one device based full duplex scheme\n",
	       dspname);
      fprintf (stderr, "Please use the two device scheme.\n");
      exit (-1);
    }

#if 0
  /*
   * There is no point in calling SNDCTL_DSP_SETDUPLEX any more. This call has not had any
   * effect since SB16.
   */
  if (ioctl (fd, SNDCTL_DSP_SETDUPLEX, NULL) == -1)
    {
      perror ("SNDCTL_DSP_SETDUPLEX");
      exit (-1);
    }
#endif

/*
 * Try to set the fragment size to suitable level.
 */

  frag = 0x7fff000a;		/* Unlimited number of 1k fragments */

  if (ioctl (fd, SNDCTL_DSP_SETFRAGMENT, &frag) == -1)
    {
      perror ("SNDCTL_DSP_SETFRAGMENT");
      exit (-1);
    }

/*
 * Set up the sampling rate and other sample parameters.
 */

  tmp = channels;

  if (ioctl (fd, SNDCTL_DSP_CHANNELS, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_CHANNELS");
      exit (-1);
    }

  if (tmp != channels)
    {
      fprintf (stderr, "%s doesn't support stereo (%d)\n", dspname, tmp);
      exit (-1);
    }

  /*
   * Request 16 bit native endian sample format.
   */
  tmp = AFMT_S16_NE;

  if (ioctl (fd, SNDCTL_DSP_SETFMT, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SETFMT");
      exit (-1);
    }

/*
 * Note that most devices support only the usual litle endian (Intel)
 * byte order. This may be a problem under big endian architectures such
 * as Sparc. We accept also the opposite (alien) endianess but
 * this may require different handling (byte swapping) in most applications.
 * However we don't care about this issue because this applicaton doesn't
 * do any processing on the data.
 */

  if (tmp != AFMT_S16_NE && tmp != AFMT_S16_OE)
    {
      fprintf (stderr, "%s doesn't support 16 bit sample format (%x)\n",
	       dspname, tmp);
      exit (-1);
    }

  format = tmp;

  if (format == AFMT_S16_OE)
    {
      fprintf (stderr,
	       "Warning: Using 16 bit sample format with wrong endianess.\n");
    }

  tmp = rate;

  if (ioctl (fd, SNDCTL_DSP_SPEED, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SPEED");
      exit (-1);
    }

  if (tmp != rate)
    {
      fprintf (stderr, "%s doesn't support requested rate %d (%d)\n", dspname,
	       rate, tmp);
      exit (-1);
    }

/*
 * Get the actual fragment size. SNDCTL_DSP_GETBLKSIZE gives a good
 * compromise. If cooked mode is not disabled then the fragment sizes
 * used for input and output may be different. Using 
 * {!nlink SNDCTL_DSP_GETOSPACE} or {!nlink SNDCTL_DSP_GETISPACE}
 * may return different values. In this case SNDCTL_DSP_GETBLKSIZE will
 * return a value that is between them.
 */

  if (ioctl (fd, SNDCTL_DSP_GETBLKSIZE, &fragsize) == -1)
    {
      perror ("SNDCTL_DSP_GETBLKSIZE");
      exit (-1);
    }

  if (fragsize > sizeof (buffer))
    {
      fprintf (stderr, "Too large fragment size %d\n", fragsize);
      exit (-1);
    }

  printf ("Sample parameters set OK. Using fragment size %d\n", fragsize);

  fd_in = fd_out = fd;
}

static void
open_two_devices (char *dspname_out, char *dspname_in)
{
/*
 * Open the device file. The one device full duplex scheme requires that
 * the device file is opened with O_RDWR. See the description of the
 * {!nlink open} system call for more info.
 */
  oss_audioinfo ai_in, ai_out;
  int tmp;
  int devcaps;
  int channels = 2;
  int format;
  int frag = 0x7fff000a;	/* Unlimited number of 1k fragments */

