summaryrefslogtreecommitdiff
path: root/doc/go_tutorial.html
diff options
context:
space:
mode:
authorRob Pike <r@golang.org>2009-10-13 22:10:16 -0700
committerRob Pike <r@golang.org>2009-10-13 22:10:16 -0700
commitf340baa9492812622efdc18d7e84d9a1c09ef13b (patch)
tree57684f567741737ea7dd5c6c2f9b2275f8c7d108 /doc/go_tutorial.html
parent8e2b8d798c930bb143cedf32c51b04ffe3db71d7 (diff)
downloadgolang-f340baa9492812622efdc18d7e84d9a1c09ef13b.tar.gz
bye-bye to old makehtml.
go can do the job just fine. R=rsc DELTA=290 (209 added, 13 deleted, 68 changed) OCL=35699 CL=35699
Diffstat (limited to 'doc/go_tutorial.html')
-rw-r--r--doc/go_tutorial.html63
1 files changed, 32 insertions, 31 deletions
diff --git a/doc/go_tutorial.html b/doc/go_tutorial.html
index f966ef936..27710ed26 100644
--- a/doc/go_tutorial.html
+++ b/doc/go_tutorial.html
@@ -1,15 +1,14 @@
<!-- Let's Go -->
-
<h2>Introduction</h2>
<p>
This document is a tutorial introduction to the basics of the Go systems programming
language, intended for programmers familiar with C or C++. It is not a comprehensive
guide to the language; at the moment the document closest to that is the
-<a href=/doc/go_spec.html>language specification.</a>
+<a href='/doc/go_spec.html'>language specification.</a>
<p>
The presentation proceeds through a series of modest programs to illustrate
key features of the language. All the programs work (at time of writing) and are
-checked into the repository in the directory <a href=/doc/progs><code>/doc/progs</code></a>.
+checked into the repository in the directory <a href='/doc/progs'><code>/doc/progs/</code></a>.
<p>
Program snippets are annotated with the line number in the original file; for
cleanliness, blank lines remain blank.
@@ -45,8 +44,8 @@ The comment convention is the same as in C++:
<pre>
/* ... */
// ...
-
</pre>
+<p>
Later we'll have much more to say about printing.
<p>
<h2>Echo</h2>
@@ -94,8 +93,8 @@ But it's not necessary to do so; we could have said
<pre>
const Space = " "
const Newline = "\n"
-
</pre>
+<p>
Semicolons aren't needed here; in fact, semicolons are unnecessary after any
top-level declaration, even though they are needed as separators <i>within</i>
a parenthesized list of declarations.
@@ -128,8 +127,8 @@ The declaration statement has the form
<p>
<pre>
var s string = "";
-
</pre>
+<p>
This is the <code>var</code> keyword, followed by the name of the variable, followed by
its type, followed by an equals sign and an initial value for the variable.
<p>
@@ -139,14 +138,14 @@ We could write
<p>
<pre>
var s = "";
-
</pre>
+<p>
or we could go even shorter and write the idiom
<p>
<pre>
s := "";
-
</pre>
+<p>
The <code>:=</code> operator is used a lot in Go to represent an initializing declaration.
(For those who know Sawzall, its <code>:=</code> construct is the same, but notice
that Go has no colon after the name in a full <code>var</code> declaration.
@@ -177,8 +176,8 @@ It's defined that way. Falling off the end of <code>main.main</code> means
<p>
<pre>
os.Exit(1)
-
</pre>
+<p>
The <code>os</code> package contains other essentials for getting
started; for instance, <code>os.Args</code> is an array used by the
<code>flag</code> package to access the command-line arguments.
@@ -213,8 +212,8 @@ a <code>string</code> value:
<pre>
s[0] = 'x';
(*p)[1] = 'y';
-
</pre>
+<p>
In C++ terms, Go strings are a bit like <code>const strings</code>, while pointers
to strings are analogous to <code>const string</code> references.
<p>
@@ -225,8 +224,8 @@ Arrays are declared like this:
<p>
<pre>
var array_of_int [10]int;
-
</pre>
+<p>
Arrays, like strings, are values, but they are mutable. This differs
from C, in which <code>array_of_int</code> would be usable as a pointer to <code>int</code>.
In Go, since arrays are values, it's meaningful (and useful) to talk
@@ -286,21 +285,21 @@ elements for you, use <code>...</code> as the array size:
<p>
<pre>
s := sum(&amp;[...]int{1,2,3});
-
</pre>
+<p>
In practice, though, unless you're meticulous about storage layout within a
data structure, a slice itself - using empty brackets and no <code>&</code> - is all you need:
<p>
<pre>
s := sum([]int{1,2,3});
-
</pre>
+<p>
There are also maps, which you can initialize like this:
<p>
<pre>
m := map[string] int {"one":1 , "two":2}
-
</pre>
+<p>
The built-in function <code>len()</code>, which returns number of elements,
makes its first appearance in <code>sum</code>. It works on strings, arrays,
slices, and maps.
@@ -317,14 +316,14 @@ returns a pointer to the allocated storage.
<pre>
type T struct { a, b int }
var t *T = new(T);
-
</pre>
+<p>
or the more idiomatic
<p>
<pre>
t := new(T);
-
</pre>
+<p>
Some types - maps, slices, and channels (see below) - have reference semantics.
If you're holding a slice or a map and you modify its contents, other variables
referencing the same underlying data will see the modification. For these three
@@ -332,15 +331,15 @@ types you want to use the built-in function <code>make()</code>:
<p>
<pre>
m := make(map[string] int);
-
</pre>
+<p>
This statement initializes a new map ready to store entries.
If you just declare the map, as in
<p>
<pre>
var m map[string] int;
-
</pre>
+<p>
it creates a <code>nil</code> reference that cannot hold anything. To use the map,
you must first initialize the reference using <code>make()</code> or by assignment to an
existing map.
@@ -360,8 +359,8 @@ too little precision to represent the value.
<p>
<pre>
const hard_eight = (1 &lt;&lt; 100) &gt;&gt; 97 // legal
-
</pre>
+<p>
There are nuances that deserve redirection to the legalese of the
language specification but here are some illustrative examples:
<p>
@@ -373,8 +372,8 @@ language specification but here are some illustrative examples:
x := 1.5 // a float
i3div2 := 3/2 // integer division - result is 1
f3div2 := 3./2. // floating point division - result is 1.5
-
</pre>
+<p>
Conversions only work for simple cases such as converting <code>ints</code> of one
sign or size to another, and between <code>ints</code> and <code>floats</code>, plus a few other
simple cases. There are no automatic numeric conversions of any kind in Go,
@@ -446,8 +445,8 @@ object. We could write
n.fd = fd;
n.name = name;
return n
-
</pre>
+<p>
but for simple structures like <code>File</code> it's easier to return the address of a nonce
composite literal, as is done here on line 21.
<p>
@@ -585,8 +584,8 @@ Finally we can run the program:
hello, world
can't open file; err=No such file or directory
%
-
</pre>
+<p>
<h2>Rotting cats</h2>
<p>
Building on the <code>file</code> package, here's a simple version of the Unix utility <code>cat(1)</code>,
@@ -864,8 +863,8 @@ Within the <code>fmt</code> package, <code>Printf</code> is declared with this s
<p>
<pre>
Printf(format string, v ...) (n int, errno os.Error)
-
</pre>
+<p>
That <code>...</code> represents the variadic argument list that in C would
be handled using the <code>stdarg.h</code> macros, but in Go is passed using
an empty interface variable (<code>interface {}</code>) that is then unpacked
@@ -888,8 +887,8 @@ prints
<p>
<pre>
18446744073709551615 -1
-
</pre>
+<p>
In fact, if you're lazy the format <code>%v</code> will print, in a simple
appropriate style, any value, even an array or structure. The output of
<p>
@@ -904,8 +903,8 @@ is
<p>
<pre>
18446744073709551615 {77 Sunset Strip} [1 2 3 4]
-
</pre>
+<p>
You can drop the formatting altogether if you use <code>Print</code> or <code>Println</code>
instead of <code>Printf</code>. Those routines do fully automatic formatting.
The <code>Print</code> function just prints its elements out using the equivalent
@@ -946,8 +945,8 @@ default formatter for that type will use it and produce the output
<p>
<pre>
77 Sunset Strip
-
</pre>
+<p>
Observe that the <code>String()</code> method calls <code>Sprint</code> (the obvious Go
variant that returns a string) to do its formatting; special formatters
can use the <code>fmt</code> library recursively.
@@ -970,15 +969,17 @@ Schematically, given a value <code>v</code>, it does this:
type Stringer interface {
String() string
}
-
+</pre>
+<p>
+<pre>
s, ok := v.(Stringer); // Test whether v implements "String()"
if ok {
result = s.String()
} else {
result = default_output(v)
}
-
</pre>
+<p>
The code uses a ``type assertion'' (<code>v.(Stringer)</code>) to test if the value stored in
<code>v</code> satisfies the <code>Stringer</code> interface; if it does, <code>s</code>
will become an interface variable implementing the method and <code>ok</code> will
@@ -1000,8 +1001,8 @@ interface type defined in the <code>io</code> library:
type Writer interface {
Write(p []byte) (n int, err os.Error);
}
-
</pre>
+<p>
(This interface is another conventional name, this time for <code>Write</code>; there are also
<code>io.Reader</code>, <code>io.ReadWriter</code>, and so on.)
Thus you can call <code>Fprintf</code> on any type that implements a standard <code>Write()</code>
@@ -1081,8 +1082,8 @@ computation but in the same address space:
<p>
<pre>
go sum(huge_array); // calculate sum in the background
-
</pre>
+<p>
If you want to know when the calculation is done, pass a channel
on which it can report back:
<p>
@@ -1091,8 +1092,8 @@ on which it can report back:
go sum(huge_array, ch);
// ... do something else for a while
result := &lt;-ch; // wait for, and retrieve, result
-
</pre>
+<p>
Back to our prime sieve. Here's how the sieve pipeline is stitched
together:
<p>