summaryrefslogtreecommitdiff
path: root/src/pkg/big/nat.go
diff options
context:
space:
mode:
authorOndřej Surý <ondrej@sury.org>2011-06-30 15:34:22 +0200
committerOndřej Surý <ondrej@sury.org>2011-06-30 15:34:22 +0200
commitd39f5aa373a4422f7a5f3ee764fb0f6b0b719d61 (patch)
tree1833f8b72a4b3a8f00d0d143b079a8fcad01c6ae /src/pkg/big/nat.go
parent8652e6c371b8905498d3d314491d36c58d5f68d5 (diff)
downloadgolang-upstream/58.tar.gz
Imported Upstream version 58upstream/58
Diffstat (limited to 'src/pkg/big/nat.go')
-rwxr-xr-xsrc/pkg/big/nat.go358
1 files changed, 282 insertions, 76 deletions
diff --git a/src/pkg/big/nat.go b/src/pkg/big/nat.go
index 4848d427b..734568e06 100755
--- a/src/pkg/big/nat.go
+++ b/src/pkg/big/nat.go
@@ -18,7 +18,12 @@ package big
// These are the building blocks for the operations on signed integers
// and rationals.
-import "rand"
+import (
+ "io"
+ "os"
+ "rand"
+)
+
// An unsigned integer x of the form
//
@@ -545,9 +550,14 @@ func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
u.clear()
// D1.
- shift := Word(leadingZeros(v[n-1]))
- shlVW(v, v, shift)
- u[len(uIn)] = shlVW(u[0:len(uIn)], uIn, shift)
+ shift := leadingZeros(v[n-1])
+ if shift > 0 {
+ // do not modify v, it may be used by another goroutine simultaneously
+ v1 := make(nat, n)
+ shlVU(v1, v, shift)
+ v = v1
+ }
+ u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
// D2.
for j := m; j >= 0; j-- {
@@ -586,8 +596,7 @@ func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
}
q = q.norm()
- shrVW(u, u, shift)
- shrVW(v, v, shift)
+ shrVU(u, u, shift)
r = u.norm()
return q, r
@@ -603,96 +612,252 @@ func (x nat) bitLen() int {
}
-func hexValue(ch byte) int {
- var d byte
+// MaxBase is the largest number base accepted for string conversions.
+const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1
+
+
+func hexValue(ch int) Word {
+ d := MaxBase + 1 // illegal base
switch {
case '0' <= ch && ch <= '9':
d = ch - '0'
- case 'a' <= ch && ch <= 'f':
+ case 'a' <= ch && ch <= 'z':
d = ch - 'a' + 10
- case 'A' <= ch && ch <= 'F':
+ case 'A' <= ch && ch <= 'Z':
d = ch - 'A' + 10
- default:
- return -1
}
- return int(d)
+ return Word(d)
}
-// scan returns the natural number corresponding to the
-// longest possible prefix of s representing a natural number in a
-// given conversion base, the actual conversion base used, and the
-// prefix length. The syntax of natural numbers follows the syntax
-// of unsigned integer literals in Go.
+// scan sets z to the natural number corresponding to the longest possible prefix
+// read from r representing an unsigned integer in a given conversion base.
+// It returns z, the actual conversion base used, and an error, if any. In the
+// error case, the value of z is undefined. The syntax follows the syntax of
+// unsigned integer literals in Go.
//
-// If the base argument is 0, the string prefix determines the actual
-// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
-// ``0'' prefix selects base 8, and a ``0b'' or ``0B'' prefix selects
-// base 2. Otherwise the selected base is 10.
