summaryrefslogtreecommitdiff
path: root/src/pkg/math/sqrt.go
diff options
context:
space:
mode:
authorTianon Gravi <admwiggin@gmail.com>2015-01-15 11:54:00 -0700
committerTianon Gravi <admwiggin@gmail.com>2015-01-15 11:54:00 -0700
commitf154da9e12608589e8d5f0508f908a0c3e88a1bb (patch)
treef8255d51e10c6f1e0ed69702200b966c9556a431 /src/pkg/math/sqrt.go
parent8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff)
downloadgolang-upstream/1.4.tar.gz
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/pkg/math/sqrt.go')
-rw-r--r--src/pkg/math/sqrt.go143
1 files changed, 0 insertions, 143 deletions
diff --git a/src/pkg/math/sqrt.go b/src/pkg/math/sqrt.go
deleted file mode 100644
index 1bd4437f1..000000000
--- a/src/pkg/math/sqrt.go
+++ /dev/null
@@ -1,143 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package math
-
-// The original C code and the long comment below are
-// from FreeBSD's /usr/src/lib/msun/src/e_sqrt.c and
-// came with this notice. The go code is a simplified
-// version of the original C.
-//
-// ====================================================
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
-//
-// Developed at SunPro, a Sun Microsystems, Inc. business.
-// Permission to use, copy, modify, and distribute this
-// software is freely granted, provided that this notice
-// is preserved.
-// ====================================================
-//
-// __ieee754_sqrt(x)
-// Return correctly rounded sqrt.
-// -----------------------------------------
-// | Use the hardware sqrt if you have one |
-// -----------------------------------------
-// Method:
-// Bit by bit method using integer arithmetic. (Slow, but portable)
-// 1. Normalization
-// Scale x to y in [1,4) with even powers of 2:
-// find an integer k such that 1 <= (y=x*2**(2k)) < 4, then
-// sqrt(x) = 2**k * sqrt(y)
-// 2. Bit by bit computation
-// Let q = sqrt(y) truncated to i bit after binary point (q = 1),
-// i 0
-// i+1 2
-// s = 2*q , and y = 2 * ( y - q ). (1)
-// i i i i
-//
-// To compute q from q , one checks whether
-// i+1 i
-//
-// -(i+1) 2
-// (q + 2 ) <= y. (2)
-// i
-// -(i+1)
-// If (2) is false, then q = q ; otherwise q = q + 2 .
-// i+1 i i+1 i
-//
-// With some algebraic manipulation, it is not difficult to see
-// that (2) is equivalent to
-// -(i+1)
-// s + 2 <= y (3)
-// i i
-//
-// The advantage of (3) is that s and y can be computed by
-// i i
-// the following recurrence formula:
-// if (3) is false
-//
-// s = s , y = y ; (4)
-// i+1 i i+1 i
-//
-// otherwise,
-// -i -(i+1)
-// s = s + 2 , y = y - s - 2 (5)
-// i+1 i i+1 i i
-//
-// One may easily use induction to prove (4) and (5).
-// Note. Since the left hand side of (3) contain only i+2 bits,
-// it does not necessary to do a full (53-bit) comparison
-// in (3).
-// 3. Final rounding
-// After generating the 53 bits result, we compute one more bit.
-// Together with the remainder, we can decide whether the
-// result is exact, bigger than 1/2ulp, or less than 1/2ulp
-// (it will never equal to 1/2ulp).
-// The rounding mode can be detected by checking whether
-// huge + tiny is equal to huge, and whether huge - tiny is
-// equal to huge for some floating point number "huge" and "tiny".
-//
-//
-// Notes: Rounding mode detection omitted. The constants "mask", "shift",
-// and "bias" are found in src/pkg/math/bits.go
-
-// Sqrt returns the square root of x.
-//
-// Special cases are:
-// Sqrt(+Inf) = +Inf
-// Sqrt(±0) = ±0
-// Sqrt(x < 0) = NaN
-// Sqrt(NaN) = NaN
-func Sqrt(x float64) float64
-
-func sqrt(x float64) float64 {
- // special cases
- switch {
- case x == 0 || IsNaN(x) || IsInf(x, 1):
- return x
- case x < 0:
- return NaN()
- }
- ix := Float64bits(x)
- // normalize x
- exp := int((ix >> shift) & mask)
- if exp == 0 { // subnormal x
- for ix&1<<shift == 0 {
- ix <<= 1
- exp--
- }
- exp++
- }
- exp -= bias // unbias exponent
- ix &^= mask << shift
- ix |= 1 << shift
- if exp&1 == 1 { // odd exp, double x to make it even
- ix <<= 1
- }
- exp >>= 1 // exp = exp/2, exponent of square root
- // generate sqrt(x) bit by bit
- ix <<= 1
- var q, s uint64 // q = sqrt(x)
- r := uint64(1 << (shift + 1)) // r = moving bit from MSB to LSB
- for r != 0 {
- t := s + r
- if t <= ix {
- s = t + r
- ix -= t
- q += r
- }
- ix <<= 1
- r >>= 1
- }
- // final rounding
- if ix != 0 { // remainder, result not exact
- q += q & 1 // round according to extra bit
- }
- ix = q>>1 + uint64(exp-1+bias)<<shift // significand + biased exponent
- return Float64frombits(ix)
-}
-
-func sqrtC(f float64, r *float64) {
- *r = sqrt(f)
-}