diff options
author | Ondřej Surý <ondrej@sury.org> | 2011-09-13 13:13:40 +0200 |
---|---|---|
committer | Ondřej Surý <ondrej@sury.org> | 2011-09-13 13:13:40 +0200 |
commit | 5ff4c17907d5b19510a62e08fd8d3b11e62b431d (patch) | |
tree | c0650497e988f47be9c6f2324fa692a52dea82e1 /src/pkg/regexp/regexp.go | |
parent | 80f18fc933cf3f3e829c5455a1023d69f7b86e52 (diff) | |
download | golang-5ff4c17907d5b19510a62e08fd8d3b11e62b431d.tar.gz |
Imported Upstream version 60upstream/60
Diffstat (limited to 'src/pkg/regexp/regexp.go')
-rw-r--r-- | src/pkg/regexp/regexp.go | 1488 |
1 files changed, 1488 insertions, 0 deletions
diff --git a/src/pkg/regexp/regexp.go b/src/pkg/regexp/regexp.go new file mode 100644 index 000000000..e8d4c087c --- /dev/null +++ b/src/pkg/regexp/regexp.go @@ -0,0 +1,1488 @@ +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package regexp implements a simple regular expression library. +// +// The syntax of the regular expressions accepted is: +// +// regexp: +// concatenation { '|' concatenation } +// concatenation: +// { closure } +// closure: +// term [ '*' | '+' | '?' ] +// term: +// '^' +// '$' +// '.' +// character +// '[' [ '^' ] { character-range } ']' +// '(' regexp ')' +// character-range: +// character [ '-' character ] +// +// All characters are UTF-8-encoded code points. Backslashes escape special +// characters, including inside character classes. The standard Go character +// escapes are also recognized: \a \b \f \n \r \t \v. +// +// There are 16 methods of Regexp that match a regular expression and identify +// the matched text. Their names are matched by this regular expression: +// +// Find(All)?(String)?(Submatch)?(Index)? +// +// If 'All' is present, the routine matches successive non-overlapping +// matches of the entire expression. Empty matches abutting a preceding +// match are ignored. The return value is a slice containing the successive +// return values of the corresponding non-'All' routine. These routines take +// an extra integer argument, n; if n >= 0, the function returns at most n +// matches/submatches. +// +// If 'String' is present, the argument is a string; otherwise it is a slice +// of bytes; return values are adjusted as appropriate. +// +// If 'Submatch' is present, the return value is a slice identifying the +// successive submatches of the expression. Submatches are matches of +// parenthesized subexpressions within the regular expression, numbered from +// left to right in order of opening parenthesis. Submatch 0 is the match of +// the entire expression, submatch 1 the match of the first parenthesized +// subexpression, and so on. +// +// If 'Index' is present, matches and submatches are identified by byte index +// pairs within the input string: result[2*n:2*n+1] identifies the indexes of +// the nth submatch. The pair for n==0 identifies the match of the entire +// expression. If 'Index' is not present, the match is identified by the +// text of the match/submatch. If an index is negative, it means that +// subexpression did not match any string in the input. +// +// There is also a subset of the methods that can be applied to text read +// from a RuneReader: +// +// MatchReader, FindReaderIndex, FindReaderSubmatchIndex +// +// This set may grow. Note that regular expression matches may need to +// examine text beyond the text returned by a match, so the methods that +// match text from a RuneReader may read arbitrarily far into the input +// before returning. +// +// (There are a few other methods that do not match this pattern.) +// +package regexp + +import ( + "bytes" + "io" + "os" + "strings" + "utf8" +) + +var debug = false + +// Error is the local type for a parsing error. +type Error string + +func (e Error) String() string { + return string(e) +} + +// Error codes returned by failures to parse an expression. +var ( + ErrInternal = Error("regexp: internal error") + ErrUnmatchedLpar = Error("regexp: unmatched '('") + ErrUnmatchedRpar = Error("regexp: unmatched ')'") + ErrUnmatchedLbkt = Error("regexp: unmatched '['") + ErrUnmatchedRbkt = Error("regexp: unmatched ']'") + ErrBadRange = Error("regexp: bad range in character class") + ErrExtraneousBackslash = Error("regexp: extraneous backslash") + ErrBadClosure = Error("regexp: repeated closure (**, ++, etc.)") + ErrBareClosure = Error("regexp: closure applies to nothing") + ErrBadBackslash = Error("regexp: illegal backslash escape") +) + +const ( + iStart = iota // beginning of program + iEnd // end of program: success + iBOT // '^' beginning of text + iEOT // '$' end of text + iChar // 'a' regular character + iCharClass // [a-z] character class + iAny // '.' any character including newline + iNotNL // [^\n] special case: any character but newline + iBra // '(' parenthesized expression: 2*braNum for left, 2*braNum+1 for right + iAlt // '|' alternation + iNop // do nothing; makes it easy to link without