diff options
author | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
---|---|---|
committer | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
commit | f154da9e12608589e8d5f0508f908a0c3e88a1bb (patch) | |
tree | f8255d51e10c6f1e0ed69702200b966c9556a431 /src/crypto/ecdsa/ecdsa.go | |
parent | 8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff) | |
download | golang-upstream/1.4.tar.gz |
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/crypto/ecdsa/ecdsa.go')
-rw-r--r-- | src/crypto/ecdsa/ecdsa.go | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/src/crypto/ecdsa/ecdsa.go b/src/crypto/ecdsa/ecdsa.go new file mode 100644 index 000000000..d6135531b --- /dev/null +++ b/src/crypto/ecdsa/ecdsa.go @@ -0,0 +1,189 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as +// defined in FIPS 186-3. +package ecdsa + +// References: +// [NSA]: Suite B implementer's guide to FIPS 186-3, +// http://www.nsa.gov/ia/_files/ecdsa.pdf +// [SECG]: SECG, SEC1 +// http://www.secg.org/download/aid-780/sec1-v2.pdf + +import ( + "crypto" + "crypto/elliptic" + "encoding/asn1" + "io" + "math/big" +) + +// PublicKey represents an ECDSA public key. +type PublicKey struct { + elliptic.Curve + X, Y *big.Int +} + +// PrivateKey represents a ECDSA private key. +type PrivateKey struct { + PublicKey + D *big.Int +} + +type ecdsaSignature struct { + R, S *big.Int +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Sign signs msg with priv, reading randomness from rand. This method is +// intended to support keys where the private part is kept in, for example, a +// hardware module. Common uses should use the Sign function in this package +// directly. +func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { + r, s, err := Sign(rand, priv, msg) + if err != nil { + return nil, err + } + + return asn1.Marshal(ecdsaSignature{r, s}) +} + +var one = new(big.Int).SetInt64(1) + +// randFieldElement returns a random element of the field underlying the given +// curve using the procedure given in [NSA] A.2.1. +func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { + params := c.Params() + b := make([]byte, params.BitSize/8+8) + _, err = io.ReadFull(rand, b) + if err != nil { + return + } + + k = new(big.Int).SetBytes(b) + n := new(big.Int).Sub(params.N, one) + k.Mod(k, n) + k.Add(k, one) + return +} + +// GenerateKey generates a public and private key pair. +func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) { + k, err := randFieldElement(c, rand) + if err != nil { + return + } + + priv = new(PrivateKey) + priv.PublicKey.Curve = c + priv.D = k + priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) + return +} + +// hashToInt converts a hash value to an integer. There is some disagreement +// about how this is done. [NSA] suggests that this is done in the obvious +// manner, but [SECG] truncates the hash to the bit-length of the curve order +// first. We follow [SECG] because that's what OpenSSL does. Additionally, +// OpenSSL right shifts excess bits from the number if the hash is too large +// and we mirror that too. +func hashToInt(hash []byte, c elliptic.Curve) *big.Int { + orderBits := c.Params().N.BitLen() + orderBytes := (orderBits + 7) / 8 + if len(hash) > orderBytes { + hash = hash[:orderBytes] + } + + ret := new(big.Int).SetBytes(hash) + excess := len(hash)*8 - orderBits + if excess > 0 { + ret.Rsh(ret, uint(excess)) + } + return ret +} + +// fermatInverse calculates the inverse of k in GF(P) using Fermat's method. +// This has better constant-time properties than Euclid's method (implemented +// in math/big.Int.ModInverse) although math/big itself isn't strictly +// constant-time so it's not perfect. +func fermatInverse(k, N *big.Int) *big.Int { + two := big.NewInt(2) + nMinus2 := new(big.Int).Sub(N, two) + return new(big.Int).Exp(k, nMinus2, N) +} + +// Sign signs an arbitrary length hash (which should be the result of hashing a +// larger message) using the private key, priv. It returns the signature as a +// pair of integers. The security of the private key depends on the entropy of +// rand. +func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { + // See [NSA] 3.4.1 + c := priv.PublicKey.Curve + N := c.Params().N + + var k, kInv *big.Int + for { + for { + k, err = randFieldElement(c, rand) + if err != nil { + r = nil + return + } + + kInv = fermatInverse(k, N) + r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) + r.Mod(r, N) + if r.Sign() != 0 { + break + } + } + + e := hashToInt(hash, c) + s = new(big.Int).Mul(priv.D, r) + s.Add(s, e) + s.Mul(s, kInv) + s.Mod(s, N) + if s.Sign() != 0 { + break + } + } + + return +} + +// Verify verifies the signature in r, s of hash using the public key, pub. Its +// return value records whether the signature is valid. +func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { + // See [NSA] 3.4.2 + c := pub.Curve + N := c.Params().N + + if r.Sign() == 0 || s.Sign() == 0 { + return false + } + if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { + return false + } + e := hashToInt(hash, c) + w := new(big.Int).ModInverse(s, N) + + u1 := e.Mul(e, w) + u1.Mod(u1, N) + u2 := w.Mul(r, w) + u2.Mod(u2, N) + + x1, y1 := c.ScalarBaseMult(u1.Bytes()) + x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) + x, y := c.Add(x1, y1, x2, y2) + if x.Sign() == 0 && y.Sign() == 0 { + return false + } + x.Mod(x, N) + return x.Cmp(r) == 0 +} |