/*
 * Open the output device
 */
  if ((fd_out = open (dspname_out, O_WRONLY, 0)) == -1)
    {
      perror (dspname_out);
      exit (-1);
    }

  ai_out.dev = -1;
  if (ioctl (fd_out, SNDCTL_ENGINEINFO, &ai_out) != -1)
    {
      printf ("\nUsing audio engine %d=%s for output\n", ai_out.dev,
	      ai_out.name);
    }

/*
 * Open the input device
 */
  if ((fd_in = open (dspname_in, O_RDONLY, 0)) == -1)
    {
      perror (dspname_in);
      exit (-1);
    }

  ai_in.dev = -1;
  if (ioctl (fd_in, SNDCTL_ENGINEINFO, &ai_in) != -1)
    {
      printf ("Using audio engine %d=%s for input\n\n", ai_in.dev,
	      ai_in.name);
    }

  if (ai_in.rate_source != ai_out.rate_source)
    {
/*
 * Input and output devices should have their sampling rates derived from
 * the same crystal clock. Otherwise there will be drift in the sampling rates
 * which may cause dropouts/hiccup (unless the application can handle the rate
 * error). So check that the rate sources are the same.
 *
 * However two devices may still be driven by the same clock even if the 
 * rate sources are different. OSS has no way to know if the user is using some
 * common sample clock (word clock) generator to syncronize all devices
 * together (which is _THE_ practice in production environments). So do not
 * overreact. Just let the user to know about the potential problem.
 */
      fprintf (stderr,
	       "Note! %s and %s are not necessarily driven by the same clock.\n",
	       dspname_out, dspname_in);
    }

#ifdef USE_RAW_FORMATS
/*
 * In many cases it's recommended that all sample rate and format
 * conversions are disabled. These conversions may make timing very
 * tricky. However the drawback of disabling format conversions is that
 * the application must be able to handle the format and rate
 * conversions itself.
 *
 * We don't do any error checking because SNDCTL_DSP_COOKEDMODE is an optional
 * ioctl call that may not be supported by all OSS implementations (in such
 * cases there are no format conversions anyway).
 */

  tmp = 0;
  ioctl (fd_out, SNDCTL_DSP_COOKEDMODE, &tmp);
  tmp = 0;
  ioctl (fd_in, SNDCTL_DSP_COOKEDMODE, &tmp);
#endif

/*
 * Check output device capabilities.
 */
  if (ioctl (fd_out, SNDCTL_DSP_GETCAPS, &devcaps) == -1)
    {
      perror ("SNDCTL_DSP_GETCAPS");
      exit (-1);
    }

  if (devcaps & PCM_CAP_DUPLEX)
    {
      fprintf (stderr,
	       "Device %s supports duplex so you may want to use the single device approach instead\n",
	       dspname_out);
    }

  if (!(devcaps & PCM_CAP_OUTPUT))
    {
      fprintf (stderr, "%s doesn't support output\n", dspname_out);
      fprintf (stderr, "Please use different device.\n");
#if 0
      /*
       * NOTE! Earlier OSS versions don't necessarily support PCM_CAP_OUTPUT
       *       so don't panic.
       */
      exit (-1);
#endif
    }

/*
 * Check input device capabilities.
 */
  if (ioctl (fd_in, SNDCTL_DSP_GETCAPS, &devcaps) == -1)
    {
      perror ("SNDCTL_DSP_GETCAPS");
      exit (-1);
    }

  if (devcaps & PCM_CAP_DUPLEX)
    {
      fprintf (stderr,
	       "Device %s supports duplex so you may want to use the single device approach instead\n",
	       dspname_in);
    }

  if (!(devcaps & PCM_CAP_INPUT))
    {
      fprintf (stderr, "%s doesn't support input\n", dspname_in);
      fprintf (stderr, "Please use different device.\n");
#if 0
      /*
       * NOTE! Earlier OSS versions don't necessarily support PCM_CAP_INPUT
       *       so don't panic.
       */
      exit (-1);
#endif
    }

/*
 * No need to turn on the full duplex mode when using separate input and output
 * devices. In fact calling SNDCTL_DSP_SETDUPLEX in this mode would be a
 * major mistake
 */

