diff options
author | Michael Stapelberg <stapelberg@debian.org> | 2013-03-04 21:27:36 +0100 |
---|---|---|
committer | Michael Stapelberg <michael@stapelberg.de> | 2013-03-04 21:27:36 +0100 |
commit | 04b08da9af0c450d645ab7389d1467308cfc2db8 (patch) | |
tree | db247935fa4f2f94408edc3acd5d0d4f997aa0d8 /src/pkg/runtime/mgc0.c | |
parent | 917c5fb8ec48e22459d77e3849e6d388f93d3260 (diff) | |
download | golang-upstream/1.1_hg20130304.tar.gz |
Imported Upstream version 1.1~hg20130304upstream/1.1_hg20130304
Diffstat (limited to 'src/pkg/runtime/mgc0.c')
-rw-r--r-- | src/pkg/runtime/mgc0.c | 1891 |
1 files changed, 1435 insertions, 456 deletions
diff --git a/src/pkg/runtime/mgc0.c b/src/pkg/runtime/mgc0.c index e8fb266f4..010f9cd96 100644 --- a/src/pkg/runtime/mgc0.c +++ b/src/pkg/runtime/mgc0.c @@ -8,15 +8,28 @@ #include "arch_GOARCH.h" #include "malloc.h" #include "stack.h" +#include "mgc0.h" +#include "race.h" +#include "type.h" +#include "typekind.h" +#include "hashmap.h" enum { Debug = 0, - PtrSize = sizeof(void*), DebugMark = 0, // run second pass to check mark + CollectStats = 0, // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, + + handoffThreshold = 4, + IntermediateBufferCapacity = 64, + + // Bits in type information + PRECISE = 1, + LOOP = 2, + PC_BITS = PRECISE | LOOP, }; // Bits in per-word bitmap. @@ -67,25 +80,34 @@ enum { // uint32 runtime·worldsema = 1; -// TODO: Make these per-M. -static uint64 nhandoff; - static int32 gctrace; +typedef struct Obj Obj; +struct Obj +{ + byte *p; // data pointer + uintptr n; // size of data in bytes + uintptr ti; // type info +}; + +// The size of Workbuf is N*PageSize. typedef struct Workbuf Workbuf; struct Workbuf { - Workbuf *next; +#define SIZE (2*PageSize-sizeof(LFNode)-sizeof(uintptr)) + LFNode node; // must be first uintptr nobj; - byte *obj[512-2]; + Obj obj[SIZE/sizeof(Obj) - 1]; + uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; +#undef SIZE }; typedef struct Finalizer Finalizer; struct Finalizer { - void (*fn)(void*); + FuncVal *fn; void *arg; - int32 nret; + uintptr nret; }; typedef struct FinBlock FinBlock; @@ -99,9 +121,13 @@ struct FinBlock }; extern byte data[]; -extern byte etext[]; +extern byte edata[]; +extern byte bss[]; extern byte ebss[]; +extern byte gcdata[]; +extern byte gcbss[]; + static G *fing; static FinBlock *finq; // list of finalizers that are to be executed static FinBlock *finc; // cache of free blocks @@ -116,89 +142,244 @@ static void putempty(Workbuf*); static Workbuf* handoff(Workbuf*); static struct { - Lock fmu; - Workbuf *full; - Lock emu; - Workbuf *empty; + uint64 full; // lock-free list of full blocks + uint64 empty; // lock-free list of empty blocks + byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait uint32 nproc; volatile uint32 nwait; volatile uint32 ndone; + volatile uint32 debugmarkdone; Note alldone; - Lock markgate; - Lock sweepgate; - MSpan *spans; + ParFor *markfor; + ParFor *sweepfor; Lock; byte *chunk; uintptr nchunk; + + Obj *roots; + uint32 nroot; + uint32 rootcap; } work; -// scanblock scans a block of n bytes starting at pointer b for references -// to other objects, scanning any it finds recursively until there are no -// unscanned objects left. Instead of using an explicit recursion, it keeps -// a work list in the Workbuf* structures and loops in the main function -// body. Keeping an explicit work list is easier on the stack allocator and -// more efficient. +enum { + GC_DEFAULT_PTR = GC_NUM_INSTR, + GC_MAP_NEXT, + GC_CHAN, + + GC_NUM_INSTR2 +}; + +static struct { + struct { + uint64 sum; + uint64 cnt; + } ptr; + uint64 nbytes; + struct { + uint64 sum; + uint64 cnt; + uint64 notype; + uint64 typelookup; + } obj; + uint64 rescan; + uint64 rescanbytes; + uint64 instr[GC_NUM_INSTR2]; + uint64 putempty; + uint64 getfull; +} gcstats; + +// markonly marks an object. It returns true if the object +// has been marked by this function, false otherwise. +// This function isn't thread-safe and doesn't append the object to any buffer. +static bool +markonly(void *obj) +{ + byte *p; + uintptr *bitp, bits, shift, x, xbits, off; + MSpan *s; + PageID k; + + // Words outside the arena cannot be pointers. + if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) + return false; + + // obj may be a pointer to a live object. + // Try to find the beginning of the object. + + // Round down to word boundary. + obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); + + // Find bits for this word. + off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; + bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; + shift = off % wordsPerBitmapWord; + xbits = *bitp; + bits = xbits >> shift; + + // Pointing at the beginning of a block? + if((bits & (bitAllocated|bitBlockBoundary)) != 0) + goto found; + + // Otherwise consult span table to find beginning. + // (Manually inlined copy of MHeap_LookupMaybe.) + k = (uintptr)obj>>PageShift; + x = k; + if(sizeof(void*) == 8) + x -= (uintptr)runtime·mheap->arena_start>>PageShift; + s = runtime·mheap->map[x]; + if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) + return false; + p = (byte*)((uintptr)s->start<<PageShift); + if(s->sizeclass == 0) { + obj = p; + } else { + if((byte*)obj >= (byte*)s->limit) + return false; + uintptr size = s->elemsize; + int32 i = ((byte*)obj - p)/size; + obj = p+i*size; + } + + // Now that we know the object header, reload bits. + off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; + bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; + shift = off % wordsPerBitmapWord; + xbits = *bitp; + bits = xbits >> shift; + +found: + // Now we have bits, bitp, and shift correct for + // obj pointing at the base of the object. + // Only care about allocated and not marked. + if((bits & (bitAllocated|bitMarked)) != bitAllocated) + return false; + *bitp |= bitMarked<<shift; + + // The object is now marked + return true; +} + +// PtrTarget and BitTarget are structures used by intermediate buffers. +// The intermediate buffers hold GC data before it +// is moved/flushed to the work buffer (Workbuf). +// The size of an intermediate buffer is very small, +// such as 32 or 64 elements. +typedef struct PtrTarget PtrTarget; +struct PtrTarget +{ + void *p; + uintptr ti; +}; + +typedef struct BitTarget BitTarget; +struct BitTarget +{ + void *p; + uintptr ti; + uintptr *bitp, shift; +}; + +typedef struct BufferList BufferList; +struct BufferList +{ + PtrTarget ptrtarget[IntermediateBufferCapacity]; + BitTarget bittarget[IntermediateBufferCapacity]; + Obj obj[IntermediateBufferCapacity]; + BufferList *next; +}; +static BufferList *bufferList; + +static Lock lock; +static Type *itabtype; + +static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj); + +// flushptrbuf moves data from the PtrTarget buffer to the work buffer. +// The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned, +// while the work buffer contains blocks which have been marked +// and are prepared to be scanned by the garbage collector. +// +// _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer. +// bitbuf holds temporary data generated by this function. +// +// A simplified drawing explaining how the todo-list moves from a structure to another: +// +// scanblock +// (find pointers) +// Obj ------> PtrTarget (pointer targets) +// ↑ | +// | | flushptrbuf (1st part, +// | | find block start) +// | ↓ +// `--------- BitTarget (pointer targets and the corresponding locations in bitmap) +// flushptrbuf +// (2nd part, mark and enqueue) static void -scanblock(byte *b, int64 n) +flushptrbuf(PtrTarget *ptrbuf, PtrTarget **ptrbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj, BitTarget *bitbuf) { - byte *obj, *arena_start, *arena_used, *p; - void **vp; - uintptr size, *bitp, bits, shift, i, j, x, xbits, off, nobj, nproc; + byte *p, *arena_start, *obj; + uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; MSpan *s; PageID k; - void **wp; + Obj *wp; Workbuf *wbuf; - bool keepworking; + PtrTarget *ptrbuf_end; + BitTarget *bitbufpos, *bt; - if((int64)(uintptr)n != n || n < 0) { - runtime·printf("scanblock %p %D\n", b, n); - runtime·throw("scanblock"); - } + arena_start = runtime·mheap->arena_start; - // Memory arena parameters. - arena_start = runtime·mheap.arena_start; - arena_used = runtime·mheap.arena_used; - nproc = work.nproc; + wp = *_wp; + wbuf = *_wbuf; + nobj = *_nobj; - wbuf = nil; // current work buffer - wp = nil; // storage for next queued pointer (write pointer) - nobj = 0; // number of queued objects + ptrbuf_end = *ptrbufpos; + n = ptrbuf_end - ptrbuf; + *ptrbufpos = ptrbuf; - // Scanblock helpers pass b==nil. - // The main proc needs to return to make more - // calls to scanblock. But if work.nproc==1 then - // might as well process blocks as soon as we - // have them. - keepworking = b == nil || work.nproc == 1; + if(CollectStats) { + runtime·xadd64(&gcstats.ptr.sum, n); + runtime·xadd64(&gcstats.ptr.cnt, 1); + } - // Align b to a word boundary. - off = (uintptr)b & (PtrSize-1); - if(off != 0) { - b += PtrSize - off; - n -= PtrSize - off; + // If buffer is nearly full, get a new one. + if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { + if(wbuf != nil) + wbuf->nobj = nobj; + wbuf = getempty(wbuf); + wp = wbuf->obj; + nobj = 0; + + if(n >= nelem(wbuf->obj)) + runtime·throw("ptrbuf has to be smaller than WorkBuf"); } - for(;;) { - // Each iteration scans the block b of length n, queueing pointers in - // the work buffer. - if(Debug > 1) - runtime·printf("scanblock %p %D\n", b, n); + // TODO(atom): This block is a branch of an if-then-else statement. + // The single-threaded branch may be added in a next CL. + { + // Multi-threaded version. - vp = (void**)b; - n >>= (2+PtrSize/8); /* n /= PtrSize (4 or 8) */ - for(i=0; i<n; i++) { - obj = (byte*)vp[i]; + bitbufpos = bitbuf; - // Words outside the arena cannot be pointers. - if((byte*)obj < arena_start || (byte*)obj >= arena_used) - continue; + while(ptrbuf < ptrbuf_end) { + obj = ptrbuf->p; + ti = ptrbuf->ti; + ptrbuf++; + + // obj belongs to interval [mheap.arena_start, mheap.arena_used). + if(Debug > 1) { + if(obj < runtime·mheap->arena_start || obj >= runtime·mheap->arena_used) + runtime·throw("object is outside of mheap"); + } // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. - obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); + if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { + obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); + ti = 0; + } // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; @@ -211,6 +392,8 @@ scanblock(byte *b, int64 n) if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; + ti = 0; + // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { @@ -228,16 +411,16 @@ scanblock(byte *b, int64 n) x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; - s = runtime·mheap.map[x]; + s = runtime·mheap->map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; - p = (byte*)((uintptr)s->start<<PageShift); + p = (byte*)((uintptr)s->start<<PageShift); if(s->sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; - size = runtime·class_to_size[s->sizeclass]; + size = s->elemsize; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } @@ -255,80 +438,606 @@ scanblock(byte *b, int64 n) // Only care about allocated and not marked. if((bits & (bitAllocated|bitMarked)) != bitAllocated) continue; - if(nproc == 1) - *bitp |= bitMarked<<shift; - else { - for(;;) { - x = *bitp; - if(x & (bitMarked<<shift)) - goto continue_obj; - if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) - break; - } - } + + *bitbufpos++ = (BitTarget){obj, ti, bitp, shift}; + } + + runtime·lock(&lock); + for(bt=bitbuf; bt<bitbufpos; bt++){ + xbits = *bt->bitp; + bits = xbits >> bt->shift; + if((bits & bitMarked) != 0) + continue; + + // Mark the block + *bt->bitp = xbits | (bitMarked << bt->shift); // If object has no pointers, don't need to scan further. if((bits & bitNoPointers) != 0) continue; - // If another proc wants a pointer, give it some. - if(nobj > 4 && work.nwait > 0 && work.full == nil) { + obj = bt->p; + + // Ask span about size class. + // (Manually inlined copy of MHeap_Lookup.) + x = (uintptr)obj >> PageShift; + if(sizeof(void*) == 8) + x -= (uintptr)arena_start>>PageShift; + s = runtime·mheap->map[x]; + + PREFETCH(obj); + + *wp = (Obj){obj, s->elemsize, bt->ti}; + wp++; + nobj++; + } + runtime·unlock(&lock); + + // If another proc wants a pointer, give it some. + if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { + wbuf->nobj = nobj; + wbuf = handoff(wbuf); + nobj = wbuf->nobj; + wp = wbuf->obj + nobj; + } + } + + *_wp = wp; + *_wbuf = wbuf; + *_nobj = nobj; +} + +static void +flushobjbuf(Obj *objbuf, Obj **objbufpos, Obj **_wp, Workbuf **_wbuf, uintptr *_nobj) +{ + uintptr nobj, off; + Obj *wp, obj; + Workbuf *wbuf; + Obj *objbuf_end; + + wp = *_wp; + wbuf = *_wbuf; + nobj = *_nobj; + + objbuf_end = *objbufpos; + *objbufpos = objbuf; + + while(objbuf < objbuf_end) { + obj = *objbuf++; + + // Align obj.b to a word boundary. + off = (uintptr)obj.p & (PtrSize-1); + if(off != 0) { + obj.p += PtrSize - off; + obj.n -= PtrSize - off; + obj.ti = 0; + } + + if(obj.p == nil || obj.n == 0) + continue; + + // If buffer is full, get a new one. + if(wbuf == nil || nobj >= nelem(wbuf->obj)) { + if(wbuf != nil) wbuf->nobj = nobj; - wbuf = handoff(wbuf); - nobj = wbuf->nobj; - wp = wbuf->obj + nobj; + wbuf = getempty(wbuf); + wp = wbuf->obj; + nobj = 0; + } + + *wp = obj; + wp++; + nobj++; + } + + // If another proc wants a pointer, give it some. + if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { + wbuf->nobj = nobj; + wbuf = handoff(wbuf); + nobj = wbuf->nobj; + wp = wbuf->obj + nobj; + } + + *_wp = wp; + *_wbuf = wbuf; + *_nobj = nobj; +} + +// Program that scans the whole block and treats every block element as a potential pointer +static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; + +// Hashmap iterator program +static uintptr mapProg[2] = {0, GC_MAP_NEXT}; + +// Hchan program +static uintptr chanProg[2] = {0, GC_CHAN}; + +// Local variables of a program fragment or loop +typedef struct Frame Frame; +struct Frame { + uintptr count, elemsize, b; + uintptr *loop_or_ret; +}; + +// scanblock scans a block of n bytes starting at pointer b for references +// to other objects, scanning any it finds recursively until there are no +// unscanned objects left. Instead of using an explicit recursion, it keeps +// a work list in the Workbuf* structures and loops in the main function +// body. Keeping an explicit work list is easier on the stack allocator and +// more efficient. +// +// wbuf: current work buffer +// wp: storage for next queued pointer (write pointer) +// nobj: number of queued objects +static void +scanblock(Workbuf *wbuf, Obj *wp, uintptr nobj, bool keepworking) +{ + byte *b, *arena_start, *arena_used; + uintptr n, i, end_b, elemsize, size, ti, objti, count, type; + uintptr *pc, precise_type, nominal_size; + uintptr *map_ret, mapkey_size, mapval_size, mapkey_ti, mapval_ti; + void *obj; + Type *t; + Slice *sliceptr; + Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; + BufferList *scanbuffers; + PtrTarget *ptrbuf, *ptrbuf_end, *ptrbufpos; + BitTarget *bitbuf; + Obj *objbuf, *objbuf_end, *objbufpos; + Eface *eface; + Iface *iface; + Hmap *hmap; + MapType *maptype; + bool didmark, mapkey_kind, mapval_kind; + struct hash_gciter map_iter; + struct hash_gciter_data d; + Hchan *chan; + ChanType *chantype; + + if(sizeof(Workbuf) % PageSize != 0) + runtime·throw("scanblock: size of Workbuf is suboptimal"); + + // Memory arena parameters. + arena_start = runtime·mheap->arena_start; + arena_used = runtime·mheap->arena_used; + + stack_ptr = stack+nelem(stack)-1; + + precise_type = false; + nominal_size = 0; + + // Allocate ptrbuf, bitbuf + { + runtime·lock(&lock); + + if(bufferList == nil) { + bufferList = runtime·SysAlloc(sizeof(*bufferList)); + if(bufferList == nil) + runtime·throw("runtime: cannot allocate memory"); + bufferList->next = nil; + } + scanbuffers = bufferList; + bufferList = bufferList->next; + + ptrbuf = &scanbuffers->ptrtarget[0]; + ptrbuf_end = &scanbuffers->ptrtarget[0] + nelem(scanbuffers->ptrtarget); + bitbuf = &scanbuffers->bittarget[0]; + objbuf = &scanbuffers->obj[0]; + objbuf_end = &scanbuffers->obj[0] + nelem(scanbuffers->obj); + + runtime·unlock(&lock); + } + + ptrbufpos = ptrbuf; + objbufpos = objbuf; + + // (Silence the compiler) + map_ret = nil; + mapkey_size = mapval_size = 0; + mapkey_kind = mapval_kind = false; + mapkey_ti = mapval_ti = 0; + chan = nil; + chantype = nil; + + goto next_block; + + for(;;) { + // Each iteration scans the block b of length n, queueing pointers in + // the work buffer. + if(Debug > 1) { + runtime·printf("scanblock %p %D\n", b, (int64)n); + } + + if(CollectStats) { + runtime·xadd64(&gcstats.nbytes, n); + runtime·xadd64(&gcstats.obj.sum, nobj); + runtime·xadd64(&gcstats.obj.cnt, 1); + } + + if(ti != 0) { + pc = (uintptr*)(ti & ~(uintptr)PC_BITS); + precise_type = (ti & PRECISE); + stack_top.elemsize = pc[0]; + if(!precise_type) + nominal_size = pc[0]; + if(ti & LOOP) { + stack_top.count = 0; // 0 means an infinite number of iterations + stack_top.loop_or_ret = pc+1; + } else { + stack_top.count = 1; } + } else if(UseSpanType) { + if(CollectStats) + runtime·xadd64(&gcstats.obj.notype, 1); + + type = runtime·gettype(b); + if(type != 0) { + if(CollectStats) + runtime·xadd64(&gcstats.obj.typelookup, 1); + + t = (Type*)(type & ~(uintptr)(PtrSize-1)); + switch(type & (PtrSize-1)) { + case TypeInfo_SingleObject: + pc = (uintptr*)t->gc; + precise_type = true; // type information about 'b' is precise + stack_top.count = 1; + stack_top.elemsize = pc[0]; + break; + case TypeInfo_Array: + pc = (uintptr*)t->gc; + if(pc[0] == 0) + goto next_block; + precise_type = true; // type information about 'b' is precise + stack_top.count = 0; // 0 means an infinite number of iterations + stack_top.elemsize = pc[0]; + stack_top.loop_or_ret = pc+1; + break; + case TypeInfo_Map: + hmap = (Hmap*)b; + maptype = (MapType*)t; + if(hash_gciter_init(hmap, &map_iter)) { + mapkey_size = maptype->key->size; + mapkey_kind = maptype->key->kind; + mapkey_ti = (uintptr)maptype->key->gc | PRECISE; + mapval_size = maptype->elem->size; + mapval_kind = maptype->elem->kind; + mapval_ti = (uintptr)maptype->elem->gc | PRECISE; + + map_ret = 0; + pc = mapProg; + } else { + goto next_block; + } + break; + case TypeInfo_Chan: + chan = (Hchan*)b; + chantype = (ChanType*)t; + pc = chanProg; + break; + default: + runtime·throw("scanblock: invalid type"); + return; + } + } else { + pc = defaultProg; + } + } else { + pc = defaultProg; + } + + pc++; + stack_top.b = (uintptr)b; - // If buffer is full, get a new one. - if(wbuf == nil || nobj >= nelem(wbuf->obj)) { - if(wbuf != nil) - wbuf->nobj = nobj; - wbuf = getempty(wbuf); - wp = wbuf->obj; - nobj = 0; + end_b = (uintptr)b + n - PtrSize; + + for(;;) { + if(CollectStats) + runtime·xadd64(&gcstats.instr[pc[0]], 1); + + obj = nil; + objti = 0; + switch(pc[0]) { + case GC_PTR: + obj = *(void**)(stack_top.b + pc[1]); + objti = pc[2]; + pc += 3; + break; + + case GC_SLICE: + sliceptr = (Slice*)(stack_top.b + pc[1]); + if(sliceptr->cap != 0) { + obj = sliceptr->array; + objti = pc[2] | PRECISE | LOOP; } - *wp++ = obj; - nobj++; - continue_obj:; + pc += 3; + break; + + case GC_APTR: + obj = *(void**)(stack_top.b + pc[1]); + pc += 2; + break; + + case GC_STRING: + obj = *(void**)(stack_top.b + pc[1]); + pc += 2; + break; + + case GC_EFACE: + eface = (Eface*)(stack_top.b + pc[1]); + pc += 2; + if(eface->type != nil && (eface->data >= arena_start && eface->data < arena_used)) { + t = eface->type; + if(t->size <= sizeof(void*)) { + if((t->kind & KindNoPointers)) + break; + + obj = eface->data; + if((t->kind & ~KindNoPointers) == KindPtr) + objti = (uintptr)((PtrType*)t)->elem->gc; + } else { + obj = eface->data; + objti = (uintptr)t->gc; + } + } + break; + + case GC_IFACE: + iface = (Iface*)(stack_top.b + pc[1]); + pc += 2; + if(iface->tab == nil) + break; + + // iface->tab + if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) { + *ptrbufpos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc}; + if(ptrbufpos == ptrbuf_end) + flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf); + } + + // iface->data + if(iface->data >= arena_start && iface->data < arena_used) { + t = iface->tab->type; + if(t->size <= sizeof(void*)) { + if((t->kind & KindNoPointers)) + break; + + obj = iface->data; + if((t->kind & ~KindNoPointers) == KindPtr) + objti = (uintptr)((PtrType*)t)->elem->gc; + } else { + obj = iface->data; + objti = (uintptr)t->gc; + } + } + break; + + case GC_DEFAULT_PTR: + while((i = stack_top.b) <= end_b) { + stack_top.b += PtrSize; + obj = *(byte**)i; + if(obj >= arena_start && obj < arena_used) { + *ptrbufpos++ = (PtrTarget){obj, 0}; + if(ptrbufpos == ptrbuf_end) + flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf); + } + } + goto next_block; + + case GC_END: + if(--stack_top.count != 0) { + // Next iteration of a loop if possible. + elemsize = stack_top.elemsize; + stack_top.b += elemsize; + if(stack_top.b + elemsize <= end_b+PtrSize) { + pc = stack_top.loop_or_ret; + continue; + } + i = stack_top.b; + } else { + // Stack pop if possible. + if(stack_ptr+1 < stack+nelem(stack)) { + pc = stack_top.loop_or_ret; + stack_top = *(++stack_ptr); + continue; + } + i = (uintptr)b + nominal_size; + } + if(!precise_type) { + // Quickly scan [b+i,b+n) for possible pointers. + for(; i<=end_b; i+=PtrSize) { + if(*(byte**)i != nil) { + // Found a value that may be a pointer. + // Do a rescan of the entire block. + enqueue((Obj){b, n, 0}, &wbuf, &wp, &nobj); + if(CollectStats) { + runtime·xadd64(&gcstats.rescan, 1); + runtime·xadd64(&gcstats.rescanbytes, n); + } + break; + } + } + } + goto next_block; + + case GC_ARRAY_START: + i = stack_top.b + pc[1]; + count = pc[2]; + elemsize = pc[3]; + pc += 4; + + // Stack push. + *stack_ptr-- = stack_top; + stack_top = (Frame){count, elemsize, i, pc}; + continue; + + case GC_ARRAY_NEXT: + if(--stack_top.count != 0) { + stack_top.b += stack_top.elemsize; + pc = stack_top.loop_or_ret; + } else { + // Stack pop. + stack_top = *(++stack_ptr); + pc += 1; + } + continue; + + case GC_CALL: + // Stack push. + *stack_ptr-- = stack_top; + stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; + pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction + continue; + + case GC_MAP_PTR: + hmap = *(Hmap**)(stack_top.b + pc[1]); + if(hmap == nil) { + pc += 3; + continue; + } + runtime·lock(&lock); + didmark = markonly(hmap); + runtime·unlock(&lock); + if(didmark) { + maptype = (MapType*)pc[2]; + if(hash_gciter_init(hmap, &map_iter)) { + mapkey_size = maptype->key->size; + mapkey_kind = maptype->key->kind; + mapkey_ti = (uintptr)maptype->key->gc | PRECISE; + mapval_size = maptype->elem->size; + mapval_kind = maptype->elem->kind; + mapval_ti = (uintptr)maptype->elem->gc | PRECISE; + + // Start mapProg. + map_ret = pc+3; + pc = mapProg+1; + } else { + pc += 3; + } + } else { + pc += 3; + } + continue; + + case GC_MAP_NEXT: + // Add all keys and values to buffers, mark all subtables. + while(hash_gciter_next(&map_iter, &d)) { + // buffers: reserve space for 2 objects. + if(ptrbufpos+2 >= ptrbuf_end) + flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf); + if(objbufpos+2 >= objbuf_end) + flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); + + if(d.st != nil) { + runtime·lock(&lock); + markonly(d.st); + runtime·unlock(&lock); + } + if(d.key_data != nil) { + if(!