patching +) + +// An instruction executed by the NFA +type instr struct { + kind int // the type of this instruction: iChar, iAny, etc. + index int // used only in debugging; could be eliminated + next *instr // the instruction to execute after this one + // Special fields valid only for some items. + char int // iChar + braNum int // iBra, iEbra + cclass *charClass // iCharClass + left *instr // iAlt, other branch +} + +func (i *instr) print() { + switch i.kind { + case iStart: + print("start") + case iEnd: + print("end") + case iBOT: + print("bot") + case iEOT: + print("eot") + case iChar: + print("char ", string(i.char)) + case iCharClass: + i.cclass.print() + case iAny: + print("any") + case iNotNL: + print("notnl") + case iBra: + if i.braNum&1 == 0 { + print("bra", i.braNum/2) + } else { + print("ebra", i.braNum/2) + } + case iAlt: + print("alt(", i.left.index, ")") + case iNop: + print("nop") + } +} + +// Regexp is the representation of a compiled regular expression. +// The public interface is entirely through methods. +// A Regexp is safe for concurrent use by multiple goroutines. +type Regexp struct { + expr string // the original expression + prefix string // initial plain text string + prefixBytes []byte // initial plain text bytes + inst []*instr + start *instr // first instruction of machine + prefixStart *instr // where to start if there is a prefix + nbra int // number of brackets in expression, for subexpressions +} + +type charClass struct { + negate bool // is character class negated? ([^a-z]) + // slice of int, stored pairwise: [a-z] is (a,z); x is (x,x): + ranges []int + cmin, cmax int +} + +func (cclass *charClass) print() { + print("charclass") + if cclass.negate { + print(" (negated)") + } + for i := 0; i < len(cclass.ranges); i += 2 { + l := cclass.ranges[i] + r := cclass.ranges[i+1] + if l == r { + print(" [", string(l), "]") + } else { + print(" [", string(l), "-", string(r), "]") + } + } +} + +func (cclass *charClass) addRange(a, b int) { + // range is a through b inclusive + cclass.ranges = append(cclass.ranges, a, b) + if a < cclass.cmin { + cclass.cmin = a + } + if b > cclass.cmax { + cclass.cmax = b + } +} + +func (cclass *charClass) matches(c int) bool { + if c < cclass.cmin || c > cclass.cmax { + return cclass.negate + } + ranges := cclass.ranges + for i := 0; i < len(ranges); i = i + 2 { + if ranges[i] <= c && c <= ranges[i+1] { + return !cclass.negate + } + } + return cclass.negate +} + +func newCharClass() *instr { + i := &instr{kind: iCharClass} + i.cclass = new(charClass) + i.cclass.ranges = make([]int, 0, 4) + i.cclass.cmin = 0x10FFFF + 1 // MaxRune + 1 + i.cclass.cmax = -1 + return i +} + +func (re *Regexp) add(i *instr) *instr { + i.index = len(re.inst) + re.inst = append(re.inst, i) + return i +} + +type parser struct { + re *Regexp + nlpar int // number of unclosed lpars + pos int + ch int +} + +func (p *parser) error(err Error) { + panic(err) +} + +const endOfText = -1 + +func (p *parser) c() int { return p.ch } + +func (p *parser) nextc() int { + if p.pos >= len(p.re.expr) { + p.ch = endOfText + } else { + c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:]) + p.ch = c + p.pos += w + } + return p.ch +} + +func newParser(re *Regexp) *parser { + p := new(parser) + p.re = re + p.nextc() // load p.ch + return p +} + +func special(c int) bool { + for _, r := range `\.+*?()|[]^$` { + if c == r { + return true + } + } + return false +} + +func ispunct(c int) bool { + for _, r := range "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" { + if c == r { + return true + } + } + return false +} + +var escapes = []byte("abfnrtv") +var escaped = []byte("\a\b\f\n\r\t\v") + +func escape(c int) int { + for i, b := range escapes { + if int(b) == c { + return i + } + } + return -1 +} + +func (p *parser) checkBackslash() int { + c := p.c() + if c == '\\' { + c = p.nextc() + switch { + case c == endOfText: + p.error(ErrExtraneousBackslash) + case ispunct(c): + // c is as delivered + case escape(c) >= 0: + c = int(escaped[escape(c)]) + default: + p.error(ErrBadBackslash) + } + } + return c +} + +func (p *parser) charClass() *instr { + i := newCharClass() + cc := i.cclass + if p.c() == '^' { + cc.negate = true + p.nextc() + } + left := -1 + for { + switch c := p.c(); c { + case ']', endOfText: + if left >= 0 { + p.error(ErrBadRange) + } + // Is it [^\n]? + if cc.negate && len(cc.ranges) == 2 && + cc.ranges[0] == '\n' && cc.ranges[1] == '\n' { + nl := &instr{kind: iNotNL} + p.re.add(nl) + return nl + } + // Special common case: "[a]" -> "a" + if !cc.negate && len(cc.ranges) == 2 && cc.ranges[0] == cc.ranges[1] { + c := &instr{kind: iChar, char: cc.ranges[0]} + p.re.add(c) + return c + } + p.re.add(i) + return i + case '-': // do this before backslash processing + p.error(ErrBadRange) + default: + c = p.checkBackslash() + p.nextc() + switch { + case left < 0: // first of pair + if