diff options
author | Ondřej Surý <ondrej@sury.org> | 2011-09-13 13:13:40 +0200 |
---|---|---|
committer | Ondřej Surý <ondrej@sury.org> | 2011-09-13 13:13:40 +0200 |
commit | 5ff4c17907d5b19510a62e08fd8d3b11e62b431d (patch) | |
tree | c0650497e988f47be9c6f2324fa692a52dea82e1 /doc/go_spec.html | |
parent | 80f18fc933cf3f3e829c5455a1023d69f7b86e52 (diff) | |
download | golang-5ff4c17907d5b19510a62e08fd8d3b11e62b431d.tar.gz |
Imported Upstream version 60upstream/60
Diffstat (limited to 'doc/go_spec.html')
-rw-r--r-- | doc/go_spec.html | 5272 |
1 files changed, 5272 insertions, 0 deletions
diff --git a/doc/go_spec.html b/doc/go_spec.html new file mode 100644 index 000000000..82c7ed419 --- /dev/null +++ b/doc/go_spec.html @@ -0,0 +1,5272 @@ +<!-- title The Go Programming Language Specification --> +<!-- subtitle Version of July 14, 2011 --> + +<!-- +TODO +[ ] need language about function/method calls and parameter passing rules +[ ] last paragraph of #Assignments (constant promotion) should be elsewhere + and mention assignment to empty interface. +[ ] need to say something about "scope" of selectors? +[ ] clarify what a field name is in struct declarations + (struct{T} vs struct {T T} vs struct {t T}) +[ ] need explicit language about the result type of operations +[ ] should probably write something about evaluation order of statements even + though obvious +[ ] review language on implicit dereferencing +[ ] clarify what it means for two functions to be "the same" when comparing them +--> + + +<h2 id="Introduction">Introduction</h2> + +<p> +This is a reference manual for the Go programming language. For +more information and other documents, see <a href="http://golang.org/">http://golang.org</a>. +</p> + +<p> +Go is a general-purpose language designed with systems programming +in mind. It is strongly typed and garbage-collected and has explicit +support for concurrent programming. Programs are constructed from +<i>packages</i>, whose properties allow efficient management of +dependencies. The existing implementations use a traditional +compile/link model to generate executable binaries. +</p> + +<p> +The grammar is compact and regular, allowing for easy analysis by +automatic tools such as integrated development environments. +</p> + +<h2 id="Notation">Notation</h2> +<p> +The syntax is specified using Extended Backus-Naur Form (EBNF): +</p> + +<pre class="grammar"> +Production = production_name "=" [ Expression ] "." . +Expression = Alternative { "|" Alternative } . +Alternative = Term { Term } . +Term = production_name | token [ "…" token ] | Group | Option | Repetition . +Group = "(" Expression ")" . +Option = "[" Expression "]" . +Repetition = "{" Expression "}" . +</pre> + +<p> +Productions are expressions constructed from terms and the following +operators, in increasing precedence: +</p> +<pre class="grammar"> +| alternation +() grouping +[] option (0 or 1 times) +{} repetition (0 to n times) +</pre> + +<p> +Lower-case production names are used to identify lexical tokens. +Non-terminals are in CamelCase. Lexical symbols are enclosed in +double quotes <code>""</code> or back quotes <code>``</code>. +</p> + +<p> +The form <code>a … b</code> represents the set of characters from +<code>a</code> through <code>b</code> as alternatives. The horizontal +ellipis … is also used elsewhere in the spec to informally denote various +enumerations or code snippets that are not further specified. The character … +(as opposed to the three characters <code>...</code>) is not a token of the Go +language. +</p> + +<h2 id="Source_code_representation">Source code representation</h2> + +<p> +Source code is Unicode text encoded in +<a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not +canonicalized, so a single accented code point is distinct from the +same character constructed from combining an accent and a letter; +those are treated as two code points. For simplicity, this document +will use the term <i>character</i> to refer to a Unicode code point. +</p> +<p> +Each code point is distinct; for instance, upper and lower case letters +are different characters. +</p> +<p> +Implementation restriction: For compatibility with other tools, a +compiler may disallow the NUL character (U+0000) in the source text. +</p> + +<h3 id="Characters">Characters</h3> + +<p> +The following terms are used to denote specific Unicode character classes: +</p> +<pre class="ebnf"> +newline = /* the Unicode code point U+000A */ . +unicode_char = /* an arbitrary Unicode code point except newline */ . +unicode_letter = /* a Unicode code point classified as "Letter" */ . +unicode_digit = /* a Unicode code point classified as "Decimal Digit" */ . +</pre> + +<p> +In <a href="http://www.unicode.org/versions/Unicode6.0.0/">The Unicode Standard 6.0</a>, +Section 4.5 "General Category" +defines a set of character categories. Go treats +those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters, +and those in category Nd as Unicode digits. +</p> + +<h3 id="Letters_and_digits">Letters and digits</h3> + +<p> +The underscore character <code>_</code> (U+005F) is considered a letter. +</p> +<pre class="ebnf"> +letter = unicode_letter | "_" . +decimal_digit = "0" … "9" . +octal_digit = "0" … "7" . +hex_digit = "0" … "9" | "A" … "F" | "a" … "f" . +</pre> + +<h2 id="Lexical_elements">Lexical elements</h2> + +<h3 id="Comments">Comments</h3> + +<p> +There are two forms of comments: +</p> + +<ol> +<li> +<i>Line comments</i> start with the character sequence <code>//</code> +and stop at the end of the line. A line comment acts like a newline. +</li> +<li> +<i>General comments</i> start with the character sequence <code>/*</code> +and continue through the character sequence <code>*/</code>. A general +comment that spans multiple lines acts like a newline, otherwise it acts +like a space. +</li> +</ol> + +<p> +Comments do not nest. +</p> + + +<h3 id="Tokens">Tokens</h3> + +<p> +Tokens form the vocabulary of the Go language. +There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators +and delimiters</i>, and <i>literals</i>. <i>White space</i>, formed from +spaces (U+0020), horizontal tabs (U+0009), +carriage returns (U+000D), and newlines (U+000A), +is ignored except as it separates tokens +that would otherwise combine into a single token. Also, a newline or end of file +may trigger the insertion of a <a href="#Semicolons">semicolon</a>. +While breaking the input into tokens, +the next token is the longest sequence of characters that form a +valid token. +</p> + +<h3 id="Semicolons">Semicolons</h3> + +<p> +The formal grammar uses semicolons <code>";"</code> as terminators in +a number of productions. Go programs may omit most of these semicolons +using the following two rules: +</p> + +<ol> +<li> +<p> +When the input is broken into tokens, a semicolon is automatically inserted +into the token stream at the end of a non-blank line if the line's final +token is +</p> +<ul> + <li>an + <a href="#Identifiers">identifier</a> + </li> + + <li>an + <a href="#Integer_literals">integer</a>, + <a href="#Floating-point_literals">floating-point</a>, + <a href="#Imaginary_literals">imaginary</a>, + <a href="#Character_literals">character</a>, or + <a href="#String_literals">string</a> literal + </li> + + <li>one of the <a href="#Keywords">keywords</a> + <code>break</code>, + <code>continue</code>, + <code>fallthrough</code>, or + <code>return</code> + </li> + + <li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a> + <code>++</code>, + <code>--</code>, + <code>)</code>, + <code>]</code>, or + <code>}</code> + </li> +</ul> +</li> + +<li> +To allow complex statements to occupy a single line, a semicolon +may be omitted before a closing <code>")"</code> or <code>"}"</code>. +</li> +</ol> + +<p> +To reflect idiomatic use, code examples in this document elide semicolons +using these rules. +</p> + + +<h3 id="Identifiers">Identifiers</h3> + +<p> +Identifiers name program entities such as variables and types. +An identifier is a sequence of one or more letters and digits. +The first character in an identifier must be a letter. +</p> +<pre class="ebnf"> +identifier = letter { letter | unicode_digit } . +</pre> +<pre> +a +_x9 +ThisVariableIsExported +αβ +</pre> + +<p> +Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. +</p> + + +<h3 id="Keywords">Keywords</h3> + +<p> +The following keywords are reserved and may not be used as identifiers. +</p> +<pre class="grammar"> +break default func interface select +case defer go map struct +chan else goto package switch +const fallthrough if range type +continue for import return var +</pre> + +<h3 id="Operators_and_Delimiters">Operators and Delimiters</h3> + +<p> +The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens: +</p> +<pre class="grammar"> ++ & += &= && == != ( ) +- | -= |= || < <= [ ] +* ^ *= ^= <- > >= { } +/ << /= <<= ++ = := , ; +% >> %= >>= -- ! ... . : + &^ &^= +</pre> + +<h3 id="Integer_literals">Integer literals</h3> + +<p> +An integer literal is a sequence of digits representing an +<a href="#Constants">integer constant</a>. +An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or +<code>0X</code> for hexadecimal. In hexadecimal literals, letters +<code>a-f</code> and <code>A-F</code> represent values 10 through 15. +</p> +<pre class="ebnf"> +int_lit = decimal_lit | octal_lit | hex_lit . +decimal_lit = ( "1" … "9" ) { decimal_digit } . +octal_lit = "0" { octal_digit } . +hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . +</pre> + +<pre> +42 +0600 +0xBadFace +170141183460469231731687303715884105727 +</pre> + +<h3 id="Floating-point_literals">Floating-point literals</h3> +<p> +A floating-point literal is a decimal representation of a +<a href="#Constants">floating-point constant</a>. +It has an integer part, a decimal point, a fractional part, +and an exponent part. The integer and fractional part comprise +decimal digits; the exponent part is an <code>e</code> or <code>E</code> +followed by an optionally signed decimal exponent. One of the +integer part or the fractional part may be elided; one of the decimal +point or the exponent may be elided. +</p> +<pre class="ebnf"> +float_lit = decimals "." [ decimals ] [ exponent ] | + decimals exponent | + "." decimals [ exponent ] . +decimals = decimal_digit { decimal_digit } . +exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . +</pre> + +<pre> +0. +72.40 +072.40 // == 72.40 +2.71828 +1.e+0 +6.67428e-11 +1E6 +.25 +.12345E+5 +</pre> + +<h3 id="Imaginary_literals">Imaginary literals</h3> +<p> +An imaginary literal is a decimal representation of the imaginary part of a +<a href="#Constants">complex constant</a>. +It consists of a +<a href="#Floating-point_literals">floating-point literal</a> +or decimal integer followed +by the lower-case letter <code>i</code>. +</p> +<pre class="ebnf"> +imaginary_lit = (decimals | float_lit) "i" . +</pre> + +<pre> +0i +011i // == 11i +0.i +2.71828i +1.e+0i +6.67428e-11i +1E6i +.25i +.12345E+5i +</pre> + + +<h3 id="Character_literals">Character literals</h3> + +<p> +A character literal represents an <a href="#Constants">integer constant</a>, +typically a Unicode code point, as one or more characters enclosed in single +quotes. Within the quotes, any character may appear except single +quote and newline. A single quoted character represents itself, +while multi-character sequences beginning with a backslash encode +values in various formats. +</p> +<p> +The simplest form represents the single character within the quotes; +since Go source text is Unicode characters encoded in UTF-8, multiple +UTF-8-encoded bytes may represent a single integer value. For +instance, the literal <code>'a'</code> holds a single byte representing +a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while +<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing +a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. +</p> +<p> +Several backslash escapes allow arbitrary values to be represented +as ASCII text. There are four ways to represent the integer value +as a numeric constant: <code>\x</code> followed by exactly two hexadecimal +digits; <code>\u</code> followed by exactly four hexadecimal digits; +<code>\U</code> followed by exactly eight hexadecimal digits, and a +plain backslash <code>\</code> followed by exactly three octal digits. +In each case the value of the literal is the value represented by +the digits in the corresponding base. +</p> +<p> +Although these representations all result in an integer, they have +different valid ranges. Octal escapes must represent a value between +0 and 255 inclusive. Hexadecimal escapes satisfy this condition +by construction. The escapes <code>\u</code> and <code>\U</code> +represent Unicode code points so within them some values are illegal, +in particular those above <code>0x10FFFF</code> and surrogate halves. +</p> +<p> +After a backslash, certain single-character escapes represent special values: +</p> +<pre class="grammar"> +\a U+0007 alert or bell +\b U+0008 backspace +\f U+000C form feed +\n U+000A line feed or newline +\r U+000D carriage return +\t U+0009 horizontal tab +\v U+000b vertical tab +\\ U+005c backslash +\' U+0027 single quote (valid escape only within character literals) +\" U+0022 double quote (valid escape only within string literals) +</pre> +<p> +All other sequences starting with a backslash are illegal inside character literals. +</p> +<pre class="ebnf"> +char_lit = "'" ( unicode_value | byte_value ) "'" . +unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . +byte_value = octal_byte_value | hex_byte_value . +octal_byte_value = `\` octal_digit octal_digit octal_digit . +hex_byte_value = `\` "x" hex_digit hex_digit . +little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . +big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit + hex_digit hex_digit hex_digit hex_digit . +escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . +</pre> + +<pre> +'a' +'ä' +'本' +'\t' +'\000' +'\007' +'\377' +'\x07' +'\xff' +'\u12e4' +'\U00101234' +</pre> + + +<h3 id="String_literals">String literals</h3> + +<p> +A string literal represents a <a href="#Constants">string constant</a> +obtained from concatenating a sequence of characters. There are two forms: +raw string literals and interpreted string literals. +</p> +<p> +Raw string literals are character sequences between back quotes +<code>``</code>. Within the quotes, any character is legal except +back quote. The value of a raw string literal is the +string composed of the uninterpreted characters between the quotes; +in particular, backslashes have no special meaning and the string may +span multiple lines. +</p> +<p> +Interpreted string literals are character sequences between double +quotes <code>""</code>. The text between the quotes, +which may not span multiple lines, forms the +value of the literal, with backslash escapes interpreted as they +are in character literals (except that <code>\'</code> is illegal and +<code>\"</code> is legal). The three-digit octal (<code>\</code><i>nnn</i>) +and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual +<i>bytes</i> of the resulting string; all other escapes represent +the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. +Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent +a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, +<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent +the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character +U+00FF. +</p> + +<pre class="ebnf"> +string_lit = raw_string_lit | interpreted_string_lit . +raw_string_lit = "`" { unicode_char | newline } "`" . +interpreted_string_lit = `"` { unicode_value | byte_value } `"` . +</pre> + +<pre> +`abc` // same as "abc" +`\n +\n` // same as "\\n\n\\n" +"\n" +"" +"Hello, world!\n" +"日本語" +"\u65e5本\U00008a9e" +"\xff\u00FF" +</pre> + +<p> +These examples all represent the same string: +</p> + +<pre> +"日本語" // UTF-8 input text +`日本語` // UTF-8 input text as a raw literal +"\u65e5\u672c\u8a9e" // The explicit Unicode code points +"\U000065e5\U0000672c\U00008a9e" // The explicit Unicode code points +"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // The explicit UTF-8 bytes +</pre> + +<p> +If the source code represents a character as two code points, such as +a combining form involving an accent and a letter, the result will be +an error if placed in a character literal (it is not a single code +point), and will appear as two code points if placed in a string +literal. +</p> + + +<h2 id="Constants">Constants</h2> + +<p>There are <i>boolean constants</i>, <i>integer constants</i>, +<i>floating-point constants</i>, <i>complex constants</i>, +and <i>string constants</i>. Integer, floating-point, +and complex constants are +collectively called <i>numeric constants</i>. +</p> + +<p> +A constant value is represented by an +<a href="#Integer_literals">integer</a>, +<a href="#Floating-point_literals">floating-point</a>, +<a href="#Imaginary_literals">imaginary</a>, +<a href="#Character_literals">character</a>, or +<a href="#String_literals">string</a> literal, +an identifier denoting a constant, +a <a href="#Constant_expressions">constant expression</a>, +a <a href="#Conversions">conversion</a> with a result that is a constant, or +the result value of some built-in functions such as +<code>unsafe.Sizeof</code> applied to any value, +<code>cap</code> or <code>len</code> applied to +<a href="#Length_and_capacity">some expressions</a>, +<code>real</code> and <code>imag</code> applied to a complex constant +and <code>complex</code> applied to numeric constants. +The boolean truth values are represented by the predeclared constants +<code>true</code> and <code>false</code>. The predeclared identifier +<a href="#Iota">iota</a> denotes an integer constant. +</p> + +<p> +In general, complex constants are a form of +<a href="#Constant_expressions">constant expression</a> +and are discussed in that section. +</p> + +<p> +Numeric constants represent values of arbitrary precision and do not overflow. +</p> + +<p> +Constants may be <a href="#Types">typed</a> or untyped. +Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, +and certain <a href="#Constant_expressions">constant expressions</a> +containing only untyped constant operands are untyped. +</p> + +<p> +A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> +or <a href="#Conversions">conversion</a>, or implicitly when used in a +<a href="#Variable_declarations">variable declaration</a> or an +<a href="#Assignments">assignment</a> or as an +operand in an <a href="#Expressions">expression</a>. +It is an error if the constant value +cannot be represented as a value of the respective type. +For instance, <code>3.0</code> can be given any integer or any +floating-point type, while <code>2147483648.0</code> (equal to <code>1<<31</code>) +can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but +not <code>int32</code> or <code>string</code>. +</p> + +<p> +There are no constants denoting the IEEE-754 infinity and not-a-number values, +but the <a href="/pkg/math/"><code>math</code> package</a>'s +<a href="/pkg/math/#Inf">Inf</a>, +<a href="/pkg/math/#NaN">NaN</a>, +<a href="/pkg/math/#IsInf">IsInf</a>, and +<a href="/pkg/math/#IsNaN">IsNaN</a> +functions return and test for those values at run time. +</p> + +<p> +Implementation restriction: A compiler may implement numeric constants by choosing +an internal representation with at least twice as many bits as any machine type; +for floating-point values, both the mantissa and exponent must be twice as large. +</p> + + +<h2 id="Types">Types</h2> + +<p> +A type determines the set of values and operations specific to values of that +type. A type may be specified by a (possibly