+// The base argument must be 0 or a value from 2 through MaxBase. If the base
+// is 0, the string prefix determines the actual conversion base. A prefix of
+// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
+// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
//
-func (z nat) scan(s string, base int) (nat, int, int) {
+func (z nat) scan(r io.RuneScanner, base int) (nat, int, os.Error) {
+ // reject illegal bases
+ if base < 0 || base == 1 || MaxBase < base {
+ return z, 0, os.ErrorString("illegal number base")
+ }
+
+ // one char look-ahead
+ ch, _, err := r.ReadRune()
+ if err != nil {
+ return z, 0, err
+ }
+
// determine base if necessary
- i, n := 0, len(s)
+ b := Word(base)
if base == 0 {
- base = 10
- if n > 0 && s[0] == '0' {
- base, i = 8, 1
- if n > 1 {
- switch s[1] {
+ b = 10
+ if ch == '0' {
+ switch ch, _, err = r.ReadRune(); err {
+ case nil:
+ b = 8
+ switch ch {
case 'x', 'X':
- base, i = 16, 2
+ b = 16
case 'b', 'B':
- base, i = 2, 2
+ b = 2
}
+ if b == 2 || b == 16 {
+ if ch, _, err = r.ReadRune(); err != nil {
+ return z, 0, err
+ }
+ }
+ case os.EOF:
+ return z, 10, nil
+ default:
+ return z, 10, err
}
}
}
- // reject illegal bases or strings consisting only of prefix
- if base < 2 || 16 < base || (base != 8 && i >= n) {
- return z, 0, 0
- }
-
// convert string
+ // - group as many digits d as possible together into a "super-digit" dd with "super-base" bb
+ // - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and dd
z = z.make(0)
- for ; i < n; i++ {
- d := hexValue(s[i])
- if 0 <= d && d < base {
- z = z.mulAddWW(z, Word(base), Word(d))
+ bb := Word(1)
+ dd := Word(0)
+ for max := _M / b; ; {
+ d := hexValue(ch)
+ if d >= b {
+ r.UnreadRune() // ch does not belong to number anymore
+ break
+ }
+
+ if bb <= max {
+ bb *= b
+ dd = dd*b + d
} else {
+ // bb * b would overflow
+ z = z.mulAddWW(z, bb, dd)
+ bb = b
+ dd = d
+ }
+
+ if ch, _, err = r.ReadRune(); err != nil {
+ if err != os.EOF {
+ return z, int(b), err
+ }
break
}
}
- return z.norm(), base, i
+ switch {
+ case bb > 1:
+ // there was at least one mantissa digit
+ z = z.mulAddWW(z, bb, dd)
+ case base == 0 && b == 8:
+ // there was only the octal prefix 0 (possibly followed by digits > 7);
+ // return base 10, not 8
+ return z, 10, nil
+ case base != 0 || b != 8:
+ // there was neither a mantissa digit nor the octal prefix 0
+ return z, int(b), os.ErrorString("syntax error scanning number")
+ }
+
+ return z.norm(), int(b), nil
}
-// string converts x to a string for a given base, with 2 <= base <= 16.
-// TODO(gri) in the style of the other routines, perhaps this should take
-// a []byte buffer and return it
-func (x nat) string(base int) string {
- if base < 2 || 16 < base {
- panic("illegal base")
- }
+// Character sets for string conversion.
+const (
+ lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz"
+ uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+)
- if len(x) == 0 {
- return "0"
+
+// decimalString returns a decimal representation of x.
+// It calls x.string with the charset "0123456789".
+func (x nat) decimalString() string {
+ return x.string(lowercaseDigits[0:10])
+}
+
+
+// string converts x to a string using digits from a charset; a digit with
+// value d is represented by charset[d]. The conversion base is determined
+// by len(charset), which must be >= 2.
+func (x nat) string(charset string) string {
+ b := Word(len(charset))
+
+ // special cases
+ switch {
+ case b < 2 || b > 256:
+ panic("illegal base")
+ case len(x) == 0:
+ return string(charset[0])
}
// allocate buffer for conversion
- i := x.bitLen()/log2(Word(base)) + 1 // +1: round up
+ i := x.bitLen()/log2(b) + 1 // +1: round up
s := make([]byte, i)
- // don't destroy x
+ // special case: power of two bases can avoid divisions completely
+ if b == b&-b {
+ // shift is base-b digit size in bits
+ shift := uint(trailingZeroBits(b)) // shift > 0 because b >= 2
+ mask := Word(1)<<shift - 1
+ w := x[0]
+ nbits := uint(_W) // number of unprocessed bits in w
+
+ // convert less-significant words
+ for k := 1; k < len(x); k++ {
+ // convert full digits
+ for nbits >= shift {
+ i--
+ s[i] = charset[w&mask]
+ w >>= shift
+ nbits -= shift
+ }
+
+ // convert any partial leading digit and advance to next word
+ if nbits == 0 {
+ // no partial digit remaining, just advance
+ w = x[k]
+ nbits = _W
+ } else {
+ // partial digit in current (k-1) and next (k) word
+ w |= x[k] << nbits
+ i--
+ s[i] = charset[w&mask]
+
+ // advance
+ w = x[k] >> (shift - nbits)
+ nbits = _W - (shift - nbits)
+ }
+ }
+
+ // convert digits of most-significant word (omit leading zeros)
+ for nbits >= 0 && w != 0 {
+ i--
+ s[i] = charset[w&mask]
+ w >>= shift
+ nbits -= shift
+ }
+
+ return string(s[i:])
+ }
+
+ // general case: extract groups of digits by multiprecision division
+
+ // maximize ndigits where b**ndigits < 2^_W; bb (big base) is b**ndigits
+ bb := Word(1)
+ ndigits := 0
+ for max := Word(_M / b); bb <= max; bb *= b {
+ ndigits++
+ }
+
+ // preserve x, create local copy for use in repeated divisions
q := nat(nil).set(x)
+ var r Word
// convert
- for len(q) > 0 {
- i--
- var r Word
- q, r = q.divW(q, Word(base))
- s[i] = "0123456789abcdef"[r]
+ if b == 10 { // hard-coding for 10 here speeds this up by 1.25x
+ for len(q) > 0 {
+ // extract least significant, base bb "digit"
+ q, r = q.divW(q, bb) // N.B. >82% of time is here. Optimize divW
+ if len(q) == 0 {
+ // skip leading zeros in most-significant group of digits
+ for j := 0; j < ndigits && r != 0; j++ {
+ i--
+ s[i] = charset[r%10]
+ r /= 10
+ }
+ } else {
+ for j := 0; j < ndigits; j++ {
+ i--
+ s[i] = charset[r%10]
+ r /= 10
+ }
+ }
+ }
+ } else {
+ for len(q) > 0 {
+ // extract least significant group of digits
+ q, r = q.divW(q, bb) // N.B. >82% of time is here. Optimize divW
+ if len(q) == 0 {
+ // skip leading zeros in most-significant group of digits
+ for j := 0; j < ndigits && r != 0; j++ {
+ i--
+ s[i] = charset[r%b]
+ r /= b
+ }
+ } else {
+ for j := 0; j < ndigits; j++ {
+ i--
+ s[i] = charset[r%b]
+ r /= b
+ }
+ }
+ }
}
return string(s[i:])
@@ -715,13 +880,14 @@ var deBruijn64Lookup = []byte{
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
+
// trailingZeroBits returns the number of consecutive zero bits on the right
// side of the given Word.