p.c() == '-' { // range + p.nextc() + left = c + } else { // single char + cc.addRange(c, c) + } + case left <= c: // second of pair + cc.addRange(left, c) + left = -1 + default: + p.error(ErrBadRange) + } + } + } + panic("unreachable") +} + +func (p *parser) term() (start, end *instr) { + switch c := p.c(); c { + case '|', endOfText: + return nil, nil + case '*', '+', '?': + p.error(ErrBareClosure) + case ')': + if p.nlpar == 0 { + p.error(ErrUnmatchedRpar) + } + return nil, nil + case ']': + p.error(ErrUnmatchedRbkt) + case '^': + p.nextc() + start = p.re.add(&instr{kind: iBOT}) + return start, start + case '$': + p.nextc() + start = p.re.add(&instr{kind: iEOT}) + return start, start + case '.': + p.nextc() + start = p.re.add(&instr{kind: iAny}) + return start, start + case '[': + p.nextc() + start = p.charClass() + if p.c() != ']' { + p.error(ErrUnmatchedLbkt) + } + p.nextc() + return start, start + case '(': + p.nextc() + p.nlpar++ + p.re.nbra++ // increment first so first subexpr is \1 + nbra := p.re.nbra + start, end = p.regexp() + if p.c() != ')' { + p.error(ErrUnmatchedLpar) + } + p.nlpar-- + p.nextc() + bra := &instr{kind: iBra, braNum: 2 * nbra} + p.re.add(bra) + ebra := &instr{kind: iBra, braNum: 2*nbra + 1} + p.re.add(ebra) + if start == nil { + if end == nil { + p.error(ErrInternal) + return + } + start = ebra + } else { + end.next = ebra + } + bra.next = start + return bra, ebra + default: + c = p.checkBackslash() + p.nextc() + start = &instr{kind: iChar, char: c} + p.re.add(start) + return start, start + } + panic("unreachable") +} + +func (p *parser) closure() (start, end *instr) { + start, end = p.term() + if start == nil { + return + } + switch p.c() { + case '*': + // (start,end)*: + alt := &instr{kind: iAlt} + p.re.add(alt) + end.next = alt // after end, do alt + alt.left = start // alternate brach: return to start + start = alt // alt becomes new (start, end) + end = alt + case '+': + // (start,end)+: + alt := &instr{kind: iAlt} + p.re.add(alt) + end.next = alt // after end, do alt + alt.left = start // alternate brach: return to start + end = alt // start is unchanged; end is alt + case '?': + // (start,end)?: + alt := &instr{kind: iAlt} + p.re.add(alt) + nop := &instr{kind: iNop} + p.re.add(nop) + alt.left = start // alternate branch is start + alt.next = nop // follow on to nop + end.next = nop // after end, go to nop + start = alt // start is now alt + end = nop // end is nop pointed to by both branches + default: + return + } + switch p.nextc() { + case '*', '+', '?': + p.error(ErrBadClosure) + } + return +} + +func (p *parser) concatenation() (start, end *instr) { + for { + nstart, nend := p.closure() + switch { + case nstart == nil: // end of this concatenation + if start == nil { // this is the empty string + nop := p.re.add(&instr{kind: iNop}) + return nop, nop + } + return + case start == nil: // this is first element of concatenation + start, end = nstart, nend + default: + end.next = nstart + end = nend + } + } + panic("unreachable") +} + +func (p *parser) regexp() (start, end *instr) { + start, end = p.concatenation() + for { + switch p.c() { + default: + return + case '|': + p.nextc() + nstart, nend := p.concatenation() + alt := &instr{kind: iAlt} + p.re.add(alt) + alt.left = start + alt.next = nstart + nop := &instr{kind: iNop} + p.re.add(nop) + end.next = nop + nend.next = nop + start, end = alt, nop + } + } + panic("unreachable") +} + +func unNop(i *instr) *instr { + for i.kind == iNop { + i = i.next + } + return i +} + +func (re *Regexp) eliminateNops() { + for _, inst := range re.inst { + if inst.kind == iEnd { + continue + } + inst.next = unNop(inst.next) + if inst.kind == iAlt { + inst.left = unNop(inst.left) + } + } +} + +func (re *Regexp) dump() { + print("prefix <", re.prefix, ">\n") + for _, inst := range re.inst { + print(inst.index, ": ") + inst.print() + if inst.kind != iEnd { + print(" -> ", inst.next.index) + } + print("\n") + } +} + +func (re *Regexp) doParse() { + p := newParser(re) + start := &instr{kind: iStart} + re.add(start) + s, e := p.regexp() + start.next = s + re.start = start + e.next = re.add(&instr{kind: iEnd}) + + if debug { + re.dump() + println() + } + + re.eliminateNops() + if debug { + re.dump() + println() + } + re.setPrefix() + if debug { + re.dump() + println() + } +} + +// Extract regular text from the beginning of the pattern, +// possibly after a leading iBOT. +// That text can be used by doExecute to speed up matching. +func (re *Regexp) setPrefix() { + var b []byte + var utf = make([]byte, utf8.UTFMax) + var inst *instr + // First instruction is start; skip that. Also skip any initial iBOT. + inst = re.inst[0].next + for inst.kind == iBOT { + inst = inst.next + } +Loop: + for ; inst.kind != iEnd; inst = inst.next { + // stop if this is not a char + if inst.kind != iChar { + break + } + // stop if this char can be followed by a match for an empty