qualified) <i>type name</i> +(§<a href="#Qualified_identifiers">Qualified identifier</a>, §<a href="#Type_declarations">Type declarations</a>) or a <i>type literal</i>, +which composes a new type from previously declared types. +</p> + +<pre class="ebnf"> +Type = TypeName | TypeLit | "(" Type ")" . +TypeName = QualifiedIdent . +TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | + SliceType | MapType | ChannelType . +</pre> + +<p> +Named instances of the boolean, numeric, and string types are +<a href="#Predeclared_identifiers">predeclared</a>. +<i>Composite types</i>—array, struct, pointer, function, +interface, slice, map, and channel types—may be constructed using +type literals. +</p> + +<p> +The <i>static type</i> (or just <i>type</i>) of a variable is the +type defined by its declaration. Variables of interface type +also have a distinct <i>dynamic type</i>, which +is the actual type of the value stored in the variable at run-time. +The dynamic type may vary during execution but is always +<a href="#Assignability">assignable</a> +to the static type of the interface variable. For non-interface +types, the dynamic type is always the static type. +</p> + +<p> +Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> +is a predeclared type or a type literal, the corresponding underlying +type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type +is the underlying type of the type to which <code>T</code> refers in its +<a href="#Type_declarations">type declaration</a>. +</p> + +<pre> + type T1 string + type T2 T1 + type T3 []T1 + type T4 T3 +</pre> + +<p> +The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code> +is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>, +and <code>T4</code> is <code>[]T1</code>. +</p> + +<h3 id="Method_sets">Method sets</h3> +<p> +A type may have a <i>method set</i> associated with it +(§<a href="#Interface_types">Interface types</a>, §<a href="#Method_declarations">Method declarations</a>). +The method set of an <a href="#Interface_types">interface type</a> is its interface. +The method set of any other named type <code>T</code> +consists of all methods with receiver type <code>T</code>. +The method set of the corresponding pointer type <code>*T</code> +is the set of all methods with receiver <code>*T</code> or <code>T</code> +(that is, it also contains the method set of <code>T</code>). +Any other type has an empty method set. +In a method set, each method must have a unique name. +</p> + + +<h3 id="Boolean_types">Boolean types</h3> + +A <i>boolean type</i> represents the set of Boolean truth values +denoted by the predeclared constants <code>true</code> +and <code>false</code>. The predeclared boolean type is <code>bool</code>. + + +<h3 id="Numeric_types">Numeric types</h3> + +<p> +A <i>numeric type</i> represents sets of integer or floating-point values. +The predeclared architecture-independent numeric types are: +</p> + +<pre class="grammar"> +uint8 the set of all unsigned 8-bit integers (0 to 255) +uint16 the set of all unsigned 16-bit integers (0 to 65535) +uint32 the set of all unsigned 32-bit integers (0 to 4294967295) +uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) + +int8 the set of all signed 8-bit integers (-128 to 127) +int16 the set of all signed 16-bit integers (-32768 to 32767) +int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) +int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) + +float32 the set of all IEEE-754 32-bit floating-point numbers +float64 the set of all IEEE-754 64-bit floating-point numbers + +complex64 the set of all complex numbers with float32 real and imaginary parts +complex128 the set of all complex numbers with float64 real and imaginary parts + +byte familiar alias for uint8 +</pre> + +<p> +The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using +<a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. +</p> + +<p> +There is also a set of predeclared numeric types with implementation-specific sizes: +</p> + +<pre class="grammar"> +uint either 32 or 64 bits +int same size as uint +uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value +</pre> + +<p> +To avoid portability issues all numeric types are distinct except +<code>byte</code>, which is an alias for <code>uint8</code>. +Conversions +are required when different numeric types are mixed in an expression +or assignment. For instance, <code>int32</code> and <code>int</code> +are not the same type even though they may have the same size on a +particular architecture. + + +<h3 id="String_types">String types</h3> + +<p> +A <i>string type</i> represents the set of string values. +Strings behave like arrays of bytes but are immutable: once created, +it is impossible to change the contents of a string. +The predeclared string type is <code>string</code>. + +<p> +The elements of strings have type <code>byte</code> and may be +accessed using the usual <a href="#Indexes">indexing operations</a>. It is +illegal to take the address of such an element; if +<code>s[i]</code> is the <i>i</i>th byte of a +string, <code>&s[i]</code> is invalid. The length of string +<code>s</code> can be discovered using the built-in function +<code>len</code>. The length is a compile-time constant if <code>s</code> +is a string literal. +</p> + + +<h3 id="Array_types">Array types</h3> + +<p> +An array is a numbered sequence of elements of a single +type, called the element type. +The number of elements is called the length and is never +negative. +</p> + +<pre class="ebnf"> +ArrayType = "[" ArrayLength "]" ElementType . +ArrayLength = Expression . +ElementType = Type . +</pre> + +<p> +The length is part of the array's type and must be a +<a href="#Constant_expressions">constant expression</a> that evaluates to a non-negative +integer value. The length of array <code>a</code> can be discovered +using the built-in function <a href="#Length_and_capacity"><code>len(a)</code></a>. +The elements can be indexed by integer +indices 0 through the <code>len(a)-1</code> (§<a href="#Indexes">Indexes</a>). +Array types are always one-dimensional but may be composed to form +multi-dimensional types. +</p> + +<pre> +[32]byte +[2*N] struct { x, y int32 } +[1000]*float64 +[3][5]int +[2][2][2]float64 // same as [2]([2]([2]float64)) +</pre> + +<h3 id="Slice_types">Slice types</h3> + +<p> +A slice is a reference to a contiguous segment of an array and +contains a numbered sequence of elements from that array. A slice +type denotes the set of all slices of arrays of its element type. +The value of an uninitialized slice is <code>nil</code>. +</p> + +<pre class="ebnf"> +SliceType = "[" "]" ElementType . +</pre> + +<p> +Like arrays, slices are indexable and have a length. The length of a +slice <code>s</code> can be discovered by the built-in function +<a href="#Length_and_capacity"><code>len(s)</code></a>; unlike with arrays it may change during +execution. The elements can be addressed by integer indices 0 +through <code>len(s)-1</code> (§<a href="#Indexes">Indexes</a>). The slice index of a +given element may be less than the index of the same element in the +underlying array. +</p> +<p> +A slice, once initialized, is always associated with an underlying +array that holds its elements. A slice therefore shares storage +with its array and with other slices of the same array; by contrast, +distinct arrays always represent distinct storage. +</p> +<p> +The array underlying a slice may extend past the end of the slice. +The <i>capacity</i> is a measure of that extent: it is the sum of +the length of the slice and the length of the array beyond the slice; +a slice of length up to that capacity can be created by `slicing' a new +one from the original slice (§<a href="#Slices">Slices</a>). +The capacity of a slice <code>a</code> can be discovered using the +built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. +</p> + +<p> +A new, initialized slice value for a given element type <code>T</code> is +made using the built-in function +<a href="#Making_slices_maps_and_channels"><code>make</code></a>, +which takes a slice type +and parameters specifying the length and optionally the capacity: +</p> + +<pre> +make([]T, length) +make([]T, length, capacity) +</pre> + +<p> +A call to <code>make</code> allocates a new, hidden array to which the returned +slice value refers. That is, executing +</p> + +<pre> +make([]T, length, capacity) +</pre> + +<p> +produces the same slice as allocating an array and slicing it, so these two examples +result in the same slice: +</p> + +<pre> +make([]int, 50, 100) +new([100]int)[0:50] +</pre> + +<p> +Like arrays, slices are always one-dimensional but may be composed to construct +higher-dimensional objects. +With arrays of arrays, the inner arrays are, by construction, always the same length; +however with slices of slices (or arrays of slices), the lengths may vary dynamically. +Moreover, the inner slices must be allocated individually (with <code>make</code>). +</p> + +<h3 id="Struct_types">Struct types</h3> + +<p> +A struct is a sequence of named elements, called fields, each of which has a +name and a type. Field names may be specified explicitly (IdentifierList) or +implicitly (AnonymousField). +Within a struct, non-<a href="#Blank_identifier">blank</a> field names must +be unique. +</p> + +<pre class="ebnf"> +StructType = "struct" "{" { FieldDecl ";" } "}" . +FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] . +AnonymousField = [ "*" ] TypeName . +Tag = string_lit . +</pre> + +<pre> +// An empty struct. +struct {} + +// A struct with 6 fields. +struct { + x, y int + u float32 + _ float32 // padding + A *[]int + F func() +} +</pre> + +<p> +A field declared with a type but no explicit field name is an <i>anonymous field</i> +(colloquially called an embedded field). +Such a field type must be specified as +a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, +and <code>T</code> itself may not be +a pointer type. The unqualified type name acts as the field name. +</p> + +<pre> +// A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4 +struct { + T1 // field name is T1 + *T2 // field name is T2 + P.T3 // field name is T3 + *P.T4 // field name is T4 + x, y int // field names are x and y +} +</pre> + +<p> +The following declaration is illegal because field names must be unique +in a struct type: +</p> + +<pre> +struct { + T // conflicts with anonymous field *T and *P.T + *T // conflicts with anonymous field T and *P.T + *P.T // conflicts with anonymous field T and *T +} +</pre> + +<p> +Fields and methods (§<a href="#Method_declarations">Method declarations</a>) of an anonymous field are +promoted to be ordinary fields and methods of the struct (§<a href="#Selectors">Selectors</a>). +The following rules apply for a struct type named <code>S</code> and +a type named <code>T</code>: +</p> +<ul> + <li>If <code>S</code> contains an anonymous field <code>T</code>, the + <a href="#Method_sets">method set</a> of <code>S</code> includes the + method set of <code>T</code>. + </li> + + <li>If <code>S</code> contains an anonymous field <code>*T</code>, the + method set of <code>S</code> includes the method set of <code>*T</code> + (which itself includes the method set of <code>T</code>). + </li> + + <li>If <code>S</code> contains an anonymous field <code>T</code> or + <code>*T</code>, the method set of <code>*S</code> includes the + method set of <code>*T</code> (which itself includes the method + set of <code>T</code>). + </li> +</ul> +<p> +A field declaration may be followed by an optional string literal <i>tag</i>, +which becomes an attribute for all the fields in the corresponding +field declaration. The tags are made +visible through a <a href="#Package_unsafe">reflection interface</a> +but are otherwise ignored. +</p> + +<pre> +// A struct corresponding to the TimeStamp protocol buffer. +// The tag strings define the protocol buffer field numbers. +struct { + microsec uint64 "field 1" + serverIP6 uint64 "field 2" + process string "field 3" +} +</pre> + +<h3 id="Pointer_types">Pointer types</h3> + +<p> +A pointer type denotes the set of all pointers to variables of a given +type, called the <i>base type</i> of the pointer. +The value of an uninitialized pointer is <code>nil</code>. +</p> + +<pre class="ebnf"> +PointerType = "*" BaseType . +BaseType = Type . +</pre> + +<pre> +*int +*map[string] *chan int +</pre> + +<h3 id="Function_types">Function types</h3> + +<p> +A function type denotes the set of all functions with the same parameter +and result types. The value of an uninitialized variable of function type +is <code>nil</code>. +</p> + +<pre class="ebnf"> +FunctionType = "func" Signature . +Signature = Parameters [ Result ] . +Result = Parameters | Type . +Parameters = "(" [ ParameterList [ "," ] ] ")" . +ParameterList = ParameterDecl { "," ParameterDecl } . +ParameterDecl = [ IdentifierList ] [ "..." ] Type . +</pre> + +<p> +Within a list of parameters or results, the names (IdentifierList) +must either all be present or all be absent. If present, each name +stands for one item (parameter or result) of the specified type; if absent, each +type stands for one item of that type. Parameter and result +lists are always parenthesized except that if there is exactly +one unnamed result it may be written as an unparenthesized type. +</p> + +<p> +The final parameter in a function signature may have +a type prefixed with <code>...</code>. +A function with such a parameter is called <i>variadic</i> and +may be invoked with zero or more arguments for that parameter. +</p> + +<pre> +func() +func(x int) +func() int +func(prefix string, values ...int) +func(a, b int, z float32) bool +func(a, b int, z float32) (bool) +func(a, b int, z float64, opt ...interface{}) (success bool) +func(int, int, float64) (float64, *[]int) +func(n int) func(p *T) +</pre> + + +<h3 id="Interface_types">Interface types</h3> + +<p> +An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. +A variable of interface type can store a value of any type with a method set +that is any superset of the interface. Such a type is said to +<i>implement the interface</i>. +The value of an uninitialized variable of interface type is <code>nil</code>. +</p> + +<pre class="ebnf"> +InterfaceType = "interface" "{" { MethodSpec ";" } "}" . +MethodSpec = MethodName Signature | InterfaceTypeName . +MethodName = identifier . +InterfaceTypeName = TypeName . +</pre> + +<p> +As with all method sets, in an interface type, each method must have a unique name. +</p> + +<pre> +// A simple File interface +interface { + Read(b Buffer) bool + Write(b Buffer) bool + Close() +} +</pre> + +<p> +More than one type may implement an interface. +For instance, if two types <code>S1</code> and <code>S2</code> +have the method set +</p> + +<pre> +func (p T) Read(b Buffer) bool { return … } +func (p T) Write(b Buffer) bool { return … } +func (p T) Close() { … } +</pre> + +<p> +(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) +then the <code>File</code> interface is implemented by both <code>S1</code> and +<code>S2</code>, regardless of what other methods +<code>S1</code> and <code>S2</code> may have or share. +</p> + +<p> +A type implements any interface comprising any subset of its methods +and may therefore implement several distinct interfaces. For +instance, all types implement the <i>empty interface</i>: +</p> + +<pre> +interface{} +</pre> + +<p> +Similarly, consider this interface specification, +which appears within a <a href="#Type_declarations">type declaration</a> +to define an interface called <code>Lock</code>: +</p> + +<pre> +type Lock interface { + Lock() + Unlock() +} +</pre> + +<p> +If <code>S1</code> and <code>S2</code> also implement +</p> + +<pre> +func (p T) Lock() { … } +func (p T) Unlock() { … } +</pre> + +<p> +they implement the <code>Lock</code> interface as well +as the <code>File</code> interface. +</p> +<p> +An interface may contain an interface type name <code>T</code> +in place of a method specification. +The effect is equivalent to enumerating the methods of <code>T</code> explicitly +in the interface. +</p> + +<pre> +type ReadWrite interface { + Read(b Buffer) bool + Write(b Buffer) bool +} + +type File interface { + ReadWrite // same as enumerating the methods in ReadWrite + Lock // same as enumerating the methods in Lock + Close() +} +</pre> + +<h3 id="Map_types">Map types</h3> + +<p> +A map is an unordered group of elements of one type, called the +element type, indexed by a set of unique <i>keys</i> of another type, +called the key type. +The value of an uninitialized map is <code>nil</code>. +</p> + +<pre class="ebnf"> +MapType = "map" "[" KeyType "]" ElementType . +KeyType = Type . +</pre> + +<p> +The comparison operators <code>==</code> and <code>!=</code> +(§<a href="#Comparison_operators">Comparison operators</a>) must be fully defined +for operands of the key type; thus the key type must not be a struct, array or slice. +If the key type is an interface type, these +comparison operators must be defined for the dynamic key values; +failure will cause a <a href="#Run_time_panics">run-time panic</a>. + +</p> + +<pre> +map [string] int +map [*T] struct { x, y float64 } +map [string] interface {} +</pre> + +<p> +The number of map elements is called its length. +For a map <code>m</code>, it can be discovered using the +built-in function <a href="#Length_and_capacity"><code>len(m)</code></a> +and may change during execution. Elements may be added and removed +during execution using special forms of <a href="#Assignments">assignment</a>; +and they may be accessed with <a href="#Indexes">index</a> expressions. +</p> +<p> +A new, empty map value is made using the built-in +function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, +which takes the map type and an optional capacity hint as arguments: +</p> + +<pre> +make(map[string] int) +make(map[string] int, 100) +</pre> + +<p> +The initial capacity does not bound its size: +maps grow to accommodate the number of items +stored in them, with the exception of <code>nil</code> maps. +A <code>nil</code> map is equivalent to an empty map except that no elements +may be added. + +<h3 id="Channel_types">Channel types</h3> + +<p> +A channel provides a mechanism for two concurrently executing functions +to synchronize execution and communicate by passing a value of a +specified element type. +The value of an uninitialized channel is <code>nil</code>. +</p> + +<pre class="ebnf"> +ChannelType = ( "chan" [ "<-" ] | "<-" "chan" ) ElementType . +</pre> + +<p> +The <code><-</code> operator specifies the channel <i>direction</i>, +<i>send</i> or <i>receive</i>. If no direction is given, the channel is +<i>bi-directional</i>. +A channel may be constrained only to send or only to receive by +<a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. +</p> + +<pre> +chan T // can be used to send and receive values of type T +chan<- float64 // can only be used to send float64s +<-chan int // can only be used to receive ints +</pre> + +<p> +The <code><-</code> operator associates with the leftmost <code>chan</code> +possible: +</p> + +<pre> +chan<- chan int // same as chan<- (chan int) +chan<- <-chan int // same as chan<- (<-chan int) +<-chan <-chan int // same as <-chan (<-chan int) +chan (<-chan int) +</pre> + +<p> +A new, initialized channel +value can be made using the built-in function +<a href="#Making_slices_maps_and_channels"><code>make</code></a>, +which takes the channel type and an optional capacity as arguments: +</p> + +<pre> +make(chan int, 100) +</pre> + +<p> +The capacity, in number of elements, sets the size of the buffer in the channel. If the +capacity is greater than zero, the channel is asynchronous: communication operations +succeed without blocking if the buffer is not full (sends) or not empty (receives), +and elements are received in the order they are sent. +If the capacity is zero or absent, the communication succeeds only when both a sender and +receiver are ready. +A <code>nil</code> channel is never ready for communication. +</p> + +<p> +A channel may be closed with the built-in function +<a href="#Close"><code>close</code></a>; the +multi-valued assignment form of the +<a href="#Receive_operator">receive operator</a> +tests whether a channel has been closed. +</p> + +<h2 id="Properties_of_types_and_values">Properties of types and values</h2> + +<h3 id="Type_identity">Type identity</h3> + +<p> +Two types are either <i>identical</i> or <i>different</i>. +</p> + +<p> +Two named types are identical if their type names originate in the same +type <a href="#Declarations_and_scope">declaration</a>. +A named and an unnamed type are always different. Two unnamed types are identical +if the corresponding type literals are identical, that is, if they have the same +literal structure and corresponding components have identical types. In detail: +</p> + +<ul> + <li>Two array types are identical if they have identical element types and + the same array length.