/*
 * Try to set the fragment size to suitable level.
 */

  if (ioctl (fd_out, SNDCTL_DSP_SETFRAGMENT, &frag) == -1)
    {
      perror ("SNDCTL_DSP_SETFRAGMENT");
      exit (-1);
    }
  if (ioctl (fd_in, SNDCTL_DSP_SETFRAGMENT, &frag) == -1)
    {
      perror ("SNDCTL_DSP_SETFRAGMENT");
      exit (-1);
    }

/*
 * Set up the sampling rate and other sample parameters.
 */

  tmp = channels;

  if (ioctl (fd_out, SNDCTL_DSP_CHANNELS, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_CHANNELS");
      exit (-1);
    }

  if (tmp != channels)
    {
      fprintf (stderr, "%s doesn't support stereo (%d)\n", dspname_out, tmp);
      exit (-1);
    }
  if (ioctl (fd_in, SNDCTL_DSP_CHANNELS, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_CHANNELS");
      exit (-1);
    }

  if (tmp != channels)
    {
      fprintf (stderr, "%s doesn't support stereo (%d)\n", dspname_in, tmp);
      exit (-1);
    }

  /*
   * Request 16 bit native endian sample format.
   */
  tmp = AFMT_S16_NE;

  if (ioctl (fd_out, SNDCTL_DSP_SETFMT, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SETFMT");
      exit (-1);
    }

/*
 * Note that most devices support only the usual litle endian (Intel)
 * byte order. This may be a problem under big endian architectures such
 * as Sparc. We accept also the opposite (alien) endianess but
 * this may require different handling (byte swapping) in most applications.
 * However we don't care about this issue because this applicaton doesn't
 * do any processing on the data.
 */

  if (tmp != AFMT_S16_NE && tmp != AFMT_S16_OE)
    {
      fprintf (stderr, "%s doesn't support 16 bit sample format (%x)\n",
	       dspname_out, tmp);
      exit (-1);
    }

  format = tmp;
  if (ioctl (fd_in, SNDCTL_DSP_SETFMT, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SETFMT");
      exit (-1);
    }

  if (tmp != format)
    {
      fprintf (stderr,
	       "Error: Input and output devices use different formats (%x/%x)\n",
	       tmp, format);
      exit (-1);
    }

  if (format == AFMT_S16_OE)
    {
      fprintf (stderr,
	       "Warning: Using 16 bit sample format with wrong endianess.\n");
    }

/*
 * It might be better to set the sampling rate firs on the input device and
 * then use the same rate with the output device. The reason for this is that
 * the vmix driver supports sample rate conversions for output. However input
 * is locked to the master device rate.
 */
  tmp = rate;

  if (ioctl (fd_in, SNDCTL_DSP_SPEED, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SPEED");
      exit (-1);
    }

  if (tmp != rate)
    {
      fprintf (stderr, "%s doesn't support requested rate %d (%d)\n",
	       dspname_out, rate, tmp);
      exit (-1);
    }

  if (ioctl (fd_out, SNDCTL_DSP_SPEED, &tmp) == -1)
    {
      perror ("SNDCTL_DSP_SPEED");
      exit (-1);
    }

  if (tmp != rate)
    {
      fprintf (stderr, "%s doesn't support the same rate %d!=%d as %s\n",
	       dspname_out, rate, tmp, dspname_in);
      exit (-1);
    }

/*
 * Get the actual fragment size. SNDCTL_DSP_GETBLKSIZE gives a good
 * compromise. If cooked mode is not disabled then the fragment sizes
 * used for input and output may be different. Using 
 * {!nlink SNDCTL_DSP_GETOSPACE} or {!nlink SNDCTL_DSP_GETISPACE}
 * may return different values. In this case SNDCTL_DSP_GETBLKSIZE will
 * return a value that is between them.
 */

  if (ioctl (fd_in, SNDCTL_DSP_GETBLKSIZE, &fragsize) == -1)
    {
      perror ("SNDCTL_DSP_GETBLKSIZE");
      exit (-1);
    }

  if (fragsize > sizeof (buffer))
    {
      fprintf (stderr, "Too large fragment size %d\n", fragsize);
      exit (-1);
    }

/*
 * Do not check the fragment sizes on both devices. It is perfectly normal
 * that they are different. Instead check just the input fragment size because
 * it is the one that matters.
 */

  printf ("Sample parameters set OK. Using fragment size %d\n", fragsize);

}

static void
method_0 (int fd_out, int fd_in)
{
/*
 * This function demonstrates how to implement an full duplex
 * application in the easiest and most reliable way. This method uses
 * blocking reads for synchronization with the device.
 */

  int l;
  int loopcount = 0;

  /*
   * Fragments can be as large as 32k (or even up to 64k)
   * with certain devices.
   */
  char silence[32 * 1024];	/* Buffer for one fragment of silence */

/*
 * This is the record/play loop. This block uses simple model where recorded data
 * is just read from the device and written back without use of any additional
 * ioctl calls. This approach should be used if the application doesn't need
 * to correlate the recorded samples with playback (for example for echo
 * cancellation).
 *
 * In this approach OSS will automatically find out how large buffer is
 * needed to handle the process without buffer underruns. However there will
 * probably be few dropouts before the buffer gets adapted for the worst
 * case latencies. 
 *
 * There are two methods to avoid the initial dropouts. The easiest method is
 * to write few milliseconds of silent sampels to the output before writing
 * the first block of actual recorded data. Another approach is to warm up
 * the device by replacing first seconds of recorded data with silecene
 * before writing the data to the output.
 *
 * After few moments of run the output should settle. After that the lag
 * between input and output should be very close to the minimum input-output
 * latency that can be obtained without using applied woodoo. The latencies can 
 * possibly be reduced by optimizing the application itself (if it's CPU bound),
 * by using shorter fragments (also check the max_intrate parameter in
 * osscore.conf), by terminating unnecessary applications and by using
 * higher (linear) priority.
 */

  while ((l = read (fd_in, buffer, fragsize)) == fragsize)
    {
      int delay;
      float t;

      if (loopcount == 0)
	{
	  /*
	   * Output one extra fragment filled with silence
	   * before starting to write the actual data. This must
	   * be done after we have recorded the first fragment
	   * Without this extra silence in the beginning playback
	   * data will run out microseconds before next recorded
	   * data becomes available.
	   *
	   * Number of silence bytes written doesn't need to be
	   * exactly one fragment or any multiple of it. Sometimes
	   * (under highly loaded system) more silence will be
	   * needed. Sometimes just few samples may be
	   * enough.
	   */

	  memset (silence, 0, fragsize);
	  if (write (fd_out, silence, fragsize) != fragsize)
	    {
	      perror ("write");
	      exit (-1);
	    }
	}

      /*
       * Compute the output delay (in milliseconds)
       */
      if (ioctl (fd_out, SNDCTL_DSP_GETODELAY, &delay) == -1)
	delay = 0;

      delay /= 4;		/* Get number of 16 bit stereo samples */

      t = (float) delay / (float) rate;	/* Get delay in seconds */

      t *= 1000.0;		/* Convert delay to milliseconds */

      if ((l = write (fd_out, buffer, fragsize)) != fragsize)
	{
	  perror ("write");
	  exit (-1);
	}

#if 1
      /*
       * Printing the delay level will slow down the application which
       * makes the delay longer. So don't print it by default.
       */
      printf ("\rDelay=%5.3g msec", t);
      fflush (stdout);
#endif

      loopcount++;
    }

  perror ("read");
  exit (-1);
}

static void
method_1 (int fd_out, int fd_in)
{
/*
 * Many applications use select/poll or the equivivalent facilities provided
 * by GUI libraries like GTK+ to handle I/O with multiple devices. We use
 * select() in this example.
 *
 * This routine reads audio input, does some processing on the data and
 * forwards it to the output device. Hitting ENTER terminates the program.
 *
 * The logic is that any input available on the device will be read. However
 * the amount of space available on output is not checked because it's
 * unnecessary. Checking both input and output status would be very tricky
 * if not impossible.
 */

  char silence[32 * 1024];	/* Buffer for one fragment of silence */
  fd_set reads;
  int n;
  unsigned int trig;
  int first_time = 1;

/*
 * First we have to start the recording engine. Otherwise select() will never
 * report available input and the application will just iddle.
 */
  trig = 0;			/* Trigger OFF */
  if (ioctl (fd_in, SNDCTL_DSP_SETTRIGGER, &trig) == -1)
    perror ("SETTRIGGER 0");

  trig = PCM_ENABLE_INPUT;	/* Trigger ON */

  /*
   * Trigger output too if using the single device mode. Otherwise all writes
   * will fail.
   */
  if (fd_in == fd_out)
    trig |= PCM_ENABLE_OUTPUT;

  if (ioctl (fd_in, SNDCTL_DSP_SETTRIGGER, &trig) == -1)
    perror ("SETTRIGGER 1");

  while (1)			/* Infinite loop */
    {
      struct timeval time;

      FD_ZERO (&reads);

      FD_SET (0, &reads);	/* stdin */
      FD_SET (fd_in, &reads);

      time.tv_sec = 1;
      time.tv_usec = 0;
      if ((n = select (fd_in + 1, &reads, NULL, NULL, &time)) == -1)
	{
	  perror ("select");
	  exit (-1);
	}

      if (n == 0)
	{
	  fprintf (stderr, "Timeout\n");
	  continue;
	}

      if (FD_ISSET (0, &reads))	/* Keyboard input */
	{
	  printf ("Finished.\n");
	  exit (0);
	}

      if (FD_ISSET (fd_in, &reads))
	{
	  /*
	   * Recorded data is available.
	   */
	  int l, n;
	  struct audio_buf_info info;

	  if (ioctl (fd_in, SNDCTL_DSP_GETISPACE, &info) == -1)
	    {
	      perror ("GETISPACE");
	      exit (-1);
	    }

	  n = info.bytes;	/* How much */

	  if ((l = read (fd_in, buffer, n)) == n)
	    {
	      printf ("\r %5d bytes ", n);
	      fflush (stdout);

	      if (first_time)
		{
		  /*
		   * Write one fragment of silence before the actual data.
		   * This is necessary to avoid regular underruns while
		   * waiting for more data.
		   */
		  memset (silence, 0, fragsize);
		  if (write (fd_out, silence, fragsize) != fragsize)
		    {
		      perror ("write");
		      exit (-1);
		    }
		  first_time = 0;
		}

	      /*
	       * This is the place where you can add your processing.
	       * There are 'l' bytes of audio data stored in 'buffer'. This
	       * program uses 16 bit native endian format and two channels
	       * (stereo).
	       */
	      if (write (fd_out, buffer, l) != l)
		{
		  perror ("write");
		  exit (-1);
		}
	      continue;
	    }
	}

      perror ("read");
      exit (-1);
    }
}

int
main (int argc, char *argv[])
{

  int method = 0;

/*
 * Check the working method
 */
  if (argc > 1)
    method = atoi (argv[1]);

/*
 * Check if the sampling rate was given on command line.
 */
  if (argc > 2)
    {
      rate = atoi (argv[2]);
      if (rate == 0)
	rate = 48000;
    }

/*
 * Check if the device name is given on command line.
 */
  if (argc > 3)
    dspname = argv[3];

/*
 * Check if anotherdevice name is given for input.
 */
  if (argc > 4)
    dspname_in = argv[4];

  if (dspname_in == NULL)
    open_one_device (dspname);
  else
    open_two_devices (dspname, dspname_in);

  switch (method)
    {
    case 0:
      method_0 (fd_out, fd_in);
      break;

    case 1:
      method_1 (fd_out, fd_in);
      break;

    default:
      fprintf (stderr, "Method %d not defined\n", method);
      exit (-1);
    }

  exit (0);
}