string, + // which includes closures, ^, and $. + switch inst.next.kind { + case iBOT, iEOT, iAlt: + break Loop + } + n := utf8.EncodeRune(utf, inst.char) + b = append(b, utf[0:n]...) + } + // point prefixStart instruction to first non-CHAR after prefix + re.prefixStart = inst + re.prefixBytes = b + re.prefix = string(b) +} + +// String returns the source text used to compile the regular expression. +func (re *Regexp) String() string { + return re.expr +} + +// Compile parses a regular expression and returns, if successful, a Regexp +// object that can be used to match against text. +func Compile(str string) (regexp *Regexp, error os.Error) { + regexp = new(Regexp) + // doParse will panic if there is a parse error. + defer func() { + if e := recover(); e != nil { + regexp = nil + error = e.(Error) // Will re-panic if error was not an Error, e.g. nil-pointer exception + } + }() + regexp.expr = str + regexp.inst = make([]*instr, 0, 10) + regexp.doParse() + return +} + +// MustCompile is like Compile but panics if the expression cannot be parsed. +// It simplifies safe initialization of global variables holding compiled regular +// expressions. +func MustCompile(str string) *Regexp { + regexp, error := Compile(str) + if error != nil { + panic(`regexp: compiling "` + str + `": ` + error.String()) + } + return regexp +} + +// NumSubexp returns the number of parenthesized subexpressions in this Regexp. +func (re *Regexp) NumSubexp() int { return re.nbra } + +// The match arena allows us to reduce the garbage generated by tossing +// match vectors away as we execute. Matches are ref counted and returned +// to a free list when no longer active. Increases a simple benchmark by 22X. +type matchArena struct { + head *matchVec + len int // length of match vector + pos int + atBOT bool // whether we're at beginning of text + atEOT bool // whether we're at end of text +} + +type matchVec struct { + m []int // pairs of bracketing submatches. 0th is start,end + ref int + next *matchVec +} + +func (a *matchArena) new() *matchVec { + if a.head == nil { + const N = 10 + block := make([]matchVec, N) + for i := 0; i < N; i++ { + b := &block[i] + b.next = a.head + a.head = b + } + } + m := a.head + a.head = m.next + m.ref = 0 + if m.m == nil { + m.m = make([]int, a.len) + } + return m +} + +func (a *matchArena) free(m *matchVec) { + m.ref-- + if m.ref == 0 { + m.next = a.head + a.head = m + } +} + +func (a *matchArena) copy(m *matchVec) *matchVec { + m1 := a.new() + copy(m1.m, m.m) + return m1 +} + +func (a *matchArena) noMatch() *matchVec { + m := a.new() + for i := range m.m { + m.m[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac" + } + m.ref = 1 + return m +} + +type state struct { + inst *instr // next instruction to execute + prefixed bool // this match began with a fixed prefix + match *matchVec +} + +// Append new state to to-do list. Leftmost-longest wins so avoid +// adding a state that's already active. The matchVec will be inc-ref'ed +// if it is assigned to a state. +func (a *matchArena) addState(s []state, inst *instr, prefixed bool, match *matchVec) []state { + switch inst.kind { + case iBOT: + if a.atBOT { + s = a.addState(s, inst.next, prefixed, match) + } + return s + case iEOT: + if a.atEOT { + s = a.addState(s, inst.next, prefixed, match) + } + return s + case iBra: + match.m[inst.braNum] = a.pos + s = a.addState(s, inst.next, prefixed, match) + return s + } + l := len(s) + // States are inserted in order so it's sufficient to see if we have the same + // instruction; no need to see if existing match is earlier (it is). + for i := 0; i < l; i++ { + if s[i].inst == inst { + return s + } + } + s = append(s, state{inst, prefixed, match}) + match.ref++ + if inst.kind == iAlt { + s = a.addState(s, inst.left, prefixed, a.copy(match)) + // give other branch a copy of this match vector + s = a.addState(s, inst.next, prefixed, a.copy(match)) + } + return s +} + +// input abstracts different representations of the input text. It provides +// one-character lookahead. +type input interface { + step(pos int) (rune int, width int) // advance one rune + canCheckPrefix() bool // can we look ahead without losing info? + hasPrefix(re *Regexp) bool + index(re *Regexp, pos int) int +} + +// inputString scans a string. +type inputString struct { + str string +} + +func newInputString(str string) *inputString { + return &inputString{str: str} +} + +func (i *inputString) step(pos int) (int, int) { + if pos < len(i.str) { + return utf8.DecodeRuneInString(i.str[pos:len(i.str)]) + } + return endOfText, 0 +} + +func (i *inputString) canCheckPrefix() bool { + return true +} + +func (i *inputString) hasPrefix(re *Regexp) bool { + return strings.HasPrefix(i.str, re.prefix) +} + +func (i *inputString) index(re *Regexp, pos int) int { + return strings.Index(i.str[pos:], re.prefix) +} + +// inputBytes scans a byte slice. +type inputBytes struct { + str []byte +} + +func newInputBytes(str []byte) *inputBytes { + return &inputBytes{str: str} +} + +func (i *inputBytes) step(pos int) (int, int) { + if pos < len(i.str) { + return utf8.DecodeRune(i.str[pos:len(i.str)]) + } + return endOfText, 0 +} + +func (i *inputBytes) canCheckPrefix() bool { + return true +} + +func (i *inputBytes) hasPrefix(re *Regexp) bool { + return bytes.HasPrefix(i.str, re.prefixBytes) +} + +func (i *inputBytes) index(re *Regexp, pos int) int { + return bytes.Index(i.str[pos:], re.prefixBytes) +} + +// inputReader scans a RuneReader. +type inputReader struct { + r io.RuneReader + atEOT bool + pos int +} + +func newInputReader(r io.RuneReader) *inputReader { + return &inputReader{r: r} +} + +func (i *inputReader) step(pos int) (int, int) { + if !i.atEOT && pos != i.pos { + return endOfText, 0 + + } + r, w, err := i.r.ReadRune() + if err != nil { + i.atEOT = true + return endOfText, 0 + } + i.pos += w + return r, w +} + +func (i *inputReader) canCheckPrefix() bool { + return false +} + +func (i *inputReader) hasPrefix(re *Regexp) bool { + return false +} + +func (i *inputReader) index(re *Regexp, pos int) int { + return -1 +} + +// Search match starting from pos bytes into the input. +func (re *Regexp) doExecute(i input, pos int) []int { + var s [2][]state + s[0] = make([]state, 0, 10) + s[1] = make([]state, 0, 10) + in, out := 0, 1 + var final state + found := false + anchored := re.inst[0].next.kind == iBOT + if anchored && pos > 0 { + return nil + } + // fast check for initial plain substring + if i.canCheckPrefix() && re.prefix != "" { + advance := 0 + if anchored { + if !i.hasPrefix(re) { + return nil + } + } else { + advance = i.index(re, pos) + if advance == -1 { + return nil + } + } + pos += advance + } + // We look one character ahead so we can match $, which checks whether + // we are at EOT. + nextChar, nextWidth := i.step(pos) + arena := &matchArena{ + len: 2 * (re.nbra + 1), + pos: pos, + atBOT: pos == 0, + atEOT: nextChar == endOfText, + } + for c, startPos := 0, pos; c != endOfText; { + if !found && (pos == startPos || !anchored) { + // prime the pump if we haven't seen a match yet + match := arena.noMatch() + match.m[0] = pos + s[out] = arena.addState(s[out], re.start.next, false, match) + arena.free(match) // if addState saved it, ref was incremented + } else if len(s[out]) == 0 { + // machine has completed + break + } + in, out = out, in // old out state is new in state + // clear out old state + old := s[out] + for _, state := range old { + arena.free(state.match) + } + s[out] = old[0:0] // truncate state vector + c = nextChar + thisPos := pos + pos += nextWidth + nextChar, nextWidth = i.step(pos) + arena.atEOT = nextChar == endOfText + arena.atBOT = false + arena.pos = pos + for _, st := range s[in] { + switch st.inst.kind { + case iBOT: + case iEOT: + case iChar: + if c == st.inst.char { + s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) + } + case iCharClass: + if st.inst.cclass.matches(c) { + s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) + } + case iAny: + if c != endOfText { + s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) + } + case iNotNL: + if c != endOfText && c != '\n' { + s[out] = arena.addState(s[out], st.inst.next, st.prefixed, st.match) + } + case iBra: + case iAlt: + case iEnd: + // choose leftmost longest + if !found || // first + st.match.m[0] < final.match.m[0] || // leftmost + (st.match.m[0] == final.match.m[0] && thisPos > final.match.m[1]) { // longest + if final.match != nil { + arena.free(final.match) + } + final = st + final.match.ref++ + final.match.m[1] = thisPos + } + found = true + default: + st.inst.print() + panic("unknown instruction in execute") + } + } + } + if final.match == nil { + return nil + } + // if match found, back up start of match by width of prefix. + if final.prefixed && len(final.match.m) > 0 { + final.match.m[0] -= len(re.prefix) + } + return final.match.m +} + +// LiteralPrefix returns a literal string that must begin any match +// of the regular expression re. It returns the boolean true if the +// literal string comprises the entire regular expression. +func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { + c := make([]int, len(re.inst)-2) // minus start and end. + // First instruction is start; skip that. + i := 0 + for inst := re.inst[0].next; inst.kind != iEnd; inst = inst.next { + // stop if this is not a char + if inst.kind != iChar { + return string(c[:i]), false + } + c[i] = inst.char + i++ + } + return string(c[:i]), true +} + +// MatchReader returns whether the Regexp matches the text read by the +// RuneReader. The return value is a boolean: true for match, false for no +// match. +func (re *Regexp) MatchReader(r io.RuneReader) bool { + return len(re.doExecute(newInputReader(r), 0)) > 0 +} + +// MatchString returns whether the Regexp matches the string s. +// The return value is a boolean: true for match, false for no match. +func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(newInputString(s), 0)) > 0 } + +// Match returns whether the Regexp matches the byte slice b. +// The return value is a boolean: true for match, false for no match. +func (re *Regexp) Match(b []byte) bool { return len(re.doExecute(newInputBytes(b), 0)) > 0 } + +// MatchReader checks whether a textual regular expression matches the text +// read by the RuneReader. More complicated queries need to use Compile and +// the full Regexp interface. +func MatchReader(pattern string, r io.RuneReader) (matched bool, error os.Error) { + re, err := Compile(pattern) + if err != nil { + return false, err + } + return re.MatchReader(r), nil +} + +// MatchString checks whether a textual regular expression +// matches a string. More complicated queries need +// to use Compile and the full Regexp interface. +func MatchString(pattern string, s string) (matched bool, error os.Error) { + re, err := Compile(pattern) + if err != nil { + return false, err + } + return re.MatchString(s), nil +} + +// Match checks whether a textual regular expression +// matches a byte slice. More complicated queries need +// to use Compile and the full Regexp interface. +func Match(pattern string, b []byte) (matched bool, error os.Error) { + re, err := Compile(pattern) + if err != nil { + return false, err + } + return re.Match(b), nil +} + +// ReplaceAllString returns a copy of src in which all matches for the Regexp +// have been replaced by repl. No support is provided for expressions +// (e.g. \1 or $1) in the replacement string. +func (re *Regexp) ReplaceAllString(src, repl string) string { + return re.ReplaceAllStringFunc(src, func(string) string { return repl }) +} + +// ReplaceAllStringFunc returns a copy of src in which all matches for the +// Regexp have been replaced by the return value of of function repl (whose +// first argument is the matched string). No support is provided for +// expressions (e.g. \1 or $1) in the replacement string. +func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { + lastMatchEnd := 0 // end position of the most recent match + searchPos := 0 // position where we next look for a match + buf := new(bytes.Buffer) + for searchPos <= len(src) { + a := re.doExecute(newInputString(src), searchPos) + if len(a) == 0 { + break // no more matches + } + + // Copy the unmatched characters before this match. + io.WriteString(buf, src[lastMatchEnd:a[0]]) + + // Now insert a copy of the replacement string, but not for a + // match of the empty string immediately after another match. + // (Otherwise, we get double replacement for patterns that + // match both empty and nonempty strings.) + if a[1] > lastMatchEnd || a[0] == 0 { + io.WriteString(buf, repl(src[a[0]:a[1]])) + } + lastMatchEnd = a[1] + + // Advance past this match; always advance at least one character. + _, width := utf8.DecodeRuneInString(src[searchPos:]) + if searchPos+width > a[1] { + searchPos += width + } else if searchPos+1 > a[1] { + // This clause is only needed at the end of the input + // string. In that case, DecodeRuneInString returns width=0. + searchPos++ + } else { + searchPos = a[1] + } + } + + // Copy the unmatched characters after the last match. + io.WriteString(buf, src[lastMatchEnd:]) + + return buf.String() +} + +// ReplaceAll returns a copy of src in which all matches for the Regexp +// have been replaced by repl. No support is provided for expressions +// (e.g. \1 or $1) in the replacement text. +func (re *Regexp) ReplaceAll(src, repl []byte) []byte { + return re.ReplaceAllFunc(src, func([]byte) []byte { return repl }) +} + +// ReplaceAllFunc returns a copy of src in which all matches for the +// Regexp have been replaced by the return value of of function repl (whose +// first argument is the matched []byte). No support is provided for +// expressions (e.g. \1 or $1) in the replacement string. +func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { + lastMatchEnd := 0 // end position of the most recent match + searchPos := 0 // position where we next look for a match + buf := new(bytes.Buffer) + for searchPos <= len(src) { + a := re.doExecute(newInputBytes(src), searchPos) + if len(a) == 0 { + break // no more matches + } + + // Copy the unmatched characters before this match. + buf.Write(src[lastMatchEnd:a[0]]) + + // Now insert a copy of the replacement string, but not for a + // match of the empty string immediately after another match. + // (Otherwise, we get double replacement for patterns that + // match both empty and nonempty strings.) + if a[1] > lastMatchEnd || a[0] == 0 { + buf.Write(repl(src[a[0]:a[1]])) + } + lastMatchEnd = a[1] + + // Advance past this match; always advance at least one character. + _, width := utf8.DecodeRune(src[searchPos:]) + if searchPos+width > a[1] { + searchPos += width + } else if searchPos+1 > a[1] { + // This