diff options
author | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
---|---|---|
committer | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
commit | f154da9e12608589e8d5f0508f908a0c3e88a1bb (patch) | |
tree | f8255d51e10c6f1e0ed69702200b966c9556a431 /src/pkg/image/draw/draw.go | |
parent | 8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff) | |
download | golang-upstream/1.4.tar.gz |
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/pkg/image/draw/draw.go')
-rw-r--r-- | src/pkg/image/draw/draw.go | 673 |
1 files changed, 0 insertions, 673 deletions
diff --git a/src/pkg/image/draw/draw.go b/src/pkg/image/draw/draw.go deleted file mode 100644 index 661230e7c..000000000 --- a/src/pkg/image/draw/draw.go +++ /dev/null @@ -1,673 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package draw provides image composition functions. -// -// See "The Go image/draw package" for an introduction to this package: -// http://golang.org/doc/articles/image_draw.html -package draw - -import ( - "image" - "image/color" -) - -// m is the maximum color value returned by image.Color.RGBA. -const m = 1<<16 - 1 - -// Image is an image.Image with a Set method to change a single pixel. -type Image interface { - image.Image - Set(x, y int, c color.Color) -} - -// Quantizer produces a palette for an image. -type Quantizer interface { - // Quantize appends up to cap(p) - len(p) colors to p and returns the - // updated palette suitable for converting m to a paletted image. - Quantize(p color.Palette, m image.Image) color.Palette -} - -// Op is a Porter-Duff compositing operator. -type Op int - -const ( - // Over specifies ``(src in mask) over dst''. - Over Op = iota - // Src specifies ``src in mask''. - Src -) - -// Draw implements the Drawer interface by calling the Draw function with this -// Op. -func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { - DrawMask(dst, r, src, sp, nil, image.Point{}, op) -} - -// Drawer contains the Draw method. -type Drawer interface { - // Draw aligns r.Min in dst with sp in src and then replaces the - // rectangle r in dst with the result of drawing src on dst. - Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) -} - -// FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error -// diffusion. -var FloydSteinberg Drawer = floydSteinberg{} - -type floydSteinberg struct{} - -func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) { - clip(dst, &r, src, &sp, nil, nil) - if r.Empty() { - return - } - drawPaletted(dst, r, src, sp, true) -} - -// clip clips r against each image's bounds (after translating into the -// destination image's co-ordinate space) and shifts the points sp and mp by -// the same amount as the change in r.Min. -func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) { - orig := r.Min - *r = r.Intersect(dst.Bounds()) - *r = r.Intersect(src.Bounds().Add(orig.Sub(*sp))) - if mask != nil { - *r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp))) - } - dx := r.Min.X - orig.X - dy := r.Min.Y - orig.Y - if dx == 0 && dy == 0 { - return - } - (*sp).X += dx - (*sp).Y += dy - (*mp).X += dx - (*mp).Y += dy -} - -func processBackward(dst Image, r image.Rectangle, src image.Image, sp image.Point) bool { - return image.Image(dst) == src && - r.Overlaps(r.Add(sp.Sub(r.Min))) && - (sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X)) -} - -// Draw calls DrawMask with a nil mask. -func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) { - DrawMask(dst, r, src, sp, nil, image.Point{}, op) -} - -// DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r -// in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque. -func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { - clip(dst, &r, src, &sp, mask, &mp) - if r.Empty() { - return - } - - // Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation. - switch dst0 := dst.(type) { - case *image.RGBA: - if op == Over { - if mask == nil { - switch src0 := src.