diff options
author | Ondřej Surý <ondrej@sury.org> | 2011-04-26 09:55:32 +0200 |
---|---|---|
committer | Ondřej Surý <ondrej@sury.org> | 2011-04-26 09:55:32 +0200 |
commit | 7b15ed9ef455b6b66c6b376898a88aef5d6a9970 (patch) | |
tree | 3ef530baa80cdf29436ba981f5783be6b4d2202b /src/pkg/crypto/ecdsa/ecdsa.go | |
parent | 50104cc32a498f7517a51c8dc93106c51c7a54b4 (diff) | |
download | golang-7b15ed9ef455b6b66c6b376898a88aef5d6a9970.tar.gz |
Imported Upstream version 2011.04.13upstream/2011.04.13
Diffstat (limited to 'src/pkg/crypto/ecdsa/ecdsa.go')
-rw-r--r-- | src/pkg/crypto/ecdsa/ecdsa.go | 149 |
1 files changed, 149 insertions, 0 deletions
diff --git a/src/pkg/crypto/ecdsa/ecdsa.go b/src/pkg/crypto/ecdsa/ecdsa.go new file mode 100644 index 000000000..7bce1bc96 --- /dev/null +++ b/src/pkg/crypto/ecdsa/ecdsa.go @@ -0,0 +1,149 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as +// defined in FIPS 186-3. +package ecdsa + +// References: +// [NSA]: Suite B implementor's guide to FIPS 186-3, +// http://www.nsa.gov/ia/_files/ecdsa.pdf +// [SECG]: SECG, SEC1 +// http://www.secg.org/download/aid-780/sec1-v2.pdf + +import ( + "big" + "crypto/elliptic" + "io" + "os" +) + +// PublicKey represents an ECDSA public key. +type PublicKey struct { + *elliptic.Curve + X, Y *big.Int +} + +// PrivateKey represents a ECDSA private key. +type PrivateKey struct { + PublicKey + D *big.Int +} + +var one = new(big.Int).SetInt64(1) + +// randFieldElement returns a random element of the field underlying the given +// curve using the procedure given in [NSA] A.2.1. +func randFieldElement(c *elliptic.Curve, rand io.Reader) (k *big.Int, err os.Error) { + b := make([]byte, c.BitSize/8+8) + _, err = io.ReadFull(rand, b) + if err != nil { + return + } + + k = new(big.Int).SetBytes(b) + n := new(big.Int).Sub(c.N, one) + k.Mod(k, n) + k.Add(k, one) + return +} + +// GenerateKey generates a public&private key pair. +func GenerateKey(c *elliptic.Curve, rand io.Reader) (priv *PrivateKey, err os.Error) { + k, err := randFieldElement(c, rand) + if err != nil { + return + } + + priv = new(PrivateKey) + priv.PublicKey.Curve = c + priv.D = k + priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) + return +} + +// hashToInt converts a hash value to an integer. There is some disagreement +// about how this is done. [NSA] suggests that this is done in the obvious +// manner, but [SECG] truncates the hash to the bit-length of the curve order +// first. We follow [SECG] because that's what OpenSSL does. +func hashToInt(hash []byte, c *elliptic.Curve) *big.Int { + orderBits := c.N.BitLen() + orderBytes := (orderBits + 7) / 8 + if len(hash) > orderBytes { + hash = hash[:orderBytes] + } + + ret := new(big.Int).SetBytes(hash) + excess := orderBytes*8 - orderBits + if excess > 0 { + ret.Rsh(ret, uint(excess)) + } + return ret +} + +// Sign signs an arbitrary length hash (which should be the result of hashing a +// larger message) using the private key, priv. It returns the signature as a +// pair of integers. The security of the private key depends on the entropy of +// rand. +func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err os.Error) { + // See [NSA] 3.4.1 + c := priv.PublicKey.Curve + + var k, kInv *big.Int + for { + for { + k, err = randFieldElement(c, rand) + if err != nil { + r = nil + return + } + + kInv = new(big.Int).ModInverse(k, c.N) + r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) + r.Mod(r, priv.Curve.N) + if r.Sign() != 0 { + break + } + } + + e := hashToInt(hash, c) + s = new(big.Int).Mul(priv.D, r) + s.Add(s, e) + s.Mul(s, kInv) + s.Mod(s, priv.PublicKey.Curve.N) + if s.Sign() != 0 { + break + } + } + + return +} + +// Verify verifies the signature in r, s of hash using the public key, pub. It +// returns true iff the signature is valid. +func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { + // See [NSA] 3.4.2 + c := pub.Curve + + if r.Sign() == 0 || s.Sign() == 0 { + return false + } + if r.Cmp(c.N) >= 0 || s.Cmp(c.N) >= 0 { + return false + } + e := hashToInt(hash, c) + w := new(big.Int).ModInverse(s, c.N) + + u1 := e.Mul(e, w) + u2 := w.Mul(r, w) + + x1, y1 := c.ScalarBaseMult(u1.Bytes()) + x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) + if x1.Cmp(x2) == 0 { + return false + } + x, _ := c.Add(x1, y1, x2, y2) + x.Mod(x, c.N) + return x.Cmp(r) == 0 +} |