clause is only needed at the end of the input + // string. In that case, DecodeRuneInString returns width=0. + searchPos++ + } else { + searchPos = a[1] + } + } + + // Copy the unmatched characters after the last match. + buf.Write(src[lastMatchEnd:]) + + return buf.Bytes() +} + +// QuoteMeta returns a string that quotes all regular expression metacharacters +// inside the argument text; the returned string is a regular expression matching +// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`. +func QuoteMeta(s string) string { + b := make([]byte, 2*len(s)) + + // A byte loop is correct because all metacharacters are ASCII. + j := 0 + for i := 0; i < len(s); i++ { + if special(int(s[i])) { + b[j] = '\\' + j++ + } + b[j] = s[i] + j++ + } + return string(b[0:j]) +} + +// Find matches in slice b if b is non-nil, otherwise find matches in string s. +func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { + var end int + if b == nil { + end = len(s) + } else { + end = len(b) + } + + for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { + var in input + if b == nil { + in = newInputString(s) + } else { + in = newInputBytes(b) + } + matches := re.doExecute(in, pos) + if len(matches) == 0 { + break + } + + accept := true + if matches[1] == pos { + // We've found an empty match. + if matches[0] == prevMatchEnd { + // We don't allow an empty match right + // after a previous match, so ignore it. + accept = false + } + var width int + // TODO: use step() + if b == nil { + _, width = utf8.DecodeRuneInString(s[pos:end]) + } else { + _, width = utf8.DecodeRune(b[pos:end]) + } + if width > 0 { + pos += width + } else { + pos = end + 1 + } + } else { + pos = matches[1] + } + prevMatchEnd = matches[1] + + if accept { + deliver(matches) + i++ + } + } +} + +// Find returns a slice holding the text of the leftmost match in b of the regular expression. +// A return value of nil indicates no match. +func (re *Regexp) Find(b []byte) []byte { + a := re.doExecute(newInputBytes(b), 0) + if a == nil { + return nil + } + return b[a[0]:a[1]] +} + +// FindIndex returns a two-element slice of integers defining the location of +// the leftmost match in b of the regular expression. The match itself is at +// b[loc[0]:loc[1]]. +// A return value of nil indicates no match. +func (re *Regexp) FindIndex(b []byte) (loc []int) { + a := re.doExecute(newInputBytes(b), 0) + if a == nil { + return nil + } + return a[0:2] +} + +// FindString returns a string holding the text of the leftmost match in s of the regular +// expression. If there is no match, the return value is an empty string, +// but it will also be empty if the regular expression successfully matches +// an empty string. Use FindStringIndex or FindStringSubmatch if it is +// necessary to distinguish these cases. +func (re *Regexp) FindString(s string) string { + a := re.doExecute(newInputString(s), 0) + if a == nil { + return "" + } + return s[a[0]:a[1]] +} + +// FindStringIndex returns a two-element slice of integers defining the +// location of the leftmost match in s of the regular expression. The match +// itself is at s[loc[0]:loc[1]]. +// A return value of nil indicates no match. +func (re *Regexp) FindStringIndex(s string) []int { + a := re.doExecute(newInputString(s), 0) + if a == nil { + return nil + } + return a[0:2] +} + +// FindReaderIndex returns a two-element slice of integers defining the +// location of the leftmost match of the regular expression in text read from +// the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return +// value of nil indicates no match. +func (re *Regexp) FindReaderIndex(r io.RuneReader) []int { + a := re.doExecute(newInputReader(r), 0) + if a == nil { + return nil + } + return a[0:2] +} + +// FindSubmatch returns a slice of slices holding the text of the leftmost +// match of the regular expression in b and the matches, if any, of its +// subexpressions, as defined by the 'Submatch' descriptions in the package +// comment. +// A return value of nil indicates no match. +func (re *Regexp) FindSubmatch(b []byte) [][]byte { + a := re.doExecute(newInputBytes(b), 0) + if a == nil { + return nil + } + ret := make([][]byte, len(a)/2) + for i := range ret { + if a[2*i] >= 0 { + ret[i] = b[a[2*i]:a[2*i+1]] + } + } + return ret +} + +// FindSubmatchIndex returns a slice holding the index pairs identifying the +// leftmost match of the regular expression in b and the matches, if any, of +// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions +// in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindSubmatchIndex(b []byte) []int { + return re.doExecute(newInputBytes(b), 0) +} + +// FindStringSubmatch returns a slice of strings holding the text of the +// leftmost match of the regular expression in s and the matches, if any, of +// its subexpressions, as defined by the 'Submatch' description in the +// package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindStringSubmatch(s string) []string { + a := re.doExecute(newInputString(s), 0) + if a == nil { + return nil + } + ret := make([]string, len(a)/2) + for i := range ret { + if a[2*i] >= 0 { + ret[i] = s[a[2*i]:a[2*i+1]] + } + } + return ret +} + +// FindStringSubmatchIndex returns a slice holding the index pairs +// identifying the leftmost match of the regular expression in s and the +// matches, if any, of its subexpressions, as defined by the 'Submatch' and +// 'Index' descriptions in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindStringSubmatchIndex(s string) []int { + return re.doExecute(newInputString(s), 0) +} + +// FindReaderSubmatchIndex returns a slice holding the index pairs +// identifying the leftmost match of the regular expression of text read by +// the RuneReader, and the matches, if any, of its subexpressions, as defined +// by the 'Submatch' and 'Index' descriptions in the package comment. A +// return value of nil indicates no match. +func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { + return re.doExecute(newInputReader(r), 0) +} + +const startSize = 10 // The size at which to start a slice in the 'All' routines. + +// FindAll is the 'All' version of Find; it returns a slice of all successive +// matches of the expression, as defined by the 'All' description in the +// package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAll(b []byte, n int) [][]byte { + if n < 0 { + n = len(b) + 1 + } + result := make([][]byte, 0, startSize) + re.allMatches("", b, n, func(match []int) { + result = append(result, b[match[0]:match[1]]) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllIndex is the 'All' version of FindIndex; it returns a slice of all +// successive matches of the expression, as defined by the 'All' description +// in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { + if n < 0 { + n = len(b) + 1 + } + result := make([][]int, 0, startSize) + re.allMatches("", b, n, func(match []int) { + result = append(result, match[0:2]) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllString is the 'All' version of FindString; it returns a slice of all +// successive matches of the expression, as defined by the 'All' description +// in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllString(s string, n int) []string { + if n < 0 { + n = len(s) + 1 + } + result := make([]string, 0, startSize) + re.allMatches(s, nil, n, func(match []int) { + result = append(result, s[match[0]:match[1]]) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllStringIndex is the 'All' version of FindStringIndex; it returns a +// slice of all successive matches of the expression, as defined by the 'All' +// description in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { + if n < 0 { + n = len(s) + 1 + } + result := make([][]int, 0, startSize) + re.allMatches(s, nil, n, func(match []int) { + result = append(result, match[0:2]) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice +// of all successive matches of the expression, as defined by the 'All' +// description in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { + if n < 0 { + n = len(b) + 1 + } + result := make([][][]byte, 0, startSize) + re.allMatches("", b, n, func(match []int) { + slice := make([][]byte, len(match)/2) + for j := range slice { + if match[2*j] >= 0 { + slice[j] = b[match[2*j]:match[2*j+1]] + } + } + result = append(result, slice) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns +// a slice of all successive matches of the expression, as defined by the +// 'All' description in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { + if n < 0 { + n = len(b) + 1 + } + result := make([][]int, 0, startSize) + re.allMatches("", b, n, func(match []int) { + result = append(result, match) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it +// returns a slice of all successive matches of the expression, as defined by +// the 'All' description in the package comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { + if n < 0 { + n = len(s) + 1 + } + result := make([][]string, 0, startSize) + re.allMatches(s, nil, n, func(match []int) { + slice := make([]string, len(match)/2) + for j := range slice { + if match[2*j] >= 0 { + slice[j] = s[match[2*j]:match[2*j+1]] + } + } + result = append(result, slice) + }) + if len(result) == 0 { + return nil + } + return result +} + +// FindAllStringSubmatchIndex is the 'All' version of +// FindStringSubmatchIndex; it returns a slice of all successive matches of +// the expression, as defined by the 'All' description in the package +// comment. +// A return value of nil indicates no match. +func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { + if n < 0 { + n = len(s) + 1 + } + result := make([][]int, 0, startSize) + re.allMatches(s, nil, n, func(match []int) { + result = append(result, match) + }) + if len(result) == 0 { + return nil + } + return result +} |