(type) { - case *image.Uniform: - drawFillOver(dst0, r, src0) - return - case *image.RGBA: - drawCopyOver(dst0, r, src0, sp) - return - case *image.NRGBA: - drawNRGBAOver(dst0, r, src0, sp) - return - case *image.YCbCr: - if drawYCbCr(dst0, r, src0, sp) { - return - } - } - } else if mask0, ok := mask.(*image.Alpha); ok { - switch src0 := src.(type) { - case *image.Uniform: - drawGlyphOver(dst0, r, src0, mask0, mp) - return - } - } - } else { - if mask == nil { - switch src0 := src.(type) { - case *image.Uniform: - drawFillSrc(dst0, r, src0) - return - case *image.RGBA: - drawCopySrc(dst0, r, src0, sp) - return - case *image.NRGBA: - drawNRGBASrc(dst0, r, src0, sp) - return - case *image.YCbCr: - if drawYCbCr(dst0, r, src0, sp) { - return - } - } - } - } - drawRGBA(dst0, r, src, sp, mask, mp, op) - return - case *image.Paletted: - if op == Src && mask == nil && !processBackward(dst, r, src, sp) { - drawPaletted(dst0, r, src, sp, false) - } - } - - x0, x1, dx := r.Min.X, r.Max.X, 1 - y0, y1, dy := r.Min.Y, r.Max.Y, 1 - if processBackward(dst, r, src, sp) { - x0, x1, dx = x1-1, x0-1, -1 - y0, y1, dy = y1-1, y0-1, -1 - } - - var out color.RGBA64 - sy := sp.Y + y0 - r.Min.Y - my := mp.Y + y0 - r.Min.Y - for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { - sx := sp.X + x0 - r.Min.X - mx := mp.X + x0 - r.Min.X - for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx { - ma := uint32(m) - if mask != nil { - _, _, _, ma = mask.At(mx, my).RGBA() - } - switch { - case ma == 0: - if op == Over { - // No-op. - } else { - dst.Set(x, y, color.Transparent) - } - case ma == m && op == Src: - dst.Set(x, y, src.At(sx, sy)) - default: - sr, sg, sb, sa := src.At(sx, sy).RGBA() - if op == Over { - dr, dg, db, da := dst.At(x, y).RGBA() - a := m - (sa * ma / m) - out.R = uint16((dr*a + sr*ma) / m) - out.G = uint16((dg*a + sg*ma) / m) - out.B = uint16((db*a + sb*ma) / m) - out.A = uint16((da*a + sa*ma) / m) - } else { - out.R = uint16(sr * ma / m) - out.G = uint16(sg * ma / m) - out.B = uint16(sb * ma / m) - out.A = uint16(sa * ma / m) - } - // The third argument is &out instead of out (and out is - // declared outside of the inner loop) to avoid the implicit - // conversion to color.Color here allocating memory in the - // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). - dst.Set(x, y, &out) - } - } - } -} - -func drawFillOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform) { - sr, sg, sb, sa := src.RGBA() - // The 0x101 is here for the same reason as in drawRGBA. - a := (m - sa) * 0x101 - i0 := dst.PixOffset(r.Min.X, r.Min.Y) - i1 := i0 + r.Dx()*4 - for y := r.Min.Y; y != r.Max.Y; y++ { - for i := i0; i < i1; i += 4 { - dr := uint32(dst.Pix[i+0]) - dg := uint32(dst.Pix[i+1]) - db := uint32(dst.Pix[i+2]) - da := uint32(dst.Pix[i+3]) - - dst.Pix[i+0] = uint8((dr*a/m + sr) >> 8) - dst.Pix[i+1] = uint8((dg*a/m + sg) >> 8) - dst.Pix[i+2] = uint8((db*a/m + sb) >> 8) - dst.Pix[i+3] = uint8((da*a/m + sa) >> 8) - } - i0 += dst.Stride - i1 += dst.Stride - } -} - -func drawFillSrc(dst *image.RGBA, r image.Rectangle, src *image.Uniform) { - sr, sg, sb, sa := src.RGBA() - // The built-in copy function is faster than a straightforward for loop to fill the destination with - // the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and - // then use the first row as the slice source for the remaining rows. - i0 := dst.PixOffset(r.Min.X, r.Min.Y) - i1 := i0 + r.Dx()*4 - for i := i0; i < i1; i += 4 { - dst.Pix[i+0] = uint8(sr >> 8) - dst.Pix[i+1] = uint8(sg >> 8) - dst.Pix[i+2] = uint8(sb >> 8) - dst.Pix[i+3] = uint8(sa >> 8) - } - firstRow := dst.Pix[i0:i1] - for y := r.Min.Y + 1; y < r.Max.Y; y++ { - i0 += dst.Stride - i1 += dst.Stride - copy(dst.Pix[i0:i1], firstRow) - } -} - -func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { - dx, dy := r.Dx(), r.Dy() - d0 := dst.PixOffset(r.Min.X, r.Min.Y) - s0 := src.PixOffset(sp.X, sp.Y) - var ( - ddelta, sdelta int - i0, i1, idelta int - ) - if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X { - ddelta = dst.Stride - sdelta = src.Stride - i0, i1, idelta = 0, dx*4, +4 - } else { - // If the source start point is higher than the destination start point, or equal height but to the left, - // then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down. - d0 += (dy - 1) * dst.Stride - s0 += (dy - 1) * src.Stride - ddelta = -dst.Stride - sdelta = -src.Stride - i0, i1, idelta = (dx-1)*4, -4, -4 - } - for ; dy > 0; dy-- { - dpix := dst.Pix[d0:] - spix := src.Pix[s0:] - for i := i0; i != i1; i += idelta { - sr := uint32(spix[i+0]) * 0x101 - sg := uint32(spix[i+1]) * 0x101 - sb := uint32(spix[i+2]) * 0x101 - sa := uint32(spix[i+3]) * 0x101 - - dr := uint32(dpix[i+0]) - dg := uint32(dpix[i+1]) - db := uint32(dpix[i+2]) - da := uint32(dpix[i+3]) - - // The 0x101 is here for the same reason as in drawRGBA. - a := (m - sa) * 0x101 - - dpix[i+0] = uint8((dr*a/m + sr) >> 8) - dpix[i+1] = uint8((dg*a/m + sg) >> 8) - dpix[i+2] = uint8((db*a/m + sb) >> 8) - dpix[i+3] = uint8((da*a/m + sa) >> 8) - } - d0 += ddelta - s0 += sdelta - } -} - -func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) { - n, dy := 4*r.Dx(), r.Dy() - d0 := dst.PixOffset(r.Min.X, r.Min.Y) - s0 := src.PixOffset(sp.X, sp.Y) - var ddelta, sdelta int - if r.Min.Y <= sp.Y { - ddelta = dst.Stride - sdelta = src.Stride - } else { - // If the source start point is higher than the destination start point, then we compose the rows - // in bottom-up order instead of top-down. Unlike the drawCopyOver function, we don't have to - // check the x co-ordinates because the built-in copy function can handle overlapping slices. - d0 += (dy - 1) * dst.Stride - s0 += (dy - 1) * src.Stride - ddelta = -dst.Stride - sdelta = -src.Stride - } - for ; dy > 0; dy-- { - copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n]) - d0 += ddelta - s0 += sdelta - } -} - -func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { - i0 := (r.Min.X - dst.Rect.Min.X) * 4 - i1 := (r.Max.X - dst.Rect.Min.X) * 4 - si0 := (sp.X - src.Rect.Min.X) * 4 - yMax := r.Max.Y - dst.Rect.Min.Y - - y := r.Min.Y - dst.Rect.Min.Y - sy := sp.Y - src.Rect.Min.Y - for ; y != yMax; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - spix := src.Pix[sy*src.Stride:] - - for i, si := i0, si0; i < i1; i, si = i+4, si+4 { - // Convert from non-premultiplied color to pre-multiplied color. - sa := uint32(spix[si+3]) * 0x101 - sr := uint32(spix[si+0]) * sa / 0xff - sg := uint32(spix[si+1]) * sa / 0xff - sb := uint32(spix[si+2]) * sa / 0xff - - dr := uint32(dpix[i+0]) - dg := uint32(dpix[i+1]) - db := uint32(dpix[i+2]) - da := uint32(dpix[i+3]) - - // The 0x101 is here for the same reason as in drawRGBA. - a := (m - sa) * 0x101 - - dpix[i+0] = uint8((dr*a/m + sr) >> 8) - dpix[i+1] = uint8((dg*a/m + sg) >> 8) - dpix[i+2] = uint8((db*a/m + sb) >> 8) - dpix[i+3] = uint8((da*a/m + sa) >> 8) - } - } -} - -func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) { - i0 := (r.Min.X - dst.Rect.Min.X) * 4 - i1 := (r.Max.X - dst.Rect.Min.X) * 4 - si0 := (sp.X - src.Rect.Min.X) * 4 - yMax := r.Max.Y - dst.Rect.Min.Y - - y := r.Min.Y - dst.Rect.Min.Y - sy := sp.Y - src.Rect.Min.Y - for ; y != yMax; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - spix := src.Pix[sy*src.Stride:] - - for i, si := i0, si0; i < i1; i, si = i+4, si+4 { - // Convert from non-premultiplied color to pre-multiplied color. - sa := uint32(spix[si+3]) * 0x101 - sr := uint32(spix[si+0]) * sa / 0xff - sg := uint32(spix[si+1]) * sa / 0xff - sb := uint32(spix[si+2]) * sa / 0xff - - dpix[i+0] = uint8(sr >> 8) - dpix[i+1] = uint8(sg >> 8) - dpix[i+2] = uint8(sb >> 8) - dpix[i+3] = uint8(sa >> 8) - } - } -} - -func drawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) { - // An image.YCbCr is always fully opaque, and so if the mask is implicitly nil - // (i.e. fully opaque) then the op is effectively always Src. - x0 := (r.Min.X - dst.Rect.Min.X) * 4 - x1 := (r.Max.X - dst.Rect.Min.X) * 4 - y0 := r.Min.Y - dst.Rect.Min.Y - y1 := r.Max.Y - dst.Rect.Min.Y - switch src.SubsampleRatio { - case image.YCbCrSubsampleRatio444: - for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) - ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X) - for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { - rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci]) - dpix[x+0] = rr - dpix[x+1] = gg - dpix[x+2] = bb - dpix[x+3] = 255 - } - } - case image.YCbCrSubsampleRatio422: - for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) - ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2 - for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { - ci := ciBase + sx/2 - rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci]) - dpix[x+0] = rr - dpix[x+1] = gg - dpix[x+2] = bb - dpix[x+3] = 255 - } - } - case image.YCbCrSubsampleRatio420: - for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) - ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2 - for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { - ci := ciBase + sx/2 - rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci]) - dpix[x+0] = rr - dpix[x+1] = gg - dpix[x+2] = bb - dpix[x+3] = 255 - } - } - case image.YCbCrSubsampleRatio440: - for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { - dpix := dst.Pix[y*dst.Stride:] - yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) - ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X) - for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { - rr, gg, bb := color.YCbCrToRGB(src.Y[yi], src.Cb[ci], src.Cr[ci]) - dpix[x+0] = rr - dpix[x+1] = gg - dpix[x+2] = bb - dpix[x+3] = 255 - } - } - default: - return false - } - return true -} - -func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) { - i0 := dst.PixOffset(r.Min.X, r.Min.Y) - i1 := i0 + r.Dx()*4 - mi0 := mask.PixOffset(mp.X, mp.Y) - sr, sg, sb, sa := src.RGBA() - for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 { - for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 { - ma := uint32(mask.Pix[mi]) - if ma == 0 { - continue - } - ma |= ma << 8 - - dr := uint32(dst.Pix[i+0]) - dg := uint32(dst.Pix[i+1]) - db := uint32(dst.Pix[i+2]) - da := uint32(dst.Pix[i+3]) - - // The 0x101 is here for the same reason as in drawRGBA. - a := (m - (sa * ma / m)) * 0x101 - - dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8) - dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8) - dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8) - dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8) - } - i0 += dst.Stride - i1 += dst.Stride - mi0 += mask.Stride - } -} - -func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) { - x0, x1, dx := r.Min.X, r.Max.X, 1 - y0, y1, dy := r.Min.Y, r.Max.Y, 1 - if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) { - if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X { - x0, x1, dx = x1-1, x0-1, -1 - y0, y1, dy = y1-1, y0-1, -1 - } - } - - sy := sp.Y + y0 - r.Min.Y - my := mp.Y + y0 - r.Min.Y - sx0 := sp.X + x0 - r.Min.X - mx0 := mp.X + x0 - r.Min.X - sx1 := sx0 + (x1 - x0) - i0 := dst.PixOffset(x0, y0) - di := dx * 4 - for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy { - for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx { - ma := uint32(m) - if mask != nil { - _, _, _, ma = mask.At(mx, my).RGBA() - } - sr, sg, sb, sa := src.At(sx, sy).RGBA() - if op == Over { - dr := uint32(dst.Pix[i+0]) - dg := uint32(dst.Pix[i+1]) - db := uint32(dst.Pix[i+2]) - da := uint32(dst.Pix[i+3]) - - // dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255]. - // We work in 16-bit color, and so would normally do: - // dr |= dr << 8 - // and similarly for dg, db and da, but instead we multiply a - // (which is a 16-bit color, ranging in [0,65535]) by 0x101. - // This yields the same result, but is fewer arithmetic operations. - a := (m - (sa * ma / m)) * 0x101 - - dst.Pix[i+0] = uint8((dr*a + sr*ma) / m >> 8) - dst.Pix[i+1] = uint8((dg*a + sg*ma) / m >> 8) - dst.Pix[i+2] = uint8((db*a + sb*ma) / m >> 8) - dst.Pix[i+3] = uint8((da*a + sa*ma) / m >> 8) - - } else { - dst.Pix[i+0] = uint8(sr * ma / m >> 8) - dst.Pix[i+1] = uint8(sg * ma / m >> 