(mapkey_kind & KindNoPointers) || d.indirectkey) { + if(!d.indirectkey) + *objbufpos++ = (Obj){d.key_data, mapkey_size, mapkey_ti}; + else + *ptrbufpos++ = (PtrTarget){*(void**)d.key_data, mapkey_ti}; + } + if(!(mapval_kind & KindNoPointers) || d.indirectval) { + if(!d.indirectval) + *objbufpos++ = (Obj){d.val_data, mapval_size, mapval_ti}; + else + *ptrbufpos++ = (PtrTarget){*(void**)d.val_data, mapval_ti}; + } + } + } + if(map_ret == 0) + goto next_block; + pc = map_ret; + continue; + + case GC_REGION: + obj = (void*)(stack_top.b + pc[1]); + size = pc[2]; + objti = pc[3]; + pc += 4; + + *objbufpos++ = (Obj){obj, size, objti}; + if(objbufpos == objbuf_end) + flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); + break; + + case GC_CHAN: + // There are no heap pointers in struct Hchan, + // so we can ignore the leading sizeof(Hchan) bytes. + if(!(chantype->elem->kind & KindNoPointers)) { + // Channel's buffer follows Hchan immediately in memory. + // Size of buffer (cap(c)) is second int in the chan struct. + n = ((uintgo*)chan)[1]; + if(n > 0) { + // TODO(atom): split into two chunks so that only the + // in-use part of the circular buffer is scanned. + // (Channel routines zero the unused part, so the current + // code does not lead to leaks, it's just a little inefficient.) + *objbufpos++ = (Obj){(byte*)chan+runtime·Hchansize, n*chantype->elem->size, + (uintptr)chantype->elem->gc | PRECISE | LOOP}; + if(objbufpos == objbuf_end) + flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); + } + } + goto next_block; + + default: + runtime·throw("scanblock: invalid GC instruction"); + return; } + if(obj >= arena_start && obj < arena_used) { + *ptrbufpos++ = (PtrTarget){obj, objti}; + if(ptrbufpos == ptrbuf_end) + flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf); + } + } + + next_block: // Done scanning [b, b+n). Prepare for the next iteration of - // the loop by setting b and n to the parameters for the next block. + // the loop by setting b, n, ti to the parameters for the next block. - // Fetch b from the work buffer. if(nobj == 0) { - if(!keepworking) { - putempty(wbuf); - return; + flushptrbuf(ptrbuf, &ptrbufpos, &wp, &wbuf, &nobj, bitbuf); + flushobjbuf(objbuf, &objbufpos, &wp, &wbuf, &nobj); + + if(nobj == 0) { + if(!keepworking) { + if(wbuf) + putempty(wbuf); + goto endscan; + } + // Emptied our buffer: refill. + wbuf = getfull(wbuf); + if(wbuf == nil) + goto endscan; + nobj = wbuf->nobj; + wp = wbuf->obj + wbuf->nobj; } - // Emptied our buffer: refill. - wbuf = getfull(wbuf); - if(wbuf == nil) - return; - nobj = wbuf->nobj; - wp = wbuf->obj + wbuf->nobj; } - b = *--wp; - nobj--; - // Ask span about size class. - // (Manually inlined copy of MHeap_Lookup.) - x = (uintptr)b>>PageShift; - if(sizeof(void*) == 8) - x -= (uintptr)arena_start>>PageShift; - s = runtime·mheap.map[x]; - if(s->sizeclass == 0) - n = s->npages<<PageShift; - else - n = runtime·class_to_size[s->sizeclass]; + // Fetch b from the work buffer. + --wp; + b = wp->p; + n = wp->n; + ti = wp->ti; + nobj--; } + +endscan: + runtime·lock(&lock); + scanbuffers->next = bufferList; + bufferList = scanbuffers; + runtime·unlock(&lock); } // debug_scanblock is the debug copy of scanblock. // it is simpler, slower, single-threaded, recursive, // and uses bitSpecial as the mark bit. static void -debug_scanblock(byte *b, int64 n) +debug_scanblock(byte *b, uintptr n) { byte *obj, *p; void **vp; @@ -338,8 +1047,8 @@ debug_scanblock(byte *b, int64 n) if(!DebugMark) runtime·throw("debug_scanblock without DebugMark"); - if((int64)(uintptr)n != n || n < 0) { - runtime·printf("debug_scanblock %p %D\n", b, n); + if((intptr)n < 0) { + runtime·printf("debug_scanblock %p %D\n", b, (int64)n); runtime·throw("debug_scanblock"); } @@ -356,33 +1065,31 @@ debug_scanblock(byte *b, int64 n) obj = (byte*)vp[i]; // Words outside the arena cannot be pointers. - if((byte*)obj < runtime·mheap.arena_start || (byte*)obj >= runtime·mheap.arena_used) + if((byte*)obj < runtime·mheap->arena_start || (byte*)obj >= runtime·mheap->arena_used) continue; // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Consult span table to find beginning. - s = runtime·MHeap_LookupMaybe(&runtime·mheap, obj); + s = runtime·MHeap_LookupMaybe(runtime·mheap, obj); if(s == nil) continue; - p = (byte*)((uintptr)s->start<<PageShift); + size = s->elemsize; if(s->sizeclass == 0) { obj = p; - size = (uintptr)s->npages<<PageShift; } else { if((byte*)obj >= (byte*)s->limit) continue; - size = runtime·class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. - off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; - bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)obj - (uintptr*)runtime·mheap->arena_start; + bitp = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; @@ -404,53 +1111,98 @@ debug_scanblock(byte *b, int64 n) } } +// Append obj to the work buffer. +// _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer. +static void +enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj) +{ + uintptr nobj, off; + Obj *wp; + Workbuf *wbuf; + + if(Debug > 1) + runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); + + // Align obj.b to a word boundary. + off = (uintptr)obj.p & (PtrSize-1); + if(off != 0) { + obj.p += PtrSize - off; + obj.n -= PtrSize - off; + obj.ti = 0; + } + + if(obj.p == nil || obj.n == 0) + return; + + // Load work buffer state + wp = *_wp; + wbuf = *_wbuf; + nobj = *_nobj; + + // If another proc wants a pointer, give it some. + if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { + wbuf->nobj = nobj; + wbuf = handoff(wbuf); + nobj = wbuf->nobj; + wp = wbuf->obj + nobj; + } + + // If buffer is full, get a new one. + if(wbuf == nil || nobj >= nelem(wbuf->obj)) { + if(wbuf != nil) + wbuf->nobj = nobj; + wbuf = getempty(wbuf); + wp = wbuf->obj; + nobj = 0; + } + + *wp = obj; + wp++; + nobj++; + + // Save work buffer state + *_wp = wp; + *_wbuf = wbuf; + *_nobj = nobj; +} + +static void +markroot(ParFor *desc, uint32 i) +{ + Obj *wp; + Workbuf *wbuf; + uintptr nobj; + + USED(&desc); + wp = nil; + wbuf = nil; + nobj = 0; + enqueue(work.roots[i], &wbuf, &wp, &nobj); + scanblock(wbuf, wp, nobj, false); +} + // Get an empty work buffer off the work.empty list, // allocating new buffers as needed. static Workbuf* getempty(Workbuf *b) { - if(work.nproc == 1) { - // Put b on full list. - if(b != nil) { - b->next = work.full; - work.full = b; + if(b != nil) + runtime·lfstackpush(&work.full, &b->node); + b = (Workbuf*)runtime·lfstackpop(&work.empty); + if(b == nil) { + // Need to allocate. + runtime·lock(&work); + if(work.nchunk < sizeof *b) { + work.nchunk = 1<<20; + work.chunk = runtime·SysAlloc(work.nchunk); + if(work.chunk == nil) + runtime·throw("runtime: cannot allocate memory"); } - // Grab from empty list if possible. - b = work.empty; - if(b != nil) { - work.empty = b->next; - goto haveb; - } - } else { - // Put b on full list. - if(b != nil) { - runtime·lock(&work.fmu); - b->next = work.full; - work.full = b; - runtime·unlock(&work.fmu); - } - // Grab from empty list if possible. - runtime·lock(&work.emu); - b = work.empty; - if(b != nil) - work.empty = b->next; - runtime·unlock(&work.emu); - if(b != nil) - goto haveb; + b = (Workbuf*)work.chunk; + work.chunk += sizeof *b; + work.nchunk -= sizeof *b; + runtime·unlock(&work); } - - // Need to allocate. - runtime·lock(&work); - if(work.nchunk < sizeof *b) { - work.nchunk = 1<<20; - work.chunk = runtime·SysAlloc(work.nchunk); - } - b = (Workbuf*)work.chunk; - work.chunk += sizeof *b; - work.nchunk -= sizeof *b; - runtime·unlock(&work); - -haveb: b->nobj = 0; return b; } @@ -458,19 +1210,10 @@ haveb: static void putempty(Workbuf *b) { - if(b == nil) - return; + if(CollectStats) + runtime·xadd64(&gcstats.putempty, 1); - if(work.nproc == 1) { - b->next = work.empty; - work.empty = b; - return; - } - - runtime·lock(&work.emu); - b->next = work.empty; - work.empty = b; - runtime·unlock(&work.emu); + runtime·lfstackpush(&work.empty, &b->node); } // Get a full work buffer off the work.full list, or return nil. @@ -478,63 +1221,37 @@ static Workbuf* getfull(Workbuf *b) { int32 i; - Workbuf *b1; - - if(work.nproc == 1) { - // Put b on empty list. - if(b != nil) { - b->next = work.empty; - work.empty = b; - } - // Grab from full list if possible. - // Since work.nproc==1, no one else is - // going to give us work. - b = work.full; - if(b != nil) - work.full = b->next; - return b; - } - putempty(b); + if(CollectStats) + runtime·xadd64(&gcstats.getfull, 