</li> + + <li>Two slice types are identical if they have identical element types.</li> + + <li>Two struct types are identical if they have the same sequence of fields, + and if corresponding fields have the same names, and identical types, + and identical tags. + Two anonymous fields are considered to have the same name. Lower-case field + names from different packages are always different.</li> + + <li>Two pointer types are identical if they have identical base types.</li> + + <li>Two function types are identical if they have the same number of parameters + and result values, corresponding parameter and result types are + identical, and either both functions are variadic or neither is. + Parameter and result names are not required to match.</li> + + <li>Two interface types are identical if they have the same set of methods + with the same names and identical function types. Lower-case method names from + different packages are always different. The order of the methods is irrelevant.</li> + + <li>Two map types are identical if they have identical key and value types.</li> + + <li>Two channel types are identical if they have identical value types and + the same direction.</li> +</ul> + +<p> +Given the declarations +</p> + +<pre> +type ( + T0 []string + T1 []string + T2 struct { a, b int } + T3 struct { a, c int } + T4 func(int, float64) *T0 + T5 func(x int, y float64) *[]string +) +</pre> + +<p> +these types are identical: +</p> + +<pre> +T0 and T0 +[]int and []int +struct { a, b *T5 } and struct { a, b *T5 } +func(x int, y float64) *[]string and func(int, float64) (result *[]string) +</pre> + +<p> +<code>T0</code> and <code>T1</code> are different because they are named types +with distinct declarations; <code>func(int, float64) *T0</code> and +<code>func(x int, y float64) *[]string</code> are different because <code>T0</code> +is different from <code>[]string</code>. +</p> + + +<h3 id="Assignability">Assignability</h3> + +<p> +A value <code>x</code> is <i>assignable</i> to a variable of type <code>T</code> +("<code>x</code> is assignable to <code>T</code>") in any of these cases: +</p> + +<ul> +<li> +<code>x</code>'s type is identical to <code>T</code>. +</li> +<li> +<code>x</code>'s type <code>V</code> and <code>T</code> have identical +<a href="#Types">underlying types</a> and at least one of <code>V</code> +or <code>T</code> is not a named type. +</li> +<li> +<code>T</code> is an interface type and +<code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. +</li> +<li> +<code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, +<code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, +and at least one of <code>V</code> or <code>T</code> is not a named type. +</li> +<li> +<code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> +is a pointer, function, slice, map, channel, or interface type. +</li> +<li> +<code>x</code> is an untyped <a href="#Constants">constant</a> representable +by a value of type <code>T</code>. +</li> +</ul> + +<p> +If <code>T</code> is a struct type with non-<a href="#Exported_identifiers">exported</a> +fields, the assignment must be in the same package in which <code>T</code> is declared, +or <code>x</code> must be the receiver of a method call. +In other words, a struct value can be assigned to a struct variable only if +every field of the struct may be legally assigned individually by the program, +or if the assignment is initializing the receiver of a method of the struct type. +</p> + +<p> +Any value may be assigned to the <a href="#Blank_identifier">blank identifier</a>. +</p> + + +<h2 id="Blocks">Blocks</h2> + +<p> +A <i>block</i> is a sequence of declarations and statements within matching +brace brackets. +</p> + +<pre class="ebnf"> +Block = "{" { Statement ";" } "}" . +</pre> + +<p> +In addition to explicit blocks in the source code, there are implicit blocks: +</p> + +<ol> + <li>The <i>universe block</i> encompasses all Go source text.</li> + + <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all + Go source text for that package.</li> + + <li>Each file has a <i>file block</i> containing all Go source text + in that file.</li> + + <li>Each <code>if</code>, <code>for</code>, and <code>switch</code> + statement is considered to be in its own implicit block.</li> + + <li>Each clause in a <code>switch</code> or <code>select</code> statement + acts as an implicit block.</li> +</ol> + +<p> +Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. +</p> + + +<h2 id="Declarations_and_scope">Declarations and scope</h2> + +<p> +A declaration binds a non-<a href="#Blank_identifier">blank</a> +identifier to a constant, type, variable, function, or package. +Every identifier in a program must be declared. +No identifier may be declared twice in the same block, and +no identifier may be declared in both the file and package block. +</p> + +<pre class="ebnf"> +Declaration = ConstDecl | TypeDecl | VarDecl . +TopLevelDecl = Declaration | FunctionDecl | MethodDecl . +</pre> + +<p> +The <i>scope</i> of a declared identifier is the extent of source text in which +the identifier denotes the specified constant, type, variable, function, or package. +</p> + +<p> +Go is lexically scoped using blocks: +</p> + +<ol> + <li>The scope of a predeclared identifier is the universe block.</li> + + <li>The scope of an identifier denoting a constant, type, variable, + or function (but not method) declared at top level (outside any + function) is the package block.</li> + + <li>The scope of an imported package identifier is the file block + of the file containing the import declaration.</li> + + <li>The scope of an identifier denoting a function parameter or + result variable is the function body.</li> + + <li>The scope of a constant or variable identifier declared + inside a function begins at the end of the ConstSpec or VarSpec + (ShortVarDecl for short variable declarations) + and ends at the end of the innermost containing block.</li> + + <li>The scope of a type identifier declared inside a function + begins at the identifier in the TypeSpec + and ends at the end of the innermost containing block.</li> +</ol> + +<p> +An identifier declared in a block may be redeclared in an inner block. +While the identifier of the inner declaration is in scope, it denotes +the entity declared by the inner declaration. +</p> + +<p> +The <a href="#Package_clause">package clause</a> is not a declaration; the package name +does not appear in any scope. Its purpose is to identify the files belonging +to the same <a href="#Packages">package</a> and to specify the default package name for import +declarations. +</p> + + +<h3 id="Label_scopes">Label scopes</h3> + +<p> +Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are +used in the <code>break</code>, <code>continue</code>, and <code>goto</code> +statements (§<a href="#Break_statements">Break statements</a>, §<a href="#Continue_statements">Continue statements</a>, §<a href="#Goto_statements">Goto statements</a>). +It is illegal to define a label that is never used. +In contrast to other identifiers, labels are not block scoped and do +not conflict with identifiers that are not labels. The scope of a label +is the body of the function in which it is declared and excludes +the body of any nested function. +</p> + + +<h3 id="Predeclared_identifiers">Predeclared identifiers</h3> + +<p> +The following identifiers are implicitly declared in the universe block: +</p> +<pre class="grammar"> +Basic types: + bool byte complex64 complex128 float32 float64 + int8 int16 int32 int64 string uint8 uint16 uint32 uint64 + +Architecture-specific convenience types: + int uint uintptr + +Constants: + true false iota + +Zero value: + nil + +Functions: + append cap close complex copy imag len + make new panic print println real recover +</pre> + + +<h3 id="Exported_identifiers">Exported identifiers</h3> + +<p> +An identifier may be <i>exported</i> to permit access to it from another package +using a <a href="#Qualified_identifiers">qualified identifier</a>. An identifier +is exported if both: +</p> +<ol> + <li>the first character of the identifier's name is a Unicode upper case letter (Unicode class "Lu"); and</li> + <li>the identifier is declared in the <a href="#Blocks">package block</a> or denotes a field or method of a type + declared in that block.</li> +</ol> +<p> +All other identifiers are not exported. +</p> + + +<h3 id="Blank_identifier">Blank identifier</h3> + +<p> +The <i>blank identifier</i>, represented by the underscore character <code>_</code>, may be used in a declaration like +any other identifier but the declaration does not introduce a new binding. +</p> + + +<h3 id="Constant_declarations">Constant declarations</h3> + +<p> +A constant declaration binds a list of identifiers (the names of +the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. +The number of identifiers must be equal +to the number of expressions, and the <i>n</i>th identifier on +the left is bound to the value of the <i>n</i>th expression on the +right. +</p> + +<pre class="ebnf"> +ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . +ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . + +IdentifierList = identifier { "," identifier } . +ExpressionList = Expression { "," Expression } . +</pre> + +<p> +If the type is present, all constants take the type specified, and +the expressions must be <a href="#Assignability">assignable</a> to that type. +If the type is omitted, the constants take the +individual types of the corresponding expressions. +If the expression values are untyped <a href="#Constants">constants</a>, +the declared constants remain untyped and the constant identifiers +denote the constant values. For instance, if the expression is a +floating-point literal, the constant identifier denotes a floating-point +constant, even if the literal's fractional part is zero. +</p> + +<pre> +const Pi float64 = 3.14159265358979323846 +const zero = 0.0 // untyped floating-point constant +const ( + size int64 = 1024 + eof = -1 // untyped integer constant +) +const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants +const u, v float32 = 0, 3 // u = 0.0, v = 3.0 +</pre> + +<p> +Within a parenthesized <code>const</code> declaration list the +expression list may be omitted from any but the first declaration. +Such an empty list is equivalent to the textual substitution of the +first preceding non-empty expression list and its type if any. +Omitting the list of expressions is therefore equivalent to +repeating the previous list. The number of identifiers must be equal +to the number of expressions in the previous list. +Together with the <a href="#Iota"><code>iota</code> constant generator</a> +this mechanism permits light-weight declaration of sequential values: +</p> + +<pre> +const ( + Sunday = iota + Monday + Tuesday + Wednesday + Thursday + Friday + Partyday + numberOfDays // this constant is not exported +) +</pre> + + +<h3 id="Iota">Iota</h3> + +<p> +Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier +<code>iota</code> represents successive untyped integer <a href="#Constants"> +constants</a>. It is reset to 0 whenever the reserved word <code>const</code> +appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>. +It can be used to construct a set of related constants: +</p> + +<pre> +const ( // iota is reset to 0 + c0 = iota // c0 == 0 + c1 = iota // c1 == 1 + c2 = iota // c2 == 2 +) + +const ( + a = 1 << iota // a == 1 (iota has been reset) + b = 1 << iota // b == 2 + c = 1 << iota // c == 4 +) + +const ( + u = iota * 42 // u == 0 (untyped integer constant) + v float64 = iota * 42 // v == 42.0 (float64 constant) + w = iota * 42 // w == 84 (untyped integer constant) +) + +const x = iota // x == 0 (iota has been reset) +const y = iota // y == 0 (iota has been reset) +</pre> + +<p> +Within an ExpressionList, the value of each <code>iota</code> is the same because +it is only incremented after each ConstSpec: +</p> + +<pre> +const ( + bit0, mask0 = 1 << iota, 1 << iota - 1 // bit0 == 1, mask0 == 0 + bit1, mask1 // bit1 == 2, mask1 == 1 + _, _ // skips iota == 2 + bit3, mask3 // bit3 == 8, mask3 == 7 +) +</pre> + +<p> +This last example exploits the implicit repetition of the +last non-empty expression list. +</p> + + +<h3 id="Type_declarations">Type declarations</h3> + +<p> +A type declaration binds an identifier, the <i>type name</i>, to a new type +that has the same <a href="#Types">underlying type</a> as +an existing type. The new type is <a href="#Type_identity">different</a> from +the existing type. +</p> + +<pre class="ebnf"> +TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . +TypeSpec = identifier Type . +</pre> + +<pre> +type IntArray [16]int + +type ( + Point struct { x, y float64 } + Polar Point +) + +type TreeNode struct { + left, right *TreeNode + value *Comparable +} + +type Cipher interface { + BlockSize() int + Encrypt(src, dst []byte) + Decrypt(src, dst []byte) +} +</pre> + +<p> +The declared type does not inherit any <a href="#Method_declarations">methods</a> +bound to the existing type, but the <a href="#Method_sets">method set</a> +of an interface type or of elements of a composite type remains unchanged: +</p> + +<pre> +// A Mutex is a data type with two methods, Lock and Unlock. +type Mutex struct { /* Mutex fields */ } +func (m *Mutex) Lock() { /* Lock implementation */ } +func (m *Mutex) Unlock() { /* Unlock implementation */ } + +// NewMutex has the same composition as Mutex but its method set is empty. +type NewMutex Mutex + +// The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged, +// but the method set of PtrMutex is empty. +type PtrMutex *Mutex + +// The method set of *PrintableMutex contains the methods +// Lock and Unlock bound to its anonymous field Mutex. +type PrintableMutex struct { + Mutex +} + +// MyCipher is an interface type that has the same method set as Cipher. +type MyCipher Cipher +</pre> + +<p> +A type declaration may be used to define a different boolean, numeric, or string +type and attach methods to it: +</p> + +<pre> +type TimeZone int + +const ( + EST TimeZone = -(5 + iota) + CST + MST + PST +) + +func (tz TimeZone) String() string { + return fmt.Sprintf("GMT+%dh", tz) +} +</pre> + + +<h3 id="Variable_declarations">Variable declarations</h3> + +<p> +A variable declaration creates a variable, binds an identifier to it and +gives it a type and optionally an initial value. +</p> +<pre class="ebnf"> +VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . +VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . +</pre> + +<pre> +var i int +var U, V, W float64 +var k = 0 +var x, y float32 = -1, -2 +var ( + i int + u, v, s = 2.0, 3.0, "bar" +) +var re, im = complexSqrt(-1) +var _, found = entries[name] // map lookup; only interested in "found" +</pre> + +<p> +If a list of expressions is given, the variables are initialized +by assigning the expressions to the variables (§<a href="#Assignments">Assignments</a>) +in order; all expressions must be consumed and all variables initialized from them. +Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. +</p> + +<p> +If the type is present, each variable is given that type. +Otherwise, the types are deduced from the assignment +of the expression list. +</p> + +<p> +If the type is absent and the corresponding expression evaluates to an +untyped <a href="#Constants">constant</a>, the type of the declared variable +is <code>bool</code>, <code>int</code>, <code>float64</code>, or <code>string</code> +respectively, depending on whether the value is a boolean, integer, +floating-point, or string constant: +</p> + +<pre> +var b = true // t has type bool +var i = 0 // i has type int +var f = 3.0 // f has type float64 +var s = "OMDB" // s has type string +</pre> + +<h3 id="Short_variable_declarations">Short variable declarations</h3> + +<p> +A <i>short variable declaration</i> uses the syntax: +</p> + +<pre class="ebnf"> +ShortVarDecl = IdentifierList ":=" ExpressionList . +</pre> + +<p> +It is a shorthand for a regular variable declaration with +initializer expressions but no types: +</p> + +<pre class="grammar"> +"var" IdentifierList = ExpressionList . +</pre> + +<pre> +i, j := 0, 10 +f := func() int { return 7 } +ch := make(chan int) +r, w := os.Pipe(fd) // os.Pipe() returns two values +_, y, _ := coord(p) // coord() returns three values; only interested in y coordinate +</pre> + +<p> +Unlike regular variable declarations, a short variable declaration may redeclare variables provided they +were originally declared in the same block with the same type, and at +least one of the non-<a href="#Blank_identifier">blank</a> variables is new. As a consequence, redeclaration +can only appear in a multi-variable short declaration. +Redeclaration does not introduce a new +variable; it just assigns a new value to the original. +</p> + +<pre> +field1, offset := nextField(str, 0) +field2, offset := nextField(str, offset) // redeclares offset +</pre> + +<p> +Short variable declarations may appear only inside functions. +In some contexts such as the initializers for <code>if</code>, +<code>for</code>, or <code>switch</code> statements, +they can be used to declare local temporary variables (§<a href="#Statements">Statements</a>). +</p> + +<h3 id="Function_declarations">Function declarations</h3> + +<p> +A function declaration binds an identifier to a function (§<a href="#Function_types">Function types</a>). +</p> + +<pre class="ebnf"> +FunctionDecl = "func" identifier Signature [ Body ] . +Body = Block . +</pre> + +<p> +A function declaration may omit the body. Such a declaration provides the +signature for a function implemented outside Go, such as an assembly routine. +</p> + +<pre> +func min(x int, y int) int { + if x < y { + return x + } + return y +} + +func flushICache(begin, end uintptr) // implemented externally +</pre> + +<h3 id="Method_declarations">Method declarations</h3> + +<p> +A method is a function with a <i>receiver</i>. +A method declaration binds an identifier to a method. +</p> +<pre class="ebnf"> +MethodDecl = "func" Receiver MethodName Signature [ Body ] . +Receiver = "(" [ identifier ] [ "*" ] BaseTypeName ")" . +BaseTypeName = identifier . +</pre> + +<p> +The receiver type must be of the form <code>T</code> or <code>*T</code> where +<code>T</code> is a type name. <code>T</code> is called the +<i>receiver base type</i> or just <i>base type</i>. +The base type must not be a pointer or interface type and must be +declared in the same package as the method. +The method is said to be <i>bound</i> to the base type +and is visible only within selectors for that type +(§<a href="#Type_declarations">Type declarations</a>, §<a href="#Selectors">Selectors</a>). +</p> + +<p> +Given type <code>Point</code>, the declarations +</p> + +<pre> +func (p *Point) Length() float64 { + return math.Sqrt(p.x * p.x + p.y * p.y) +} + +func (p *Point) Scale(factor float64) { + p.x *= factor + p.y *= factor +} +</pre> + +<p> +bind the methods <code>Length</code> and <code>Scale</code>, +with receiver type <code>*Point</code>, +to the base type <code>Point</code>. +</p> + +<p> +If the receiver's value is not referenced inside the body of the method, +its identifier may be omitted in the declaration. The same applies in +general to parameters of functions and methods. +</p> + +<p> +The type of a method is the type of a function with the receiver as first +argument. For instance, the method <code>Scale</code> has type +</p> + +<pre> +func(p *Point, factor float64) +</pre> + +<p> +However, a function declared this way is not a method. +</p> + + +<h2 id="Expressions">Expressions</h2> + +<p> +An expression specifies the computation of a value by applying +operators and functions to operands. +</p> + +<h3 id="Operands">Operands</h3> + +<p> +Operands denote the elementary values in an expression. +</p> + +<pre class="ebnf"> +Operand = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" . +Literal = BasicLit | CompositeLit | FunctionLit . +BasicLit = int_lit | float_lit | imaginary_lit | char_lit | string_lit . +</pre> + + +<h3 id="Qualified_identifiers">Qualified identifiers</h3> + +<p> +A qualified identifier is a non-<a href="#Blank_identifier">blank</a> identifier qualified by a package name prefix. +</p> + +<pre class="ebnf"> +QualifiedIdent = [ PackageName "." ] identifier . +</pre> + +<p> +A qualified identifier accesses an identifier in a separate package. +The identifier must be <a href="#Exported_identifiers">exported</a> by that +package, which means that it must begin with a Unicode upper case letter. +</p> + +<pre> +math.Sin +</pre> + +<!-- +<p> +<span class="alert">TODO: Unify this section with Selectors - it's the same syntax.</span> +</p> +--> + +<h3 id="Composite_literals">Composite literals</h3> + +<p> +Composite literals construct values for structs, arrays, slices, and maps +and create a new value each time they are evaluated. +They consist of the type of the value +followed by a brace-bound list of composite elements. An element may be +a single expression or a key-value pair. +</p> + +<pre class="ebnf"> +CompositeLit = LiteralType LiteralValue . +LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | + SliceType | MapType | TypeName . +LiteralValue = "{" [ ElementList [ "," ] ] "}" . +ElementList = Element { "," Element } . +Element = [ Key ":" ] Value . +Key = FieldName | ElementIndex . +FieldName = identifier . +ElementIndex = Expression . +Value = Expression | LiteralValue . +</pre> + +<p> +The LiteralType must be a struct, array, slice, or map type +(the grammar enforces this constraint except when the type is given +as a TypeName). +The types of the expressions must be <a href="#Assignability">assignable</a> +to the respective field, element, and key types of the LiteralType; +there is no additional conversion. +The key is interpreted as a field name for struct literals, +an index expression for array and slice literals, and a key for map literals. +For map literals, all elements must have a key. It is an error +to specify multiple elements with the same field name or +constant key value. +</p> + +<p> +For struct literals the following rules apply: +</p> +<ul> + <li>A key must be a field name declared in the LiteralType. + </li> + <li>A literal that does not contain any keys must + list an element for each struct field in the + order in which the fields are declared. + </li> + <li>If any element has a key, every element must have a key. + </li> + <li>A literal that contains keys does not need to + have an element for each struct field. Omitted fields + get the zero value for that field. + </li> + <li>A literal may omit the element list; such a literal evaluates + to the zero value for its type. + </li> + <li>It is an error to specify an element for a non-exported + field of a struct belonging to a different package. + </li> +</ul> + +<p> +Given the declarations +</p> +<pre> +type Point3D struct { x, y, z float64 } +type Line struct { p, q Point3D } +</pre> + +<p> +one may write +</p> + +<pre> +origin := Point3D{} // zero value for Point3D +line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x +</pre> + +<p> +For array and slice literals the following rules apply: +</p> +<ul> + <li>Each element has an associated integer index marking + its position in the array. + </li> + <li>An element with a key uses the key as its index; the + key must be a constant integer expression. + </li> + <li>An element without a key uses the previous element's index plus one. + If the first element has no key, its index is zero. + </li> +</ul> + +<p> +Taking the address of a composite literal (§<a href="#Address_operators">Address operators</a>) +generates a pointer to a unique instance of the literal's value. +</p> +<pre> +var pointer *Point3D = &Point3D{y: 1000} +</pre> + +<p> +The length of an array literal is the length specified in the LiteralType. +If fewer elements than the length are provided in the literal, the missing +elements are set to the zero value for the array element type. +It is an error to provide elements with index values outside the index range +of the array. The notation <code>...</code> specifies an array length equal +to the maximum element index plus one. +</p> + +<pre> +buffer := [10]string{} // len(buffer) == 10 +intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 +days := [...]string{"Sat", "Sun"} // len(days) == 2 +</pre> + +<p> +A slice literal describes the entire underlying array literal. +Thus, the length and capacity of a slice literal are the maximum +element index plus one. A slice literal has the form +</p> + +<pre> +[]T{x1, x2, … xn} +</pre> + +<p> +and is a shortcut for a slice operation applied to an array literal: +</p> + +<pre> +[n]T{x1, x2, … xn}[0 : n] +</pre> + +<p> +Within a composite literal of array, slice, or map type <code>T</code>, +elements that are themselves composite literals may elide the respective +literal type if it is identical to the element type of <code>T</code>. +</p> + +<pre> +[...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} +[][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} +</pre> + +<p> +A parsing ambiguity arises when a composite literal using the +TypeName form of the LiteralType appears between the +<a href="#Keywords">keyword</a> and the opening brace of the block of an +"if", "for", or "switch" statement, because the braces surrounding +the expressions in the literal are confused with those introducing +the block of statements. To resolve the ambiguity in this rare case, +the composite literal must appear within +parentheses. +</p> + +<pre> +if x == (T{a,b,c}[i]) { … } +if (x == T{a,b,c}[i]) { … } +</pre> + +<p> +Examples of valid array, slice, and map literals: +</p> + +<pre> +// list of prime numbers +primes := []int{2, 3, 5, 7, 9, 11, 13, 17, 19, 991} + +// vowels[ch] is true if ch is a vowel +vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} + +// the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} +filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} + +// frequencies in Hz for equal-tempered scale (A4 = 440Hz) +noteFrequency := map[string]float32{ + "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, + "G0": 24.50, "A0": 27.50, "B0": 30.87, +} +</pre> + + +<h3 id="Function_literals">Function literals</h3> + +<p> +A function literal represents an anonymous function. +It consists of a specification of the function type and a function body. +</p> + +<pre class="ebnf"> +FunctionLit = FunctionType Body . +</pre> + +<pre> +func(a, b int, z float64) bool { return a*b < int(z) } +</pre> + +<p> +A function literal can be assigned to a variable or invoked directly. +</p> + +<pre> +f := func(x, y int) int { return x + y } +func(ch chan int) { ch <- ACK } (reply_chan) +</pre> + +<p> +Function literals are <i>closures</i>: they may refer to variables +defined in a surrounding function. Those variables are then shared between +the surrounding function and the function literal, and they survive as long +as they are accessible. +</p> + + +<h3 id="Primary_expressions">Primary expressions</h3> + +<p> +Primary expressions are the operands for unary and binary expressions. +</p> + +<pre class="ebnf"> +PrimaryExpr = + Operand | + Conversion | + BuiltinCall | + PrimaryExpr Selector | + PrimaryExpr Index | + PrimaryExpr Slice | + PrimaryExpr TypeAssertion | + PrimaryExpr Call . + +Selector = "." identifier . +Index = "[" Expression "]" . +Slice = "[" [ Expression ] ":" [ Expression ] "]" . +TypeAssertion = "." "(" Type ")" . +Call = "(" [ ArgumentList [ "," ] ] ")" . +ArgumentList = ExpressionList [ "..." ] . +</pre> + + +<pre> +x +2 +(s + ".txt") +f(3.1415, true) +Point{1, 2} +m["foo"] +s[i : j + 1] +obj.color +math.Sin +f.p[i].x() +</pre> + + +<h3 id="Selectors">Selectors</h3> + +<p> +A primary expression of the form +</p> + +<pre> +x.f +</pre> + +<p> +denotes the field or method <code>f</code> of the value denoted by <code>x</code> +(or sometimes <code>*x</code>; see below). The identifier <code>f</code> +is called the (field or method) +<i>selector</i>; it must not be the <a href="#Blank_identifier">blank identifier</a>. +The type of the expression is the type of <code>f</code>. +</p> +<p> +A selector <code>f</code> may denote a field or method <code>f</code> of +a type <code>T</code>, or it may refer +to a field or method <code>f</code> of a nested anonymous field of +<code>T</code>. +The number of anonymous fields traversed +to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. +The depth of a field or method <code>f</code> +declared in <code>T</code> is zero. +The depth of a field or method <code>f</code> declared in +an anonymous field <code>A</code> in <code>T</code> is the +depth of <code>f</code> in <code>A</code> plus one. +</p> +<p> +The following rules apply to selectors: +</p> +<ol> +<li> +For a value <code>x</code> of type <code>T</code> or <code>*T</code> +where <code>T</code> is not an interface type, +<code>x.f</code> denotes the field or method at the shallowest depth +in <code>T</code> where there +is such an <code>f</code>. +If there is not exactly one <code>f</code> with shallowest depth, the selector +expression is illegal. +</li> +<li> +For a variable <code>x</code> of type <code>I</code> +where <code>I</code> is an interface type, +<code>x.f</code> denotes the actual method with name <code>f</code> of the value assigned +to <code>x</code> if there is such a method. +If no value or <code>nil</code> was assigned to <code>x</code>, <code>x.f</code> is illegal. +</li> +<li> +In all other cases, <code>x.f</code> is illegal. +</li> +</ol> +<p> +Selectors automatically dereference pointers to structs. +If <code>x</code> is a pointer to a struct, <code>x.y</code> +is shorthand for <code>(*x).y</code>; if the field <code>y</code> +is also a pointer to a struct, <code>x.y.z</code> is shorthand +for <code>(*(*x).y).z</code>, and so on. +If <code>x</code> contains an anonymous field of type <code>*A</code>, +where <code>A</code> is also a struct type, +<code>x.f</code> is a shortcut for <code>(*x.A).f</code>. +</p> +<p> +For example, given the declarations: +</p> + +<pre> +type T0 struct { + x int +} + +func (recv *T0) M0() + +type T1 struct { + y int +} + +func (recv T1) M1() + +type T2 struct { + z int + T1 + *T0 +} + +func (recv *T2) M2() + +var p *T2 // with p != nil and p.T1 != nil +</pre> + +<p> +one may write: +</p> + +<pre> +p.z // (*p).z +p.y // ((*p).T1).y +p.x // (*(*p).T0).x + +p.M2 // (*p).M2 +p.M1 // ((*p).T1).M1 +p.M0 // ((*p).T0).M0 +</pre> + + +<!-- +<span class="alert"> +TODO: Specify what happens to receivers. +</span> +--> + + +<h3 id="Indexes">Indexes</h3> + +<p> +A primary expression of the form +</p> + +<pre> +a[x] +</pre> + +<p> +denotes the element of the array, slice, string or map <code>a</code> indexed by <code>x</code>. +The value <code>x</code> is called the +<i>index</i> or <i>map key</i>, respectively. The following +rules apply: +</p> + +<p> +For <code>a</code> of type <code>A</code> or <code>*A</code> +where <code>A</code> is an <a href="#Array_types">array type</a>, +or for <code>a</code> of type <code>S</code> where <code>S</code> is a <a href="#Slice_types">slice type</a>: +</p> +<ul> + <li><code>x</code> must be an integer value and <code>0 <= x < len(a)</code></li> + <li><code>a[x]</code> is the array element at index <code>x</code> and the type of + <code>a[x]</code> is the element type of <code>A</code></li> + <li>if <code>a</code> is <code>nil</code> or if the index <code>x</code> is out of range, + a <a href="#Run_time_panics">run-time panic</a> occurs</li> +</ul> + +<p> +For <code>a</code> of type <code>T</code> +where <code>T</code> is a <a href="#String_types">string type</a>: +</p> +<ul> + <li><code>x</code> must be an integer value and <code>0 <= x < len(a)</code></li> + <li><code>a[x]</code> is the byte at index <code>x</code> and the type of + <code>a[x]</code> is <code>byte</code></li> + <li><code>a[x]</code> may not be assigned to</li> + <li>if the index <code>x</code> is out of range, + a <a href="#Run_time_panics">run-time panic</a> occurs</li> +</ul> + +<p> +For <code>a</code> of type <code>M</code> +where <code>M</code> is a <a href="#Map_types">map type</a>: +</p> +<ul> + <li><code>x</code>'s type must be + <a href="#Assignability">assignable</a> + to the key type of <code>M</code></li> + <li>if the map contains an entry with key <code>x</code>, + <code>a[x]</code> is the map value with key <code>x</code> + and the type of <code>a[x]</code> is the value type of <code>M</code></li> + <li>if the map is <code>nil</code> or does not contain such an entry, + <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> + for the value type of <code>M</code></li> +</ul> + +<p> +Otherwise <code>a[x]</code> is illegal. +</p> + +<p> +An index expression on a map <code>a</code> of type <code>map[K]V</code> +may be used in an assignment or initialization of the special form +</p> + +<pre> +v, ok = a[x] +v, ok := a[x] +var v, ok = a[x] +</pre> + +<p> +where the result of the index expression is a pair of values with types +<code>(V, bool)</code>. In this form, the value of <code>ok</code> is +<code>true</code> if the key <code>x</code> is present in the map, and +<code>false</code> otherwise. The value of <code>v</code> is the value +<code>a[x]</code> as in the single-result form. +</p> + +<p> +Similarly, if an assignment to a map element has the special form +</p> + +<pre> +a[x] = v, ok +</pre> + +<p> +and boolean <code>ok</code> has the value <code>false</code>, +the entry for key <code>x</code> is deleted from the map; if +<code>ok</code> is <code>true</code>, the construct acts like +a regular assignment to an element of the map. +</p> + +<p> +Assigning to an element of a <code>nil</code> map causes a +<a href="#Run_time_panics">run-time panic</a>. +</p> + + +<h3 id="Slices">Slices</h3> + +<p> +For a string, array, or slice <code>a</code>, the primary expression +</p> + +<pre> +a[low : high] +</pre> + +<p> +constructs a substring or slice. The index expressions <code>low</code> and +<code>high</code> select which elements appear in the result. The result has +indexes starting at 0 and length equal to +<code>high</code> - <code>low</code>. +After slicing the array <code>a</code> +</p> + +<pre> +a := [5]int{1, 2, 3, 4, 5} +s := a[1:4] +</pre> + +<p> +the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements +</p> + +<pre> +s[0] == 2 +s[1] == 3 +s[2] == 4 +</pre> + +<p> +For convenience, any of the index expressions may be omitted. A missing <code>low</code> +index defaults to zero; a missing <code>high</code> index defaults to the length of the +sliced operand: +</p> + +<pre> +a[2:] // same a[2 : len(a)] +a[:3] // same as a[0 : 3] +a[:] // same as a[0 : len(a)] +</pre> + +<p> +For arrays or strings, the indexes <code>low</code> and <code>high</code> must +satisfy 0 <= <code>low</code> <= <code>high</code> <= length; for +slices, the upper bound is the capacity rather than the length. +</p> + +<p> +If the sliced operand is a string or slice, the result of the slice operation +is a string or slice of the same type. +If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> +and the result of the slice operation is a slice with the same element type as the array. +</p> + + +<h3 id="Type_assertions">Type assertions</h3> + +<p> +For an expression <code>x</code> of <a href="#Interface_types">interface type</a> +and a type <code>T</code>, the primary expression +</p> + +<pre> +x.(T) +</pre> + +<p> +asserts that <code>x</code> is not <code>nil</code> +and that the value stored in <code>x</code> is of type <code>T</code>. +The notation <code>x.(T)</code> is called a <i>type assertion</i>. +</p> +<p> +More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts +that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> +to the type <code>T</code>. +If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type +of <code>x</code> implements the interface <code>T</code> (§<a href="#Interface_types">Interface types</a>). +</p> +<p> +If the type assertion holds, the value of the expression is the value +stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, +a <a href="#Run_time_panics">run-time panic</a> occurs. +In other words, even though the dynamic type of <code>x</code> +is known only at run-time, the type of <code>x.(T)</code> is +known to be <code>T</code> in a correct program. +</p> +<p> +If a type assertion is used in an assignment or initialization of the form +</p> + +<pre> +v, ok = x.(T) +v, ok := x.(T) +var v, ok = x.(T) +</pre> + +<p> +the result of the assertion is a pair of values with types <code>(T, bool)</code>. +If the assertion holds, the expression returns the pair <code>(x.(T), true)</code>; +otherwise, the expression returns <code>(Z, false)</code> where <code>Z</code> +is the <a href="#The_zero_value">zero value</a> for type <code>T</code>. +No run-time panic occurs in this case. +The type assertion in this construct thus acts like a function call +returning a value and a boolean indicating success. (§<a href="#Assignments">Assignments</a>) +</p> + + +<h3 id="Calls">Calls</h3> + +<p> +Given an expression <code>f</code> of function type +<code>F</code>, +</p> + +<pre> +f(a1, a2, … an) +</pre> + +<p> +calls <code>f</code> with arguments <code>a1, a2, … an</code>. +Except for one special case, arguments must be single-valued expressions +<a href="#Assignability">assignable</a> to the parameter types of +<code>F</code> and are evaluated before the function is called. +The type of the expression is the result type +of <code>F</code>. +A method invocation is similar but the method itself +is specified as a selector upon a value of the receiver type for +the method. +</p> + +<pre> +math.Atan2(x, y) // function call +var pt *Point +pt.Scale(3.5) // method call with receiver pt +</pre> + +<p> +As a special case, if the return parameters of a function or method +<code>g</code> are equal in number and individually +assignable to the parameters of another function or method +<code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> +will invoke <code>f</code> after binding the return values of +<code>g</code> to the parameters of <code>f</code> in order. The call +of <code>f</code> must contain no parameters other than the call of <code>g</code>. +If <code>f</code> has a final <code>...</code> parameter, it is +assigned the return values of <code>g</code> that remain after +assignment of regular parameters. +</p> + +<pre> +func Split(s string, pos int) (string, string) { + return s[0:pos], s[pos:] +} + +func Join(s, t string) string { + return s + t +} + +if Join(Split(value, len(value)/2)) != value { + log.Panic("test fails") +} +</pre> + +<p> +A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> +of (the type of) <code>x</code> contains <code>m</code> and the +argument list can be assigned to the parameter list of <code>m</code>. +If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method +set contains <code>m</code>, <code>x.m()</code> is shorthand +for <code>(&x).m()</code>: +</p> + +<pre> +var p Point +p.Scale(3.5) +</pre> + +<p> +There is no distinct method type and there are no method literals. +</p> + +<h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> + +<p> +If <code>f</code> is variadic with final parameter type <code>...T</code>, +then within the function the argument is equivalent to a parameter of type +<code>[]T</code>. At each call of <code>f</code>, the argument +passed to the final parameter is +a new slice of type <code>[]T</code> whose successive elements are +the actual arguments, which all must be <a href="#Assignability">assignable</a> +to the type <code>T</code>. The length of the slice is therefore the number of +arguments bound to the final parameter and may differ for each call site. +</p> + +<p> +Given the function and call +</p> +<pre> +func Greeting(prefix string, who ...string) +Greeting("hello:", "Joe", "Anna", "Eileen") +</pre> + +<p> +within <code>Greeting</code>, <code>who</code> will have the value +<code>[]string{"Joe", "Anna", "Eileen"}</code> +</p> + +<p> +If the final argument is assignable to a slice type <code>[]T</code>, it may be +passed unchanged as the value for a <code>...T</code> parameter if the argument +is followed by <code>...</code>. In this case no new slice is created. +</p> + +<p> +Given the slice <code>s</code> and call +</p> + +<pre> +s := []string{"James", "Jasmine"} +Greeting("goodbye:", s...) +</pre> + +<p> +within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> +with the same underlying array. +</p> + + +<h3 id="Operators">Operators</h3> + +<p> +Operators combine operands into expressions. +</p> + +<pre class="ebnf"> +Expression = UnaryExpr | Expression binary_op UnaryExpr . +UnaryExpr = PrimaryExpr | unary_op UnaryExpr . + +binary_op = "||" | "&&" | rel_op | add_op | mul_op . +rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . +add_op = "+" | "-" | "|" | "^" . +mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . + +unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . +</pre> + +<p> +Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. +For other binary operators, the operand types must be <a href="#Type_identity">identical</a> +unless the operation involves shifts or untyped <a href="#Constants">constants</a>. +For operations involving constants only, see the section on +<a href="#Constant_expressions">constant expressions</a>. +</p> + +<p> +Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> +and the other operand is not, the constant is <a href="#Conversions">converted</a> +to the type of the other operand. +</p> + +<p> +The right operand in a shift expression must have unsigned integer type +or be an untyped constant that can be converted to unsigned integer type. +If the left operand of a non-constant shift expression is an untyped constant, +the type of the constant is what it would be if the shift expression were +replaced by its left operand alone; the type is <code>int</code> if it cannot +be determined from the context (for instance, if the shift expression is an +operand in a comparison against an untyped constant). +</p> + +<pre> +var s uint = 33 +var i = 1<<s // 1 has type int +var j int32 = 1<<s // 1 has type int32; j == 0 +var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 +var m int = 1.0<<s // legal: 1.0 has type int +var n = 1.0<<s != 0 // legal: 1.0 has type int; n == false if ints are 32bits in size +var o = 1<<s == 2<<s // legal: 1 and 2 have type int; o == true if ints are 32bits in size +var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int +var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift +var v float32 = 1<<s // illegal: 1 has type float32, cannot shift +var w int64 = 1.0<<33 // legal: 1.0<<33 is a constant shift expression +</pre> + +<h3 id="Operator_precedence">Operator precedence</h3> +<p> +Unary operators have the highest precedence. +As the <code>++</code> and <code>--</code> operators form +statements, not expressions, they fall +outside the operator hierarchy. +As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. +<p> +There are five precedence levels for binary operators. +Multiplication operators bind strongest, followed by addition +operators, comparison operators, <code>&&</code> (logical and), +and finally <code>||</code> (logical or): +</p> + +<pre class="grammar"> +Precedence Operator + 5 * / % << >> & &^ + 4 + - | ^ + 3 == != < <= > >= + 2 && + 1 || +</pre> + +<p> +Binary operators of the same precedence associate from left to right. +For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. +</p> + +<pre> ++x +23 + 3*x[i] +x <= f() +^a >> b +f() || g() +x == y+1 && <-chan_ptr > 0 +</pre> + + +<h3 id="Arithmetic_operators">Arithmetic operators</h3> +<p> +Arithmetic operators apply to numeric values and yield a result of the same +type as the first operand. The four standard arithmetic operators (<code>+</code>, +<code>-</code>, <code>*</code>, <code>/</code>) apply to integer, +floating-point, and complex types; <code>+</code> also applies +to strings. All other arithmetic operators apply to integers only. +</p> + +<pre class="grammar"> ++ sum integers, floats, complex values, strings +- difference integers, floats, complex values +* product integers, floats, complex values +/ quotient integers, floats, complex values +% remainder integers + +& bitwise and integers +| bitwise or integers +^ bitwise xor integers +&^ bit clear (and not) integers + +<< left shift integer << unsigned integer +>> right shift integer >> unsigned integer +</pre> + +<p> +Strings can be concatenated using the <code>+</code> operator +or the <code>+=</code> assignment operator: +</p> + +<pre> +s := "hi" + string(c) +s += " and good bye" +</pre> + +<p> +String addition creates a new string by concatenating the operands. +</p> +<p> +For two integer values <code>x</code> and <code>y</code>, the integer quotient +<code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following +relationships: +</p> + +<pre> +x = q*y + r and |r| < |y| +</pre> + +<p> +with <code>x / y</code> truncated towards zero +(<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). +</p> + +<pre> + x y x / y x % y + 5 3 1 2 +-5 3 -1 -2 + 5 -3 -1 2 +-5 -3 1 -2 +</pre> + +<p> +As an exception to this rule, if the dividend <code>x</code> is the most +negative value for the int type of <code>x</code>, the quotient +<code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>). +</p> + +<pre> + x, q +int8 -128 +int16 -32768 +int32 -2147483648 +int64 -9223372036854775808 +</pre> + +<p> +If the divisor is zero, a <a href="#Run_time_panics">run-time panic</a> occurs. +If the dividend is positive and the divisor is a constant power of 2, +the division may be replaced by a right shift, and computing the remainder may +be replaced by a bitwise "and" operation: +</p> + +<pre> + x x / 4 x % 4 x >> 2 x & 3 + 11 2 3 2 3 +-11 -2 -3 -3 1 +</pre> + +<p> +The shift operators shift the left operand by the shift count specified by the +right operand. They implement arithmetic shifts if the left operand is a signed +integer and logical shifts if it is an unsigned integer. +There is no upper limit on the shift count. Shifts behave +as if the left operand is shifted <code>n</code> times by 1 for a shift +count of <code>n</code>. +As a result, <code>x << 1</code> is the same as <code>x*2</code> +and <code>x >> 1</code> is the same as +<code>x/2</code> but truncated towards negative infinity. +</p> + +<p> +For integer operands, the unary operators +<code>+</code>, <code>-</code>, and <code>^</code> are defined as +follows: +</p> + +<pre class="grammar"> ++x is 0 + x +-x negation is 0 - x +^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x + and m = -1 for signed x +</pre> + +<p> +For floating-point numbers, +<code>+x</code> is the same as <code>x</code>, +while <code>-x</code> is the negation of <code>x</code>. +The result of a floating-point division by zero is not specified beyond the +IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> +occurs is implementation-specific. +</p> + +<h3 id="Integer_overflow">Integer overflow</h3> + +<p> +For unsigned integer values, the operations <code>+</code>, +<code>-</code>, <code>*</code>, and <code><<</code> are +computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of +the unsigned integer's type +(§<a href="#Numeric_types">Numeric types</a>). Loosely speaking, these unsigned integer operations +discard high bits upon overflow, and programs may rely on ``wrap around''. +</p> +<p> +For signed integers, the operations <code>+</code>, +<code>-</code>, <code>*</code>, and <code><<</code> may legally +overflow and the resulting value exists and is deterministically defined +by the signed integer representation, the operation, and its operands. +No exception is raised as a result of overflow. A +compiler may not optimize code under the assumption that overflow does +not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. +</p> + + +<h3 id="Comparison_operators">Comparison operators</h3> + +<p> +Comparison operators compare two operands and yield a value of type <code>bool</code>. +</p> + +<pre class="grammar"> +== equal +!= not equal +< less +<= less or equal +> greater +>= greater or equal +</pre> + +<p> +The operands must be <i>comparable</i>; that is, the first operand +must be <a href="#Assignability">assignable</a> +to the type of the second operand, or vice versa. +</p> +<p> +The operators <code>==</code> and <code>!=</code> apply +to operands of all types except arrays and structs. +All other comparison operators apply only to integer, floating-point +and string values. The result of a comparison is defined as follows: +</p> + +<ul> + <li> + Integer values are compared in the usual way. + </li> + <li> + Floating point values are compared as defined by the IEEE-754 + standard. + </li> + <li> + Two complex values <code>u</code>, <code>v</code> are + equal if both <code>real(u) == real(v)</code> and + <code>imag(u) == imag(v)</code>. + </li> + <li> + String values are compared byte-wise (lexically). + </li> + <li> + Boolean values are equal if they are either both + <code>true</code> or both <code>false</code>. + </li> + <li> + Pointer values are equal if they point to the same location + or if both are <code>nil</code>. + </li> + <li> + Function values are equal if they refer to the same function + or if both are <code>nil</code>. + </li> + <li> + A slice value may only be compared to <code>nil</code>. + </li> + <li> + Channel and map values are equal if they were created by the same call to <code>make</code> + (§<a href="#Making_slices_maps_and_channels">Making slices, maps, and channels</a>) + or if both are <code>nil</code>. + </li> + <li> + Interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types and + equal dynamic values or if both are <code>nil</code>. + </li> + <li> + An interface value <code>x</code> is equal to a non-interface value + <code>y</code> if the dynamic type of <code>x</code> is identical to + the static type of <code>y</code> and the dynamic value of <code>x</code> + is equal to <code>y</code>. + </li> + <li> + A pointer, function, slice, channel, map, or interface value is equal + to <code>nil</code> if it has been assigned the explicit value + <code>nil</code>, if it is uninitialized, or if it has been assigned + another value equal to <code>nil</code>. + </li> +</ul> + + +<h3 id="Logical_operators">Logical operators</h3> + +<p> +Logical operators apply to <a href="#Boolean_types">boolean</a> values +and yield a result of the same type as the operands. +The right operand is evaluated conditionally. +</p> + +<pre class="grammar"> +&& conditional and p && q is "if p then q else false" +|| conditional or p || q is "if p then true else q" +! not !p is "not p" +</pre> + + +<h3 id="Address_operators">Address operators</h3> + +<p> +For an operand <code>x</code> of type <code>T</code>, the address operation +<code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. +The operand must be <i>addressable</i>, +that is, either a variable, pointer indirection, or slice indexing +operation; or a field selector of an addressable struct operand; +or an array indexing operation of an addressable array. +As an exception to the addressability requirement, <code>x</code> may also be a +<a href="#Composite_literals">composite literal</a>. +</p> +<p> +For an operand <code>x</code> of pointer type <code>*T</code>, the pointer +indirection <code>*x</code> denotes the value of type <code>T</code> pointed +to by <code>x</code>. +</p> + +<pre> +&x +&a[f(2)] +*p +*pf(x) +</pre> + + +<h3 id="Receive_operator">Receive operator</h3> + +<p> +For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, +the value of the receive operation <code><-ch</code> is the value received +from the channel <code>ch</code>. The type of the value is the element type of +the channel. The expression blocks until a value is available. +Receiving from a <code>nil</code> channel blocks forever. +</p> + +<pre> +v1 := <-ch +v2 = <-ch +f(<-ch) +<-strobe // wait until clock pulse and discard received value +</pre> + +<p> +A receive expression used in an assignment or initialization of the form +</p> + +<pre> +x, ok = <-ch +x, ok := <-ch +var x, ok = <-ch +</pre> + +<p> +yields an additional result. +The boolean variable <code>ok</code> indicates whether +the received value was sent on the channel (<code>true</code>) +or is a <a href="#The_zero_value">zero value</a> returned +because the channel is closed and empty (<code>false</code>). +</p> + +<!-- +<p> +<span class="alert">TODO: Probably in a separate section, communication semantics +need to be presented regarding send, receive, select, and goroutines.</span> +</p> +--> + + +<h3 id="Method_expressions">Method expressions</h3> + +<p> +If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, +<code>T.M</code> is a function that is callable as a regular function +with the same arguments as <code>M</code> prefixed by an additional +argument that is the receiver of the method. +</p> + +<pre class="ebnf"> +MethodExpr = ReceiverType "." MethodName . +ReceiverType = TypeName | "(" "*" TypeName ")" . +</pre> + +<p> +Consider a struct type <code>T</code> with two methods, +<code>Mv</code>, whose receiver is of type <code>T</code>, and +<code>Mp</code>, whose receiver is of type <code>*T</code>. +</p> + +<pre> +type T struct { + a int +} +func (tv T) Mv(a int) int { return 0 } // value receiver +func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver +var t T +</pre> + +<p> +The expression +</p> + +<pre> +T.Mv +</pre> + +<p> +yields a function equivalent to <code>Mv</code> but +with an explicit receiver as its first argument; it has signature +</p> + +<pre> +func(tv T, a int) int +</pre> + +<p> +That function may be called normally with an explicit receiver, so +these three invocations are equivalent: +</p> + +<pre> +t.Mv(7) +T.Mv(t, 7) +f := T.Mv; f(t, 7) +</pre> + +<p> +Similarly, the expression +</p> + +<pre> +(*T).Mp +</pre> + +<p> +yields a function value representing <code>Mp</code> with signature +</p> + +<pre> +func(tp *T, f float32) float32 +</pre> + +<p> +For a method with a value receiver, one can derive a function +with an explicit pointer receiver, so +</p> + +<pre> +(*T).Mv +</pre> + +<p> +yields a function value representing <code>Mv</code> with signature +</p> + +<pre> +func(tv *T, a int) int +</pre> + +<p> +Such a function indirects through the receiver to create a value +to pass as the receiver to the underlying method; +the method does not overwrite the value whose address is passed in +the function call. +</p> + +<p> +The final case, a value-receiver function for a pointer-receiver method, +is illegal because pointer-receiver methods are not in the method set +of the value type. +</p> + +<p> +Function values derived from methods are called with function call syntax; +the receiver is provided as the first argument to the call. +That is, given <code>f := T.Mv</code>, <code>f</code> is invoked +as <code>f(t, 7)</code> not <code>t.f(7)</code>. +To construct a function that binds the receiver, use a +<a href="#Function_literals">closure</a>. +</p> + +<p> +It is legal to derive a function value from a method of an interface type. +The resulting function takes an explicit receiver of that interface type. +</p> + +<h3 id="Conversions">Conversions</h3> + +<p> +Conversions are expressions of the form <code>T(x)</code> +where <code>T</code> is a type and <code>x</code> is an expression +that can be converted to type <code>T</code>. +</p> + +<pre class="ebnf"> +Conversion = Type "(" Expression ")" . +</pre> + +<p> +If the type starts with an operator it must be parenthesized: +</p> + +<pre> +*Point(p) // same as *(Point(p)) +(*Point)(p) // p is converted to (*Point) +<-chan int(c) // same as <-(chan int(c)) +(<-chan int)(c) // c is converted to (<-chan int) +</pre> + +<p> +A <a href="#Constants">constant</a> value <code>x</code> can be converted to +type <code>T</code> in any of these cases: +</p> + +<ul> + <li> + <code>x</code> is representable by a value of type <code>T</code>. + </li> + <li> + <code>x</code> is an integer constant and <code>T</code> is a + <a href="#String_types">string type</a>. + The same rule as for non-constant <code>x</code> applies in this case + (§<a href="#Conversions_to_and_from_a_string_type">Conversions to and from a string type</a>). + </li> +</ul> + +<p> +Converting a constant yields a typed constant as result. +</p> + +<pre> +uint(iota) // iota value of type uint +float32(2.718281828) // 2.718281828 of type float32 +complex128(1) // 1.0 + 0.0i of type complex128 +string('x') // "x" of type string +string(0x266c) // "♬" of type string +MyString("foo" + "bar") // "foobar" of type MyString +string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant +(*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type +int(1.2) // illegal: 1.2 cannot be represented as an int +string(65.0) // illegal: 65.0 is not an integer constant +</pre> + +<p> +A non-constant value <code>x</code> can be converted to type <code>T</code> +in any of these cases: +</p> + +<ul> + <li> + <code>x</code> is <a href="#Assignability">assignable</a> + to <code>T</code>. + </li> + <li> + <code>x</code>'s type and <code>T</code> have identical + <a href="#Types">underlying types</a>. + </li> + <li> + <code>x</code>'s type and <code>T</code> are unnamed pointer types + and their pointer base types have identical underlying types. + </li> + <li> + <code>x</code>'s type and <code>T</code> are both integer or floating + point types. + </li> + <li> + <code>x</code>'s type and <code>T</code> are both complex types. + </li> + <li> + <code>x</code> is an integer or has type <code>[]byte</code> or + <code>[]int</code> and <code>T</code> is a string type. + </li> + <li> + <code>x</code> is a string and <code>T</code> is <code>[]byte</code> or + <code>[]int</code>. + </li> +</ul> + +<p> +Specific rules apply to (non-constant) conversions between numeric types or +to and from a string type. +These conversions may change the representation of <code>x</code> +and incur a run-time cost. +All other conversions only change the type but not the representation +of <code>x</code>. +</p> + +<p> +There is no linguistic mechanism to convert between pointers and integers. +The package <a href="#Package_unsafe"><code>unsafe</code></a> +implements this functionality under +restricted circumstances. +</p> + +<h4>Conversions between numeric types</h4> + +<p> +For the conversion of non-constant numeric values, the following rules apply: +</p> + +<ol> +<li> +When converting between integer types, if the value is a signed integer, it is +sign extended to implicit infinite precision; otherwise it is zero extended. +It is then truncated to fit in the result type's size. +For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. +The conversion always yields a valid value; there is no indication of overflow. +</li> +<li> +When converting a floating-point number to an integer, the fraction is discarded +(truncation towards zero). +</li> +<li> +When converting an integer or floating-point number to a floating-point type, +or a complex number to another complex type, the result value is rounded +to the precision specified by the destination type. +For instance, the value of a variable <code>x</code> of type <code>float32</code> +may be stored using additional precision beyond that of an IEEE-754 32-bit number, +but float32(x) represents the result of rounding <code>x</code>'s value to +32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits +of precision, but <code>float32(x + 0.1)</code> does not. +</li> +</ol> + +<p> +In all non-constant conversions involving floating-point or complex values, +if the result type cannot represent the value the conversion +succeeds but the result value is implementation-dependent. +</p> + +<h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> + +<ol> +<li> +Converting a signed or unsigned integer value to a string type yields a +string containing the UTF-8 representation of the integer. Values outside +the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. + +<pre> +string('a') // "a" +string(-1) // "\ufffd" == "\xef\xbf\xbd " +string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" +type MyString string +MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" +</pre> +</li> + +<li> +Converting a value of type <code>[]byte</code> (or +the equivalent <code>[]uint8</code>) to a string type yields a +string whose successive bytes are the elements of the slice. If +the slice value is <code>nil</code>, the result is the empty string. + +<pre> +string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" +</pre> +</li> + +<li> +Converting a value of type <code>[]int</code> to a string type yields +a string that is the concatenation of the individual integers +converted to strings. If the slice value is <code>nil</code>, the +result is the empty string. +<pre> +string([]int{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" +</pre> +</li> + +<li> +Converting a value of a string type to <code>[]byte</code> (or <code>[]uint8</code>) +yields a slice whose successive elements are the bytes of the string. +If the string is empty, the result is <code>[]byte(nil)</code>. + +<pre> +[]byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} +</pre> +</li> + +<li> +Converting a value of a string type to <code>[]int</code> yields a +slice containing the individual Unicode code points of the string. +If the string is empty, the result is <code>[]int(nil)</code>. +<pre> +[]int(MyString("白鵬翔")) // []int{0x767d, 0x9d6c, 0x7fd4} +</pre> +</li> +</ol> + + +<h3 id="Constant_expressions">Constant expressions</h3> + +<p> +Constant expressions may contain only <a href="#Constants">constant</a> +operands and are evaluated at compile-time. +</p> + +<p> +Untyped boolean, numeric, and string constants may be used as operands +wherever it is legal to use an operand of boolean, numeric, or string type, +respectively. Except for shift operations, if the operands of a binary operation +are an untyped integer constant and an untyped floating-point constant, +the integer constant is converted to an untyped floating-point constant +(relevant for <code>/</code> and <code>%</code>). +Similarly, untyped integer or floating-point constants may be used as operands +wherever it is legal to use an operand of complex type; +the integer or floating point constant is converted to a +complex constant with a zero imaginary part. +</p> + +<p> +A constant <a href="#Comparison_operators">comparison</a> always yields +a constant of type <code>bool</code>. If the left operand of a constant +<a href="#Operators">shift expression</a> is an untyped constant, the +result is an integer constant; otherwise it is a constant of the same +type as the left operand, which must be of integer type +(§<a href="#Arithmetic_operators">Arithmetic operators</a>). +Applying all other operators to untyped constants results in an untyped +constant of the same kind (that is, a boolean, integer, floating-point, +complex, or string constant). +</p> + +<pre> +const a = 2 + 3.0 // a == 5.0 (floating-point constant) +const b = 15 / 4 // b == 3 (integer constant) +const c = 15 / 4.0 // c == 3.75 (floating-point constant) +const d = 1 << 3.0 // d == 8 (integer constant) +const e = 1.0 << 3 // e == 8 (integer constant) +const f = int32(1) << 33 // f == 0 (type int32) +const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) +const h = "foo" > "bar" // h == true (type bool) +</pre> + +<p> +Imaginary literals are untyped complex constants (with zero real part) +and may be combined in binary +operations with untyped integer and floating-point constants; the +result is an untyped complex constant. +Complex constants are always constructed from +constant expressions involving imaginary +literals or constants derived from them, or calls of the built-in function +<a href="#Complex_numbers"><code>complex</code></a>. +</p> + +<pre> +const Σ = 1 - 0.707i +const Δ = Σ + 2.0e-4 - 1/1i +const Φ = iota * 1i +const iΓ = complex(0, Γ) +</pre> + +<p> +Constant expressions are always evaluated exactly; intermediate values and the +constants themselves may require precision significantly larger than supported +by any predeclared type in the language. The following are legal declarations: +</p> + +<pre> +const Huge = 1 << 100 +const Four int8 = Huge >> 98 +</pre> + +<p> +The values of <i>typed</i> constants must always be accurately representable as values +of the constant type. The following constant expressions are illegal: +</p> + +<pre> +uint(-1) // -1 cannot be represented as a uint +int(3.14) // 3.14 cannot be represented as an int +int64(Huge) // 1<<100 cannot be represented as an int64 +Four * 300 // 300 cannot be represented as an int8 +Four * 100 // 400 cannot be represented as an int8 +</pre> + +<p> +The mask used by the unary bitwise complement operator <code>^</code> matches +the rule for non-constants: the mask is all 1s for unsigned constants +and -1 for signed and untyped constants. +</p> + +<pre> +^1 // untyped integer constant, equal to -2 +uint8(^1) // error, same as uint8(-2), out of range +^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) +int8(^1) // same as int8(-2) +^int8(1) // same as -1 ^ int8(1) = -2 +</pre> + +<!-- +<p> +<span class="alert"> +TODO: perhaps ^ should be disallowed on non-uints instead of assuming twos complement. +Also it may be possible to make typed constants more like variables, at the cost of fewer +overflow etc. errors being caught. +</span> +</p> +--> + +<h3 id="Order_of_evaluation">Order of evaluation</h3> + +<p> +When evaluating the elements of an assignment or expression, +all function calls, method calls and +communication operations are evaluated in lexical left-to-right +order. +</p> + +<p> +For example, in the assignment +</p> +<pre> +y[f()], ok = g(h(), i() + x[j()], <-c), k() +</pre> +<p> +the function calls and communication happen in the order +<code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, +<code><-c</code>, <code>g()</code>, and <code>k()</code>. +However, the order of those events compared to the evaluation +and indexing of <code>x</code> and the evaluation +of <code>y</code> is not specified. +</p> + +<p> +Floating-point operations within a single expression are evaluated according to +the associativity of the operators. Explicit parentheses affect the evaluation +by overriding the default associativity. +In the expression <code>x + (y + z)</code> the addition <code>y + z</code> +is performed before adding <code>x</code>. +</p> + +<h2 id="Statements">Statements</h2> + +<p> +Statements control execution. +</p> + +<pre class="ebnf"> +Statement = + Declaration | LabeledStmt | SimpleStmt | + GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | + FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | + DeferStmt . + +SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . +</pre> + + +<h3 id="Empty_statements">Empty statements</h3> + +<p> +The empty statement does nothing. +</p> + +<pre class="ebnf"> +EmptyStmt = . +</pre> + + +<h3 id="Labeled_statements">Labeled statements</h3> + +<p> +A labeled statement may be the target of a <code>goto</code>, +<code>break</code> or <code>continue</code> statement. +</p> + +<pre class="ebnf"> +LabeledStmt = Label ":" Statement . +Label = identifier . +</pre> + +<pre> +Error: log.Panic("error encountered") +</pre> + + +<h3 id="Expression_statements">Expression statements</h3> + +<p> +Function calls, method calls, and receive operations +can appear in statement context. Such statements may be parenthesized. +</p> + +<pre class="ebnf"> +ExpressionStmt = Expression . +</pre> + +<pre> +h(x+y) +f.Close() +<-ch +(<-ch) +</pre> + + +<h3 id="Send_statements">Send statements</h3> + +<p> +A send statement sends a value on a channel. +The channel expression must be of <a href="#Channel_types">channel type</a> +and the type of the value must be <a href="#Assignability">assignable</a> +to the channel's element type. +</p> + +<pre class="ebnf"> +SendStmt = Channel "<-" Expression . +Channel = Expression . +</pre> + +<p> +Both the channel and the value expression are evaluated before communication +begins. Communication blocks until the send can proceed, at which point the +value is transmitted on the channel. +A send on an unbuffered channel can proceed if a receiver is ready. +A send on a buffered channel can proceed if there is room in the buffer. +A send on a <code>nil</code> channel blocks forever. +</p> + +<pre> +ch <- 3 +</pre> + + +<h3 id="IncDec_statements">IncDec statements</h3> + +<p> +The "++" and "--" statements increment or decrement their operands +by the untyped <a href="#Constants">constant</a> <code>1</code>. +As with an assignment, the operand must be <a href="#Address_operators">addressable</a> +or a map index expression. +</p> + +<pre class="ebnf"> +IncDecStmt = Expression ( "++" | "--" ) . +</pre> + +<p> +The following <a href="#Assignments">assignment statements</a> are semantically +equivalent: +</p> + +<pre class="grammar"> +IncDec statement Assignment +x++ x += 1 +x-- x -= 1 +</pre> + + +<h3 id="Assignments">Assignments</h3> + +<pre class="ebnf"> +Assignment = ExpressionList assign_op ExpressionList . + +assign_op = [ add_op | mul_op ] "=" . +</pre> + +<p> +Each left-hand side operand must be <a href="#Address_operators">addressable</a>, +a map index expression, or the <a href="#Blank_identifier">blank identifier</a>. +Operands may be parenthesized. +</p> + +<pre> +x = 1 +*p = f() +a[i] = 23 +(k) = <-ch // same as: k = <-ch +</pre> + +<p> +An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> +<code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent +to <code>x</code> <code>=</code> <code>x</code> <i>op</i> +<code>y</code> but evaluates <code>x</code> +only once. The <i>op</i><code>=</code> construct is a single token. +In assignment operations, both the left- and right-hand expression lists +must contain exactly one single-valued expression. +</p> + +<pre> +a[i] <<= 2 +i &^= 1<<n +</pre> + +<p> +A tuple assignment assigns the individual elements of a multi-valued +operation to a list of variables. There are two forms. In the +first, the right hand operand is a single multi-valued expression +such as a function evaluation or <a href="#Channel_types">channel</a> or +<a href="#Map_types">map</a> operation or a <a href="#Type_assertions">type assertion</a>. +The number of operands on the left +hand side must match the number of values. For instance, if +<code>f</code> is a function returning two values, +</p> + +<pre> +x, y = f() +</pre> + +<p> +assigns the first value to <code>x</code> and the second to <code>y</code>. +The <a href="#Blank_identifier">blank identifier</a> provides a +way to ignore values returned by a multi-valued expression: +</p> + +<pre> +x, _ = f() // ignore second value returned by f() +</pre> + +<p> +In the second form, the number of operands on the left must equal the number +of expressions on the right, each of which must be single-valued, and the +<i>n</i>th expression on the right is assigned to the <i>n</i>th +operand on the left. +The expressions on the right are evaluated before assigning to +any of the operands on the left, but otherwise the evaluation +order is unspecified beyond <a href="#Order_of_evaluation">the usual rules</a>. +</p> + +<pre> +a, b = b, a // exchange a and b +</pre> + +<p> +In assignments, each value must be +<a href="#Assignability">assignable</a> to the type of the +operand to which it is assigned. If an untyped <a href="#Constants">constant</a> +is assigned to a variable of interface type, the constant is <a href="#Conversions">converted</a> +to type <code>bool</code>, <code>int</code>, <code>float64</code>, +<code>complex128</code> or <code>string</code> +respectively, depending on whether the value is a boolean, integer, floating-point, +complex, or string constant. +</p> + + +<h3 id="If_statements">If statements</h3> + +<p> +"If" statements specify the conditional execution of two branches +according to the value of a boolean expression. If the expression +evaluates to true, the "if" branch is executed, otherwise, if +present, the "else" branch is executed. +</p> + +<pre class="ebnf"> +IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . +</pre> + +<pre> +if x > max { + x = max +} +</pre> + +<p> +The expression may be preceded by a simple statement, which +executes before the expression is evaluated. +</p> + +<pre> +if x := f(); x < y { + return x +} else if x > z { + return z +} else { + return y +} +</pre> + + +<h3 id="Switch_statements">Switch statements</h3> + +<p> +"Switch" statements provide multi-way execution. +An expression or type specifier is compared to the "cases" +inside the "switch" to determine which branch +to execute. +</p> + +<pre class="ebnf"> +SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . +</pre> + +<p> +There are two forms: expression switches and type switches. +In an expression switch, the cases contain expressions that are compared +against the value of the switch expression. +In a type switch, the cases contain types that are compared against the +type of a specially annotated switch expression. +</p> + +<h4 id="Expression_switches">Expression switches</h4> + +<p> +In an expression switch, +the switch expression is evaluated and +the case expressions, which need not be constants, +are evaluated left-to-right and top-to-bottom; the first one that equals the +switch expression +triggers execution of the statements of the associated case; +the other cases are skipped. +If no case matches and there is a "default" case, +its statements are executed. +There can be at most one default case and it may appear anywhere in the +"switch" statement. +A missing switch expression is equivalent to +the expression <code>true</code>. +</p> + +<pre class="ebnf"> +ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . +ExprCaseClause = ExprSwitchCase ":" { Statement ";" } . +ExprSwitchCase = "case" ExpressionList | "default" . +</pre> + +<p> +In a case or default clause, +the last statement only may be a "fallthrough" statement +(§<a href="#Fallthrough_statements">Fallthrough statement</a>) to +indicate that control should flow from the end of this clause to +the first statement of the next clause. +Otherwise control flows to the end of the "switch" statement. +</p> + +<p> +The expression may be preceded by a simple statement, which +executes before the expression is evaluated. +</p> + +<pre> +switch tag { +default: s3() +case 0, 1, 2, 3: s1() +case 4, 5, 6, 7: s2() +} + +switch x := f(); { // missing switch expression means "true" +case x < 0: return -x +default: return x +} + +switch { +case x < y: f1() +case x < z: f2() +case x == 4: f3() +} +</pre> + +<h4 id="Type_switches">Type switches</h4> + +<p> +A type switch compares types rather than values. It is otherwise similar +to an expression switch. It is marked by a special switch expression that +has the form of a <a href="#Type_assertions">type assertion</a> +using the reserved word <code>type</code> rather than an actual type. +Cases then match literal types against the dynamic type of the expression +in the type assertion. +</p> + +<pre class="ebnf"> +TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . +TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . +TypeCaseClause = TypeSwitchCase ":" { Statement ";" } . +TypeSwitchCase = "case" TypeList | "default" . +TypeList = Type { "," Type } . +</pre> + +<p> +The TypeSwitchGuard may include a +<a href="#Short_variable_declarations">short variable declaration</a>. +When that form is used, the variable is declared in each clause. +In clauses with a case listing exactly one type, the variable +has that type; otherwise, the variable has the type of the expression +in the TypeSwitchGuard. +</p> + +<p> +The type in a case may be <code>nil</code> +(§<a href="#Predeclared_identifiers">Predeclared identifiers</a>); +that case is used when the expression in the TypeSwitchGuard +is a <code>nil</code> interface value. +</p> + +<p> +Given an expression <code>x</code> of type <code>interface{}</code>, +the following type switch: +</p> + +<pre> +switch i := x.(type) { +case nil: + printString("x is nil") +case int: + printInt(i) // i is an int +case float64: + printFloat64(i) // i is a float64 +case func(int) float64: + printFunction(i) // i is a function +case bool, string: + printString("type is bool or string") // i is an interface{} +default: + printString("don't know the type") +} +</pre> + +<p> +could be rewritten: +</p> + +<pre> +v := x // x is evaluated exactly once +if v == nil { + printString("x is nil") +} else if i, is_int := v.(int); is_int { + printInt(i) // i is an int +} else if i, is_float64 := v.(float64); is_float64 { + printFloat64(i) // i is a float64 +} else if i, is_func := v.(func(int) float64); is_func { + printFunction(i) // i is a function +} else { + i1, is_bool := v.(bool) + i2, is_string := v.(string) + if is_bool || is_string { + i := v + printString("type is bool or string") // i is an interface{} + } else { + i := v + printString("don't know the type") // i is an interface{} + } +} +</pre> + +<p> +The type switch guard may be preceded by a simple statement, which +executes before the guard is evaluated. +</p> + +<p> +The "fallthrough" statement is not permitted in a type switch. +</p> + +<h3 id="For_statements">For statements</h3> + +<p> +A "for" statement specifies repeated execution of a block. The iteration is +controlled by a condition, a "for" clause, or a "range" clause. +</p> + +<pre class="ebnf"> +ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . +Condition = Expression . +</pre> + +<p> +In its simplest form, a "for" statement specifies the repeated execution of +a block as long as a boolean condition evaluates to true. +The condition is evaluated before each iteration. +If the condition is absent, it is equivalent to <code>true</code>. +</p> + +<pre> +for a < b { + a *= 2 +} +</pre> + +<p> +A "for" statement with a ForClause is also controlled by its condition, but +additionally it may specify an <i>init</i> +and a <i>post</i> statement, such as an assignment, +an increment or decrement statement. The init statement may be a +<a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. +</p> + +<pre class="ebnf"> +ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . +InitStmt = SimpleStmt . +PostStmt = SimpleStmt . +</pre> + +<pre> +for i := 0; i < 10; i++ { + f(i) +} +</pre> + +<p> +If non-empty, the init statement is executed once before evaluating the +condition for the first iteration; +the post statement is executed after each execution of the block (and +only if the block was executed). +Any element of the ForClause may be empty but the +<a href="#Semicolons">semicolons</a> are +required unless there is only a condition. +If the condition is absent, it is equivalent to <code>true</code>. +</p> + +<pre> +for cond { S() } is the same as for ; cond ; { S() } +for { S() } is the same as for true { S() } +</pre> + +<p> +A "for" statement with a "range" clause +iterates through all entries of an array, slice, string or map, +or values received on a channel. For each entry it assigns <i>iteration values</i> +to corresponding <i>iteration variables</i> and then executes the block. +</p> + +<pre class="ebnf"> +RangeClause = Expression [ "," Expression ] ( "=" | ":=" ) "range" Expression . +</pre> + +<p> +The expression on the right in the "range" clause is called the <i>range expression</i>, +which may be an array, pointer to an array, slice, string, map, or channel. +As with an assignment, the operands on the left must be +<a href="#Address_operators">addressable</a> or map index expressions; they +denote the iteration variables. If the range expression is a channel, only +one iteration variable is permitted, otherwise there may be one or two. +If the second iteration variable is the <a href="#Blank_identifier">blank identifier</a>, +the range clause is equivalent to the same clause with only the first variable present. +</p> + +<p> +The range expression is evaluated once before beginning the loop +except if the expression is an array, in which case, depending on +the expression, it might not be evaluated (see below). +Function calls on the left are evaluated once per iteration. +For each iteration, iteration values are produced as follows: +</p> + +<pre class="grammar"> +Range expression 1st value 2nd value (if 2nd variable is present) + +array or slice a [n]E, *[n]E, or []E index i int a[i] E +string s string type index i int see below int +map m map[K]V key k K m[k] V +channel c chan E element e E +</pre> + +<ol> +<li> +For an array, pointer to array, or slice value <code>a</code>, the index iteration +values are produced in increasing order, starting at element index 0. As a special +case, if only the first iteration variable is present, the range loop produces +iteration values from 0 up to <code>len(a)</code> and does not index into the array +or slice itself. For a <code>nil</code> slice, the number of iterations is 0. +</li> + +<li> +For a string value, the "range" clause iterates over the Unicode code points +in the string starting at byte index 0. On successive iterations, the index value will be the +index of the first byte of successive UTF-8-encoded code points in the string, +and the second value, of type <code>int</code>, will be the value of +the corresponding code point. If the iteration encounters an invalid +UTF-8 sequence, the second value will be <code>0xFFFD</code>, +the Unicode replacement character, and the next iteration will advance +a single byte in the string. +</li> + +<li> +The iteration order over maps is not specified. +If map entries that have not yet been reached are deleted during iteration, +the corresponding iteration values will not be produced. If map entries are +inserted during iteration, the behavior is implementation-dependent, but the +iteration values for each entry will be produced at most once. If the map +is <code>nil</code>, the number of iterations is 0. +</li> + +<li> +For channels, the iteration values produced are the successive values sent on +the channel until the channel is <a href="#Close">closed</a>. If the channel +is <code>nil</code>, the range expression blocks forever. +</li> +</ol> + +<p> +The iteration values are assigned to the respective +iteration variables as in an <a href="#Assignments">assignment statement</a>. +</p> + +<p> +The iteration variables may be declared by the "range" clause (<code>:=</code>). +In this case their types are set to the types of the respective iteration values +and their <a href="#Declarations_and_scope">scope</a> ends at the end of the "for" +statement; they are re-used in each iteration. +If the iteration variables are declared outside the "for" statement, +after execution their values will be those of the last iteration. +</p> + +<pre> +var testdata *struct { + a *[7]int +} +for i, _ := range testdata.a { + // testdata.a is never evaluated; len(testdata.a) is constant + // i ranges from 0 to 6 + f(i) +} + +var a [10]string +m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} +for i, s := range a { + // type of i is int + // type of s is string + // s == a[i] + g(i, s) +} + +var key string +var val interface {} // value type of m is assignable to val +for key, val = range m { + h(key, val) +} +// key == last map key encountered in iteration +// val == map[key] + +var ch chan Work = producer() +for w := range ch { + doWork(w) +} +</pre> + + +<h3 id="Go_statements">Go statements</h3> + +<p> +A "go" statement starts the execution of a function or method call +as an independent concurrent thread of control, or <i>goroutine</i>, +within the same address space. +</p> + +<pre class="ebnf"> +GoStmt = "go" Expression . +</pre> + +<p> +The expression must be a call, and +unlike with a regular call, program execution does not wait +for the invoked function to complete. +</p> + +<pre> +go Server() +go func(ch chan<- bool) { for { sleep(10); ch <- true; }} (c) +</pre> + + +<h3 id="Select_statements">Select statements</h3> + +<p> +A "select" statement chooses which of a set of possible communications +will proceed. It looks similar to a "switch" statement but with the +cases all referring to communication operations. +</p> + +<pre class="ebnf"> +SelectStmt = "select" "{" { CommClause } "}" . +CommClause = CommCase ":" { Statement ";" } . +CommCase = "case" ( SendStmt | RecvStmt ) | "default" . +RecvStmt = [ Expression [ "," Expression ] ( "=" | ":=" ) ] RecvExpr . +RecvExpr = Expression . +</pre> + +<p> +RecvExpr must be a <a href="#Receive_operator">receive operation</a>. +For all the cases in the "select" +statement, the channel expressions are evaluated in top-to-bottom order, along with +any expressions that appear on the right hand side of send statements. +A channel may be <code>nil</code>, +which is equivalent to that case not +being present in the select statement +except, if a send, its expression is still evaluated. +If any of the resulting operations can proceed, one of those is +chosen and the corresponding communication and statements are +evaluated. Otherwise, if there is a default case, that executes; +if there is no default case, the statement blocks until one of the communications can +complete. +If there are no cases with non-<code>nil</code> channels, +the statement blocks forever. +Even if the statement blocks, +the channel and send expressions are evaluated only once, +upon entering the select statement. +</p> +<p> +Since all the channels and send expressions are evaluated, any side +effects in that evaluation will occur for all the communications +in the "select" statement. +</p> +<p> +If multiple cases can proceed, a pseudo-random fair choice is made to decide +which single communication will execute. +<p> +The receive case may declare one or two new variables using a +<a href="#Short_variable_declarations">short variable declaration</a>. +</p> + +<pre> +var c, c1, c2, c3 chan int +var i1, i2 int +select { +case i1 = <-c1: + print("received ", i1, " from c1\n") +case c2 <- i2: + print("sent ", i2, " to c2\n") +case i3, ok := (<-c3): // same as: i3, ok := <-c3 + if ok { + print("received ", i3, " from c3\n") + } else { + print("c3 is closed\n") + } +default: + print("no communication\n") +} + +for { // send random sequence of bits to c + select { + case c <- 0: // note: no statement, no fallthrough, no folding of cases + case c <- 1: + } +} + +select { } // block forever +</pre> + + +<h3 id="Return_statements">Return statements</h3> + +<p> +A "return" statement terminates execution of the containing function +and optionally provides a result value or values to the caller. +</p> + +<pre class="ebnf"> +ReturnStmt = "return" [ ExpressionList ] . +</pre> + +<p> +In a function without a result type, a "return" statement must not +specify any result values. +</p> +<pre> +func no_result() { + return +} +</pre> + +<p> +There are three ways to return values from a function with a result +type: +</p> + +<ol> + <li>The return value or values may be explicitly listed + in the "return" statement. Each expression must be single-valued + and <a href="#Assignability">assignable</a> + to the corresponding element of the function's result type. +<pre> +func simple_f() int { + return 2 +} + +func complex_f1() (re float64, im float64) { + return -7.0, -4.0 +} +</pre> + </li> + <li>The expression list in the "return" statement may be a single + call to a multi-valued function. The effect is as if each value + returned from that function were assigned to a temporary + variable with the type of the respective value, followed by a + "return" statement listing these variables, at which point the + rules of the previous case apply. +<pre> +func complex_f2() (re float64, im float64) { + return complex_f1() +} +</pre> + </li> + <li>The expression list may be empty if the function's result + type specifies names for its result parameters (§<a href="#Function_types">Function Types</a>). + The result parameters act as ordinary local variables + and the function may assign values to them as necessary. + The "return" statement returns the values of these variables. +<pre> +func complex_f3() (re float64, im float64) { + re = 7.0 + im = 4.0 + return +} + +func (devnull) Write(p []byte) (n int, _ os.Error) { + n = len(p) + return +} +</pre> + </li> +</ol> + +<p> +Regardless of how they are declared, all the result values are initialized to the zero values for their type (§<a href="#The_zero_value">The zero value</a>) upon entry to the function. +</p> + +<!-- +<p> +<span class="alert"> +TODO: Define when return is required.<br /> +TODO: Language about result parameters needs to go into a section on + function/method invocation<br /> +</span> +</p> +--> + +<h3 id="Break_statements">Break statements</h3> + +<p> +A "break" statement terminates execution of the innermost +"for", "switch" or "select" statement. +</p> + +<pre class="ebnf"> +BreakStmt = "break" [ Label ] . +</pre> + +<p> +If there is a label, it must be that of an enclosing +"for", "switch" or "select" statement, and that is the one whose execution +terminates +(§<a href="#For_statements">For statements</a>, §<a href="#Switch_statements">Switch statements</a>, §<a href="#Select_statements">Select statements</a>). +</p> + +<pre> +L: + for i < n { + switch i { + case 5: + break L + } + } +</pre> + +<h3 id="Continue_statements">Continue statements</h3> + +<p> +A "continue" statement begins the next iteration of the +innermost "for" loop at its post statement (§<a href="#For_statements">For statements</a>). +</p> + +<pre class="ebnf"> +ContinueStmt = "continue" [ Label ] . +</pre> + +<p> +If there is a label, it must be that of an enclosing +"for" statement, and that is the one whose execution +advances +(§<a href="#For_statements">For statements</a>). +</p> + +<h3 id="Goto_statements">Goto statements</h3> + +<p> +A "goto" statement transfers control to the statement with the corresponding label. +</p> + +<pre class="ebnf"> +GotoStmt = "goto" Label . +</pre> + +<pre> +goto Error +</pre> + +<p> +Executing the "goto" statement must not cause any variables to come into +<a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. +For instance, this example: +</p> + +<pre> + goto L // BAD + v := 3 +L: +</pre> + +<p> +is erroneous because the jump to label <code>L</code> skips +the creation of <code>v</code>. +</p> + +<p> +A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. +For instance, this example: +</p> + +<pre> +if n%2 == 1 { + goto L1 +} +for n > 0 { + f() + n-- +L1: + f() + n-- +} +</pre> + +<p> +is erroneous because the label <code>L1</code> is inside +the "for" statement's block but the <code>goto</code> is not. +</p> + +<h3 id="Fallthrough_statements">Fallthrough statements</h3> + +<p> +A "fallthrough" statement transfers control to the first statement of the +next case clause in a expression "switch" statement (§<a href="#Expression_switches">Expression switches</a>). It may +be used only as the final non-empty statement in a case or default clause in an +expression "switch" statement. +</p> + +<pre class="ebnf"> +FallthroughStmt = "fallthrough" . +</pre> + + +<h3 id="Defer_statements">Defer statements</h3> + +<p> +A "defer" statement invokes a function whose execution is deferred to the moment +the surrounding function returns. +</p> + +<pre class="ebnf"> +DeferStmt = "defer" Expression . +</pre> + +<p> +The expression must be a function or method call. +Each time the "defer" statement +executes, the parameters to the function call are evaluated and saved anew but the +function is not invoked. +Deferred function calls are executed in LIFO order +immediately before the surrounding function returns, +after the return values, if any, have been evaluated, but before they +are returned to the caller. For instance, if the deferred function is +a <a href="#Function_literals">function literal</a> and the surrounding +function has <a href="#Function_types">named result parameters</a> that +are in scope within the literal, the deferred function may access and modify +the result parameters before they are returned. +</p> + +<pre> +lock(l) +defer unlock(l) // unlocking happens before surrounding function returns + +// prints 3 2 1 0 before surrounding function returns +for i := 0; i <= 3; i++ { + defer fmt.Print(i) +} + +// f returns 1 +func f() (result int) { + defer func() { + result++ + }() + return 0 +} +</pre> + +<h2 id="Built-in_functions">Built-in functions</h2> + +<p> +Built-in functions are +<a href="#Predeclared_identifiers">predeclared</a>. +They are called like any other function but some of them +accept a type instead of an expression as the first argument. +</p> + +<p> +The built-in functions do not have standard Go types, +so they can only appear in <a href="#Calls">call expressions</a>; +they cannot be used as function values. +</p> + +<pre class="ebnf"> +BuiltinCall = identifier "(" [ BuiltinArgs [ "," ] ] ")" . +BuiltinArgs = Type [ "," ExpressionList ] | ExpressionList . +</pre> + +<h3 id="Close">Close</h3> + +<p> +For a channel <code>c</code>, the built-in function <code>close(c)</code> +marks the channel as unable to accept more values through a send operation; +sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. +After calling <code>close</code>, and after any previously +sent values have been received, receive operations will return +the zero value for the channel's type without blocking. + +The multi-valued <a href="#Receive_operator">receive operation</a> +returns a received value along with an indication of whether the channel is closed. +</p> + + +<h3 id="Length_and_capacity">Length and capacity</h3> + +<p> +The built-in functions <code>len</code> and <code>cap</code> take arguments +of various types and return a result of type <code>int</code>. +The implementation guarantees that the result always fits into an <code>int</code>. +</p> + +<pre class="grammar"> +Call Argument type Result + +len(s) string type string length in bytes + [n]T, *[n]T array length (== n) + []T slice length + map[K]T map length (number of defined keys) + chan T number of elements queued in channel buffer + +cap(s) [n]T, *[n]T array length (== n) + []T slice capacity + chan T channel buffer capacity +</pre> + +<p> +The capacity of a slice is the number of elements for which there is +space allocated in the underlying array. +At any time the following relationship holds: +</p> + +<pre> +0 <= len(s) <= cap(s) +</pre> + +<p> +The length and capacity of a <code>nil</code> slice, map, or channel are 0. +</p> + +<p> +The expression <code>len(s)</code> is <a href="#Constants">constant</a> if +<code>s</code> is a string constant. The expressions <code>len(s)</code> and +<code>cap(s)</code> are constants if the type of <code>s</code> is an array +or pointer to an array and the expression <code>s</code> does not contain +<a href="#Receive_operator">channel receives</a> or +<a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. +Otherwise, invocations of <code>len</code> and <code>cap</code> are not +constant and <code>s</code> is evaluated. +</p> + + +<h3 id="Allocation">Allocation</h3> + +<p> +The built-in function <code>new</code> takes a type <code>T</code> and +returns a value of type <code>*T</code>. +The memory is initialized as described in the section on initial values +(§<a href="#The_zero_value">The zero value</a>). +</p> + +<pre class="grammar"> +new(T) +</pre> + +<p> +For instance +</p> + +<pre> +type S struct { a int; b float64 } +new(S) +</pre> + +<p> +dynamically allocates memory for a variable of type <code>S</code>, +initializes it (<code>a=0</code>, <code>b=0.0</code>), +and returns a value of type <code>*S</code> containing the address +of the memory. +</p> + +<h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> + +<p> +Slices, maps and channels are reference types that do not require the +extra indirection of an allocation with <code>new</code>. +The built-in function <code>make</code> takes a type <code>T</code>, +which must be a slice, map or channel type, +optionally followed by a type-specific list of expressions. +It returns a value of type <code>T</code> (not <code>*T</code>). +The memory is initialized as described in the section on initial values +(§<a href="#The_zero_value">The zero value</a>). +</p> + +<pre class="grammar"> +Call Type T Result + +make(T, n) slice slice of type T with length n and capacity n +make(T, n, m) slice slice of type T with length n and capacity m + +make(T) map map of type T +make(T, n) map map of type T with initial space for n elements + +make(T) channel synchronous channel of type T +make(T, n) channel asynchronous channel of type T, buffer size n +</pre> + + +<p> +The arguments <code>n</code> and <code>m</code> must be of integer type. +A <a href="#Run_time_panics">run-time panic</a> occurs if <code>n</code> +is negative or larger than <code>m</code>, or if <code>n</code> or +<code>m</code> cannot be represented by an <code>int</code>. +</p> + +<pre> +s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 +s := make([]int, 10) // slice with len(s) == cap(s) == 10 +c := make(chan int, 10) // channel with a buffer size of 10 +m := make(map[string] int, 100) // map with initial space for 100 elements +</pre> + + +<h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> + +<p> +Two built-in functions assist in common slice operations. +</p> + +<p> +The <a href="#Function_types">variadic</a> function <code>append</code> +appends zero or more values <code>x</code> +to <code>s</code> of type <code>S</code>, which must be a slice type, and +returns the resulting slice, also of type <code>S</code>. +The values <code>x</code> are passed to a parameter of type <code>...T</code> +where <code>T</code> is the <a href="#Slice_types">element type</a> of +<code>S</code> and the respective +<a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. +</p> + +<pre class="grammar"> +append(s S, x ...T) S // T is the element type of S +</pre> + +<p> +If the capacity of <code>s</code> is not large enough to fit the additional +values, <code>append</code> allocates a new, sufficiently large slice that fits +both the existing slice elements and the additional values. Thus, the returned +slice may refer to a different underlying array. +</p> + +<pre> +s0 := []int{0, 0} +s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} +s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} +s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} + +var t []interface{} +t = append(t, 42, 3.1415, "foo") t == []interface{}{42, 3.1415, "foo"} +</pre> + +<p> +The function <code>copy</code> copies slice elements from +a source <code>src</code> to a destination <code>dst</code> and returns the +number of elements copied. Source and destination may overlap. +Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be +<a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. +The number of elements copied is the minimum of +<code>len(src)</code> and <code>len(dst)</code>. +As a special case, <code>copy</code> also accepts a destination argument assignable +to type <code>[]byte</code> with a source argument of a string type. +This form copies the bytes from the string into the byte slice. +</p> + +<pre class="grammar"> +copy(dst, src []T) int +copy(dst []byte, src string) int +</pre> + +<p> +Examples: +</p> + +<pre> +var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} +var s = make([]int, 6) +var b = make([]byte, 5) +n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} +n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} +n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") +</pre> + +<h3 id="Complex_numbers">Assembling and disassembling complex numbers</h3> + +<p> +Three functions assemble and disassemble complex numbers. +The built-in function <code>complex</code> constructs a complex +value from a floating-point real and imaginary part, while +<code>real</code> and <code>imag</code> +extract the real and imaginary parts of a complex value. +</p> + +<pre class="grammar"> +complex(realPart, imaginaryPart floatT) complexT +real(complexT) floatT +imag(complexT) floatT +</pre> + +<p> +The type of the arguments and return value correspond. +For <code>complex</code>, the two arguments must be of the same +floating-point type and the return type is the complex type +with the corresponding floating-point constituents: +<code>complex64</code> for <code>float32</code>, +<code>complex128</code> for <code>float64</code>. +The <code>real</code> and <code>imag</code> functions +together form the inverse, so for a complex value <code>z</code>, +<code>z</code> <code>==</code> <code>complex(real(z),</code> <code>imag(z))</code>. +</p> + +<p> +If the operands of these functions are all constants, the return +value is a constant. +</p> + +<pre> +var a = complex(2, -2) // complex128 +var b = complex(1.0, -1.4) // complex128 +x := float32(math.Cos(math.Pi/2)) // float32 +var c64 = complex(5, -x) // complex64 +var im = imag(b) // float64 +var rl = real(c64) // float32 +</pre> + +<h3 id="Handling_panics">Handling panics</h3> + +<p> Two built-in functions, <code>panic</code> and <code>recover</code>, +assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> +and program-defined error conditions. +</p> + +<pre class="grammar"> +func panic(interface{}) +func recover() interface{} +</pre> + +<p> +When a function <code>F</code> calls <code>panic</code>, normal +execution of <code>F</code> stops immediately. Any functions whose +execution was <a href="#Defer_statements">deferred</a> by the +invocation of <code>F</code> are run in the usual way, and then +<code>F</code> returns to its caller. To the caller, <code>F</code> +then behaves like a call to <code>panic</code>, terminating its own +execution and running deferred functions. This continues until all +functions in the goroutine have ceased execution, in reverse order. +At that point, the program is +terminated and the error condition is reported, including the value of +the argument to <code>panic</code>. This termination sequence is +called <i>panicking</i>. +</p> + +<pre> +panic(42) +panic("unreachable") +panic(Error("cannot parse")) +</pre> + +<p> +The <code>recover</code> function allows a program to manage behavior +of a panicking goroutine. Executing a <code>recover</code> call +<i>inside</i> a deferred function (but not any function called by it) stops +the panicking sequence by restoring normal execution, and retrieves +the error value passed to the call of <code>panic</code>. If +<code>recover</code> is called outside the deferred function it will +not stop a panicking sequence. In this case, or when the goroutine +is not panicking, or if the argument supplied to <code>panic</code> +was <code>nil</code>, <code>recover</code> returns <code>nil</code>. +</p> + +<p> +The <code>protect</code> function in the example below invokes +the function argument <code>g</code> and protects callers from +run-time panics raised by <code>g</code>. +</p> + +<pre> +func protect(g func()) { + defer func() { + log.Println("done") // Println executes normally even in there is a panic + if x := recover(); x != nil { + log.Printf("run time panic: %v", x) + } + }() + log.Println("start") + g() +} +</pre> + + +<h3 id="Bootstrapping">Bootstrapping</h3> + +<p> +Current implementations provide several built-in functions useful during +bootstrapping. These functions are documented for completeness but are not +guaranteed to stay in the language. They do not return a result. +</p> + +<pre class="grammar"> +Function Behavior + +print prints all arguments; formatting of arguments is implementation-specific +println like print but prints spaces between arguments and a newline at the end +</pre> + + +<h2 id="Packages">Packages</h2> + +<p> +Go programs are constructed by linking together <i>packages</i>. +A package in turn is constructed from one or more source files +that together declare constants, types, variables and functions +belonging to the package and which are accessible in all files +of the same package. Those elements may be +<a href="#Exported_identifiers">exported</a> and used in another package. +</p> + +<h3 id="Source_file_organization">Source file organization</h3> + +<p> +Each source file consists of a package clause defining the package +to which it belongs, followed by a possibly empty set of import +declarations that declare packages whose contents it wishes to use, +followed by a possibly empty set of declarations of functions, +types, variables, and constants. +</p> + +<pre class="ebnf"> +SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . +</pre> + +<h3 id="Package_clause">Package clause</h3> + +<p> +A package clause begins each source file and defines the package +to which the file belongs. +</p> + +<pre class="ebnf"> +PackageClause = "package" PackageName . +PackageName = identifier . +</pre> + +<p> +The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. +</p> + +<pre> +package math +</pre> + +<p> +A set of files sharing the same PackageName form the implementation of a package. +An implementation may require that all source files for a package inhabit the same directory. +</p> + +<h3 id="Import_declarations">Import declarations</h3> + +<p> +An import declaration states that the source file containing the +declaration uses identifiers +<a href="#Exported_identifiers">exported</a> by the <i>imported</i> +package and enables access to them. The import names an +identifier (PackageName) to be used for access and an ImportPath +that specifies the package to be imported. +</p> + +<pre class="ebnf"> +ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . +ImportSpec = [ "." | PackageName ] ImportPath . +ImportPath = string_lit . +</pre> + +<p> +The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> +to access the exported identifiers of the package within the importing source file. +It is declared in the <a href="#Blocks">file block</a>. +If the PackageName is omitted, it defaults to the identifier specified in the +<a href="#Package_clause">package clause</a> of the imported package. +If an explicit period (<code>.</code>) appears instead of a name, all the +package's exported identifiers will be declared in the current file's +file block and can be accessed without a qualifier. +</p> + +<p> +The interpretation of the ImportPath is implementation-dependent but +it is typically a substring of the full file name of the compiled +package and may be relative to a repository of installed packages. +</p> + +<p> +Assume we have compiled a package containing the package clause +<code>package math</code>, which exports function <code>Sin</code>, and +installed the compiled package in the file identified by +<code>"lib/math"</code>. +This table illustrates how <code>Sin</code> may be accessed in files +that import the package after the +various types of import declaration. +</p> + +<pre class="grammar"> +Import declaration Local name of Sin + +import "lib/math" math.Sin +import M "lib/math" M.Sin +import . "lib/math" Sin +</pre> + +<p> +An import declaration declares a dependency relation between +the importing and imported package. +It is illegal for a package to import itself or to import a package without +referring to any of its exported identifiers. To import a package solely for +its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> +identifier as explicit package name: +</p> + +<pre> +import _ "lib/math" +</pre> + + +<h3 id="An_example_package">An example package</h3> + +<p> +Here is a complete Go package that implements a concurrent prime sieve. +</p> + +<pre> +package main + +import "fmt" + +// Send the sequence 2, 3, 4, … to channel 'ch'. +func generate(ch chan<- int) { + for i := 2; ; i++ { + ch <- i // Send 'i' to channel 'ch'. + } +} + +// Copy the values from channel 'src' to channel 'dst', +// removing those divisible by 'prime'. +func filter(src <-chan int, dst chan<- int, prime int) { + for i := range src { // Loop over values received from 'src'. + if i%prime != 0 { + dst <- i // Send 'i' to channel 'dst'. + } + } +} + +// The prime sieve: Daisy-chain filter processes together. +func sieve() { + ch := make(chan int) // Create a new channel. + go generate(ch) // Start generate() as a subprocess. + for { + prime := <-ch + fmt.Print(prime, "\n") + ch1 := make(chan int) + go filter(ch, ch1, prime) + ch = ch1 + } +} + +func main() { + sieve() +} +</pre> + +<h2 id="Program_initialization_and_execution">Program initialization and execution</h2> + +<h3 id="The_zero_value">The zero value</h3> +<p> +When memory is allocated to store a value, either through a declaration +or a call of <code>make</code> or <code>new</code>, +and no explicit initialization is provided, the memory is +given a default initialization. Each element of such a value is +set to the <i>zero value</i> for its type: <code>false</code> for booleans, +<code>0</code> for integers, <code>0.0</code> for floats, <code>""</code> +for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. +This initialization is done recursively, so for instance each element of an +array of structs will have its fields zeroed if no value is specified. +</p> +<p> +These two simple declarations are equivalent: +</p> + +<pre> +var i int +var i int = 0 +</pre> + +<p> +After +</p> + +<pre> +type T struct { i int; f float64; next *T } +t := new(T) +</pre> + +<p> +the following holds: +</p> + +<pre> +t.i == 0 +t.f == 0.0 +t.next == nil +</pre> + +<p> +The same would also be true after +</p> + +<pre> +var t T +</pre> + +<h3 id="Program_execution">Program execution</h3> +<p> +A package with no imports is initialized by assigning initial values to +all its package-level variables +and then calling any +package-level function with the name and signature of +</p> +<pre> +func init() +</pre> +<p> +defined in its source. +A package may contain multiple +<code>init</code> functions, even +within a single source file; they execute +in unspecified order. +</p> +<p> +Within a package, package-level variables are initialized, +and constant values are determined, in +data-dependent order: if the initializer of <code>A</code> +depends on the value of <code>B</code>, <code>A</code> +will be set after <code>B</code>. +It is an error if such dependencies form a cycle. +Dependency analysis is done lexically: <code>A</code> +depends on <code>B</code> if the value of <code>A</code> +contains a mention of <code>B</code>, contains a value +whose initializer +mentions <code>B</code>, or mentions a function that +mentions <code>B</code>, recursively. +If two items are not interdependent, they will be initialized +in the order they appear in the source. +Since the dependency analysis is done per package, it can produce +unspecified results if <code>A</code>'s initializer calls a function defined +in another package that refers to <code>B</code>. +</p> +<p> +Initialization code may contain "go" statements, but the functions +they invoke do not begin execution until initialization of the entire +program is complete. Therefore, all initialization code is run in a single +goroutine. +</p> +<p> +An <code>init</code> function cannot be referred to from anywhere +in a program. In particular, <code>init</code> cannot be called explicitly, +nor can a pointer to <code>init</code> be assigned to a function variable. +</p> +<p> +If a package has imports, the imported packages are initialized +before initializing the package itself. If multiple packages import +a package <code>P</code>, <code>P</code> will be initialized only once. +</p> +<p> +The importing of packages, by construction, guarantees that there can +be no cyclic dependencies in initialization. +</p> +<p> +A complete program is created by linking a single, unimported package +called the <i>main package</i> with all the packages it imports, transitively. +The main package must +have package name <code>main</code> and +declare a function <code>main</code> that takes no +arguments and returns no value. +</p> + +<pre> +func main() { … } +</pre> + +<p> +Program execution begins by initializing the main package and then +invoking the function <code>main</code>. +</p> +<p> +When the function <code>main</code> returns, the program exits. +It does not wait for other (non-<code>main</code>) goroutines to complete. +</p> + +<h2 id="Run_time_panics">Run-time panics</h2> + +<p> +Execution errors such as attempting to index an array out +of bounds trigger a <i>run-time panic</i> equivalent to a call of +the built-in function <a href="#Handling_panics"><code>panic</code></a> +with a value of the implementation-defined interface type <code>runtime.Error</code>. +That type defines at least the method +<code>String() string</code>. The exact error values that +represent distinct run-time error conditions are unspecified, +at least for now. +</p> + +<pre> +package runtime + +type Error interface { + String() string + // and perhaps others +} +</pre> + +<h2 id="System_considerations">System considerations</h2> + +<h3 id="Package_unsafe">Package <code>unsafe</code></h3> + +<p> +The built-in package <code>unsafe</code>, known to the compiler, +provides facilities for low-level programming including operations +that violate the type system. A package using <code>unsafe</code> +must be vetted manually for type safety. The package provides the +following interface: +</p> + +<pre class="grammar"> +package unsafe + +type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type +type Pointer *ArbitraryType + +func Alignof(variable ArbitraryType) uintptr +func Offsetof(selector ArbitraryType) uinptr +func Sizeof(variable ArbitraryType) uintptr + +func Reflect(val interface{}) (typ runtime.Type, addr uintptr) +func Typeof(val interface{}) (typ interface{}) +func Unreflect(typ runtime.Type, addr uintptr) interface{} +</pre> + +<p> +Any pointer or value of type <code>uintptr</code> can be converted into +a <code>Pointer</code> and vice versa. +</p> +<p> +The function <code>Sizeof</code> takes an expression denoting a +variable of any type and returns the size of the variable in bytes. +</p> +<p> +The function <code>Offsetof</code> takes a selector (§<a href="#Selectors">Selectors</a>) denoting a struct +field of any type and returns the field offset in bytes relative to the +struct's address. +For a struct <code>s</code> with field <code>f</code>: +</p> + +<pre> +uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) +</pre> + +<p> +Computer architectures may require memory addresses to be <i>aligned</i>; +that is, for addresses of a variable to be a multiple of a factor, +the variable's type's <i>alignment</i>. The function <code>Alignof</code> +takes an expression denoting a variable of any type and returns the +alignment of the (type of the) variable in bytes. For a variable +<code>x</code>: +</p> + +<pre> +uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 +</pre> + +<p> +Calls to <code>Alignof</code>, <code>Offsetof</code>, and +<code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. +</p> +<p> +The functions <code>unsafe.Typeof</code>, +<code>unsafe.Reflect</code>, +and <code>unsafe.Unreflect</code> allow access at run time to the dynamic +types and values stored in interfaces. +<code>Typeof</code> returns a representation of +<code>val</code>'s +dynamic type as a <code>runtime.Type</code>. +<code>Reflect</code> allocates a copy of +<code>val</code>'s dynamic +value and returns both the type and the address of the copy. +<code>Unreflect</code> inverts <code>Reflect</code>, +creating an +interface value from a type and address. +The <a href="/pkg/reflect/"><code>reflect</code> package</a> built on these primitives +provides a safe, more convenient way to inspect interface values. +</p> + + +<h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> + +<p> +For the numeric types (§<a href="#Numeric_types">Numeric types</a>), the following sizes are guaranteed: +</p> + +<pre class="grammar"> +type size in bytes + +byte, uint8, int8 1 +uint16, int16 2 +uint32, int32, float32 4 +uint64, int64, float64, complex64 8 +complex128 16 +</pre> + +<p> +The following minimal alignment properties are guaranteed: +</p> +<ol> +<li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. +</li> + +<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of + all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. +</li> + +<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as + <code>unsafe.Alignof(x[0])</code>, but at least 1. +</li> +</ol> + +<span class="alert"> +<h2 id="Implementation_differences">Implementation differences - TODO</h2> +<ul> + <li><code>len(a)</code> is only a constant if <code>a</code> is a (qualified) identifier denoting an array or pointer to an array.</li> + <li><code>nil</code> maps are not treated like empty maps.</li> + <li>Trying to send/receive from a <code>nil</code> channel causes a run-time panic.</li> + <li><code>unsafe.Alignof</code>, <code>unsafe.Offsetof</code>, and <code>unsafe.Sizeof</code> return an <code>int</code>.</li> +</ul> +</span> |