8) - dst.Pix[i+2] = uint8(sb * ma / m >> 8) - dst.Pix[i+3] = uint8(sa * ma / m >> 8) - } - } - i0 += dy * dst.Stride - } -} - -// clamp clamps i to the interval [0, 0xffff]. -func clamp(i int32) int32 { - if i < 0 { - return 0 - } - if i > 0xffff { - return 0xffff - } - return i -} - -func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) { - // TODO(nigeltao): handle the case where the dst and src overlap. - // Does it even make sense to try and do Floyd-Steinberg whilst - // walking the image backward (right-to-left bottom-to-top)? - - // If dst is an *image.Paletted, we have a fast path for dst.Set and - // dst.At. The dst.Set equivalent is a batch version of the algorithm - // used by color.Palette's Index method in image/color/color.go, plus - // optional Floyd-Steinberg error diffusion. - palette, pix, stride := [][3]int32(nil), []byte(nil), 0 - if p, ok := dst.(*image.Paletted); ok { - palette = make([][3]int32, len(p.Palette)) - for i, col := range p.Palette { - r, g, b, _ := col.RGBA() - palette[i][0] = int32(r) - palette[i][1] = int32(g) - palette[i][2] = int32(b) - } - pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride - } - - // quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization - // errors that have been propagated to the pixels in the current and next - // rows. The +2 simplifies calculation near the edges. - var quantErrorCurr, quantErrorNext [][3]int32 - if floydSteinberg { - quantErrorCurr = make([][3]int32, r.Dx()+2) - quantErrorNext = make([][3]int32, r.Dx()+2) - } - - // Loop over each source pixel. - out := color.RGBA64{A: 0xffff} - for y := 0; y != r.Dy(); y++ { - for x := 0; x != r.Dx(); x++ { - // er, eg and eb are the pixel's R,G,B values plus the - // optional Floyd-Steinberg error. - sr, sg, sb, _ := src.At(sp.X+x, sp.Y+y).RGBA() - er, eg, eb := int32(sr), int32(sg), int32(sb) - if floydSteinberg { - er = clamp(er + quantErrorCurr[x+1][0]/16) - eg = clamp(eg + quantErrorCurr[x+1][1]/16) - eb = clamp(eb + quantErrorCurr[x+1][2]/16) - } - - if palette != nil { - // Find the closest palette color in Euclidean R,G,B space: the - // one that minimizes sum-squared-difference. We shift by 1 bit - // to avoid potential uint32 overflow in sum-squared-difference. - // TODO(nigeltao): consider smarter algorithms. - bestIndex, bestSSD := 0, uint32(1<<32-1) - for index, p := range palette { - delta := (er - p[0]) >> 1 - ssd := uint32(delta * delta) - delta = (eg - p[1]) >> 1 - ssd += uint32(delta * delta) - delta = (eb - p[2]) >> 1 - ssd += uint32(delta * delta) - if ssd < bestSSD { - bestIndex, bestSSD = index, ssd - if ssd == 0 { - break - } - } - } - pix[y*stride+x] = byte(bestIndex) - - if !floydSteinberg { - continue - } - er -= int32(palette[bestIndex][0]) - eg -= int32(palette[bestIndex][1]) - eb -= int32(palette[bestIndex][2]) - - } else { - out.R = uint16(er) - out.G = uint16(eg) - out.B = uint16(eb) - // The third argument is &out instead of out (and out is - // declared outside of the inner loop) to avoid the implicit - // conversion to color.Color here allocating memory in the - // inner loop if sizeof(color.RGBA64) > sizeof(uintptr). - dst.Set(r.Min.X+x, r.Min.Y+y, &out) - - if !floydSteinberg { - continue - } - sr, sg, sb, _ = dst.At(r.Min.X+x, r.Min.Y+y).RGBA() - er -= int32(sr) - eg -= int32(sg) - eb -= int32(sb) - } - - // Propagate the Floyd-Steinberg quantization error. - quantErrorNext[x+0][0] += er * 3 - quantErrorNext[x+0][1] += eg * 3 - quantErrorNext[x+0][2] += eb * 3 - quantErrorNext[x+1][0] += er * 5 - quantErrorNext[x+1][1] += eg * 5 - quantErrorNext[x+1][2] += eb * 5 - quantErrorNext[x+2][0] += er * 1 - quantErrorNext[x+2][1] += eg * 1 - quantErrorNext[x+2][2] += eb * 1 - quantErrorCurr[x+2][0] += er * 7 - quantErrorCurr[x+2][1] += eg * 7 - quantErrorCurr[x+2][2] += eb * 7 - } - - // Recycle the quantization error buffers. - if floydSteinberg { - quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr - for i := range quantErrorNext { - quantErrorNext[i] = [3]int32{} - } - } - } -} |