// See Knuth, volume 4, section 7.3.1
func trailingZeroBits(x Word) int {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
- // to the power of k. Multipling by a power of two is equivalent to
+ // to the power of k. Multiplying by a power of two is equivalent to
// left shifting, in this case by k bits. The de Bruijn constant is
// such that all six bit, consecutive substrings are distinct.
// Therefore, if we have a left shifted version of this constant we can
@@ -750,7 +916,7 @@ func (z nat) shl(x nat, s uint) nat {
n := m + int(s/_W)
z = z.make(n + 1)
- z[n] = shlVW(z[n-m:n], x, Word(s%_W))
+ z[n] = shlVU(z[n-m:n], x, s%_W)
z[0 : n-m].clear()
return z.norm()
@@ -767,12 +933,49 @@ func (z nat) shr(x nat, s uint) nat {
// n > 0
z = z.make(n)
- shrVW(z, x[m-n:], Word(s%_W))
+ shrVU(z, x[m-n:], s%_W)
return z.norm()
}
+func (z nat) setBit(x nat, i uint, b uint) nat {
+ j := int(i / _W)
+ m := Word(1) << (i % _W)
+ n := len(x)
+ switch b {
+ case 0:
+ z = z.make(n)
+ copy(z, x)
+ if j >= n {
+ // no need to grow
+ return z
+ }
+ z[j] &^= m
+ return z.norm()
+ case 1:
+ if j >= n {
+ n = j + 1
+ }
+ z = z.make(n)
+ copy(z, x)
+ z[j] |= m
+ // no need to normalize
+ return z
+ }
+ panic("set bit is not 0 or 1")
+}
+
+
+func (z nat) bit(i uint) uint {
+ j := int(i / _W)
+ if j >= len(z) {
+ return 0
+ }
+ return uint(z[j] >> (i % _W) & 1)
+}
+
+
func (z nat) and(x, y nat) nat {
m := len(x)
n := len(y)
@@ -849,7 +1052,9 @@ func (z nat) xor(x, y nat) nat {
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
-func greaterThan(x1, x2, y1, y2 Word) bool { return x1 > y1 || x1 == y1 && x2 > y2 }
+func greaterThan(x1, x2, y1, y2 Word) bool {
+ return x1 > y1 || x1 == y1 && x2 > y2
+}
// modW returns x % d.
@@ -861,25 +1066,26 @@ func (x nat) modW(d Word) (r Word) {
}
-// powersOfTwoDecompose finds q and k such that q * 1<<k = n and q is odd.
-func (n nat) powersOfTwoDecompose() (q nat, k Word) {
- if len(n) == 0 {
- return n, 0
+// powersOfTwoDecompose finds q and k with x = q * 1<<k and q is odd, or q and k are 0.
+func (x nat) powersOfTwoDecompose() (q nat, k int) {
+ if len(x) == 0 {
+ return x, 0
}
- zeroWords := 0
- for n[zeroWords] == 0 {
- zeroWords++
+ // One of the words must be non-zero by definition,
+ // so this loop will terminate with i < len(x), and
+ // i is the number of 0 words.
+ i := 0
+ for x[i] == 0 {
+ i++
}
- // One of the words must be non-zero by invariant, therefore
- // zeroWords < len(n).
- x := trailingZeroBits(n[zeroWords])
+ n := trailingZeroBits(x[i]) // x[i] != 0
- q = q.make(len(n) - zeroWords)
- shrVW(q, n[zeroWords:], Word(x))
- q = q.norm()
+ q = make(nat, len(x)-i)
+ shrVU(q, x[i:], uint(n))
- k = Word(_W*zeroWords + x)
+ q = q.norm()
+ k = i*_W + n
return
}
@@ -1050,7 +1256,7 @@ NextRandom:
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
- for j := Word(1); j < k; j++ {
+ for j := 1; j < k; j++ {
y = y.mul(y, y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {