/* Copyright 2015 greenbytes GmbH (https://www.greenbytes.de) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "h2_private.h" #include "h2.h" #include "h2_config.h" #include "h2_ctx.h" #include "h2_filter.h" #include "h2_mplx.h" #include "h2_session.h" #include "h2_stream.h" #include "h2_h2.h" #include "h2_task.h" #include "h2_worker.h" #include "h2_workers.h" #include "h2_conn.h" #include "h2_version.h" static struct h2_workers *workers; static h2_mpm_type_t mpm_type = H2_MPM_UNKNOWN; static module *mpm_module; static int async_mpm; static apr_socket_t *dummy_socket; static void check_modules(int force) { static int checked = 0; int i; if (force || !checked) { for (i = 0; ap_loaded_modules[i]; ++i) { module *m = ap_loaded_modules[i]; if (!strcmp("event.c", m->name)) { mpm_type = H2_MPM_EVENT; mpm_module = m; break; } else if (!strcmp("motorz.c", m->name)) { mpm_type = H2_MPM_MOTORZ; mpm_module = m; break; } else if (!strcmp("mpm_netware.c", m->name)) { mpm_type = H2_MPM_NETWARE; mpm_module = m; break; } else if (!strcmp("prefork.c", m->name)) { mpm_type = H2_MPM_PREFORK; mpm_module = m; break; } else if (!strcmp("simple_api.c", m->name)) { mpm_type = H2_MPM_SIMPLE; mpm_module = m; break; } else if (!strcmp("mpm_winnt.c", m->name)) { mpm_type = H2_MPM_WINNT; mpm_module = m; break; } else if (!strcmp("worker.c", m->name)) { mpm_type = H2_MPM_WORKER; mpm_module = m; break; } } checked = 1; } } apr_status_t h2_conn_child_init(apr_pool_t *pool, server_rec *s) { const h2_config *config = h2_config_sget(s); apr_status_t status = APR_SUCCESS; int minw, maxw, max_tx_handles, n; int max_threads_per_child = 0; int idle_secs = 0; check_modules(1); ap_mpm_query(AP_MPMQ_MAX_THREADS, &max_threads_per_child); status = ap_mpm_query(AP_MPMQ_IS_ASYNC, &async_mpm); if (status != APR_SUCCESS) { /* some MPMs do not implemnent this */ async_mpm = 0; status = APR_SUCCESS; } h2_config_init(pool); minw = h2_config_geti(config, H2_CONF_MIN_WORKERS); maxw = h2_config_geti(config, H2_CONF_MAX_WORKERS); if (minw <= 0) { minw = max_threads_per_child; } if (maxw <= 0) { maxw = minw; } /* How many file handles is it safe to use for transfer * to the master connection to be streamed out? * Is there a portable APR rlimit on NOFILES? Have not * found it. And if, how many of those would we set aside? * This leads all into a process wide handle allocation strategy * which ultimately would limit the number of accepted connections * with the assumption of implicitly reserving n handles for every * connection and requiring modules with excessive needs to allocate * from a central pool. */ n = h2_config_geti(config, H2_CONF_SESSION_FILES); if (n < 0) { max_tx_handles = maxw * 2; } else { max_tx_handles = maxw * n; } ap_log_error(APLOG_MARK, APLOG_TRACE3, 0, s, "h2_workers: min=%d max=%d, mthrpchild=%d, tx_files=%d", minw, maxw, max_threads_per_child, max_tx_handles); workers = h2_workers_create(s, pool, minw, maxw, max_tx_handles); idle_secs = h2_config_geti(config, H2_CONF_MAX_WORKER_IDLE_SECS); h2_workers_set_max_idle_secs(workers, idle_secs); ap_register_input_filter("H2_IN", h2_filter_core_input, NULL, AP_FTYPE_CONNECTION); status = h2_mplx_child_init(pool, s); if (status == APR_SUCCESS) { status = apr_socket_create(&dummy_socket, APR_INET, SOCK_STREAM, APR_PROTO_TCP, pool); } return status; } h2_mpm_type_t h2_conn_mpm_type(void) { check_modules(0); return mpm_type; } static module *h2_conn_mpm_module(void) { check_modules(0); return mpm_module; } apr_status_t h2_conn_setup(h2_ctx *ctx, conn_rec *c, request_rec *r) { h2_session *session; if (!workers) { ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, c, APLOGNO(02911) "workers not initialized"); return APR_EGENERAL; } if (r) { session = h2_session_rcreate(r, ctx, workers); } else { session = h2_session_create(c, ctx, workers); } h2_ctx_session_set(ctx, session); return APR_SUCCESS; } apr_status_t h2_conn_run(struct h2_ctx *ctx, conn_rec *c) { apr_status_t status; int mpm_state = 0; do { if (c->cs) { c->cs->sense = CONN_SENSE_DEFAULT; } status = h2_session_process(h2_ctx_session_get(ctx), async_mpm); if (APR_STATUS_IS_EOF(status)) { ap_log_cerror(APLOG_MARK, APLOG_DEBUG, status, c, APLOGNO(03045) "h2_session(%ld): process, closing conn", c->id); c->keepalive = AP_CONN_CLOSE; } else { c->keepalive = AP_CONN_KEEPALIVE; } if (ap_mpm_query(AP_MPMQ_MPM_STATE, &mpm_state)) { break; } } while (!async_mpm && c->keepalive == AP_CONN_KEEPALIVE && mpm_state != AP_MPMQ_STOPPING); return DONE; } apr_status_t h2_conn_pre_close(struct h2_ctx *ctx, conn_rec *c) { apr_status_t status; status = h2_session_pre_close(h2_ctx_session_get(ctx), async_mpm); if (status == APR_SUCCESS) { return DONE; /* This is the same, right? */ } return status; } conn_rec *h2_slave_create(conn_rec *master, apr_pool_t *parent, apr_allocator_t *allocator) { apr_pool_t *pool; conn_rec *c; void *cfg; AP_DEBUG_ASSERT(master); ap_log_cerror(APLOG_MARK, APLOG_TRACE3, 0, master, "h2_conn(%ld): create slave", master->id); /* We create a pool with its own allocator to be used for * processing a request. This is the only way to have the processing * independant of its parent pool in the sense that it can work in * another thread. */ if (!allocator) { apr_allocator_create(&allocator); } apr_pool_create_ex(&pool, parent, NULL, allocator); apr_pool_tag(pool, "h2_slave_conn"); apr_allocator_owner_set(allocator, pool); c = (conn_rec *) apr_palloc(pool, sizeof(conn_rec)); if (c == NULL) { ap_log_cerror(APLOG_MARK, APLOG_ERR, APR_ENOMEM, master, APLOGNO(02913) "h2_task: creating conn"); return NULL; } memcpy(c, master, sizeof(conn_rec)); /* Replace these */ c->master = master; c->pool = pool; c->conn_config = ap_create_conn_config(pool); c->notes = apr_table_make(pool, 5); c->input_filters = NULL; c->output_filters = NULL; c->bucket_alloc = apr_bucket_alloc_create(pool); c->data_in_input_filters = 0; c->data_in_output_filters = 0; c->clogging_input_filters = 1; c->log = NULL; c->log_id = NULL; /* Simulate that we had already a request on this connection. */ c->keepalives = 1; /* We cannot install the master connection socket on the slaves, as * modules mess with timeouts/blocking of the socket, with * unwanted side effects to the master connection processing. * Fortunately, since we never use the slave socket, we can just install * a single, process-wide dummy and everyone is happy. */ ap_set_module_config(c->conn_config, &core_module, dummy_socket); /* TODO: these should be unique to this thread */ c->sbh = master->sbh; /* TODO: not all mpm modules have learned about slave connections yet. * copy their config from master to slave. */ if (h2_conn_mpm_module()) { cfg = ap_get_module_config(master->conn_config, h2_conn_mpm_module()); ap_set_module_config(c->conn_config, h2_conn_mpm_module(), cfg); } return c; } void h2_slave_destroy(conn_rec *slave, apr_allocator_t **pallocator) { apr_pool_t *parent; apr_allocator_t *allocator = apr_pool_allocator_get(slave->pool); ap_log_cerror(APLOG_MARK, APLOG_TRACE1, 0, slave, "h2_slave_conn(%ld): destroy (task=%s)", slave->id, apr_table_get(slave->notes, H2_TASK_ID_NOTE)); /* Attache the allocator to the parent pool and return it for * reuse, otherwise the own is still the slave pool and it will * get destroyed with it. */ parent = apr_pool_parent_get(slave->pool); if (pallocator && parent) { apr_allocator_owner_set(allocator, parent); *pallocator = allocator; } apr_pool_destroy(slave->pool); } apr_status_t h2_slave_run_pre_connection(conn_rec *slave, apr_socket_t *csd) { return ap_run_pre_connection(slave, csd); }