1); - // Grab buffer from full list if possible. - for(;;) { - b1 = work.full; - if(b1 == nil) - break; - runtime·lock(&work.fmu); - if(work.full != nil) { - b1 = work.full; - work.full = b1->next; - runtime·unlock(&work.fmu); - return b1; - } - runtime·unlock(&work.fmu); - } + if(b != nil) + runtime·lfstackpush(&work.empty, &b->node); + b = (Workbuf*)runtime·lfstackpop(&work.full); + if(b != nil || work.nproc == 1) + return b; runtime·xadd(&work.nwait, +1); for(i=0;; i++) { - b1 = work.full; - if(b1 != nil) { - runtime·lock(&work.fmu); - if(work.full != nil) { - runtime·xadd(&work.nwait, -1); - b1 = work.full; - work.full = b1->next; - runtime·unlock(&work.fmu); - return b1; - } - runtime·unlock(&work.fmu); - continue; + if(work.full != 0) { + runtime·xadd(&work.nwait, -1); + b = (Workbuf*)runtime·lfstackpop(&work.full); + if(b != nil) + return b; + runtime·xadd(&work.nwait, +1); } if(work.nwait == work.nproc) return nil; - if(i < 10) + if(i < 10) { + m->gcstats.nprocyield++; runtime·procyield(20); - else if(i < 20) + } else if(i < 20) { + m->gcstats.nosyield++; runtime·osyield(); - else + } else { + m->gcstats.nsleep++; runtime·usleep(100); + } } } @@ -550,20 +1267,40 @@ handoff(Workbuf *b) b->nobj -= n; b1->nobj = n; runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); - nhandoff += n; + m->gcstats.nhandoff++; + m->gcstats.nhandoffcnt += n; // Put b on full list - let first half of b get stolen. - runtime·lock(&work.fmu); - b->next = work.full; - work.full = b; - runtime·unlock(&work.fmu); - + runtime·lfstackpush(&work.full, &b->node); return b1; } -// Scanstack calls scanblock on each of gp's stack segments. static void -scanstack(void (*scanblock)(byte*, int64), G *gp) +addroot(Obj obj) +{ + uint32 cap; + Obj *new; + + if(work.nroot >= work.rootcap) { + cap = PageSize/sizeof(Obj); + if(cap < 2*work.rootcap) + cap = 2*work.rootcap; + new = (Obj*)runtime·SysAlloc(cap*sizeof(Obj)); + if(new == nil) + runtime·throw("runtime: cannot allocate memory"); + if(work.roots != nil) { + runtime·memmove(new, work.roots, work.rootcap*sizeof(Obj)); + runtime·SysFree(work.roots, work.rootcap*sizeof(Obj)); + } + work.roots = new; + work.rootcap = cap; + } + work.roots[work.nroot] = obj; + work.nroot++; +} + +static void +addstackroots(G *gp) { M *mp; int32 n; @@ -571,7 +1308,7 @@ scanstack(void (*scanblock)(byte*, int64), G *gp) byte *sp, *guard; stk = (Stktop*)gp->stackbase; - guard = gp->stackguard; + guard = (byte*)gp->stackguard; if(gp == g) { // Scanning our own stack: start at &gp. @@ -582,72 +1319,82 @@ scanstack(void (*scanblock)(byte*, int64), G *gp) } else { // Scanning another goroutine's stack. // The goroutine is usually asleep (the world is stopped). - sp = gp->sched.sp; + sp = (byte*)gp->sched.sp; // The exception is that if the goroutine is about to enter or might // have just exited a system call, it may be executing code such // as schedlock and may have needed to start a new stack segment. // Use the stack segment and stack pointer at the time of // the system call instead, since that won't change underfoot. - if(gp->gcstack != nil) { + if(gp->gcstack != (uintptr)nil) { stk = (Stktop*)gp->gcstack; - sp = gp->gcsp; - guard = gp->gcguard; + sp = (byte*)gp->gcsp; + guard = (byte*)gp->gcguard; } } - if(Debug > 1) - runtime·printf("scanstack %d %p\n", gp->goid, sp); n = 0; while(stk) { if(sp < guard-StackGuard || (byte*)stk < sp) { - runtime·printf("scanstack inconsistent: g%d#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); + runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); runtime·throw("scanstack"); } - scanblock(sp, (byte*)stk - sp); - sp = stk->gobuf.sp; + addroot((Obj){sp, (byte*)stk - sp, 0}); + sp = (byte*)stk->gobuf.sp; guard = stk->stackguard; stk = (Stktop*)stk->stackbase; n++; } } -// Markfin calls scanblock on the blocks that have finalizers: -// the things pointed at cannot be freed until the finalizers have run. static void -markfin(void *v) +addfinroots(void *v) { uintptr size; + void *base; size = 0; - if(!runtime·mlookup(v, &v, &size, nil) || !runtime·blockspecial(v)) + if(!runtime·mlookup(v, &base, &size, nil) || !runtime·blockspecial(base)) runtime·throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. - scanblock(v, size); + addroot((Obj){base, size, 0}); } static void -debug_markfin(void *v) -{ - uintptr size; - - if(!runtime·mlookup(v, &v, &size, nil)) - runtime·throw("debug_mark - finalizer inconsistency"); - debug_scanblock(v, size); -} - -// Mark -static void -mark(void (*scan)(byte*, int64)) +addroots(void) { G *gp; FinBlock *fb; + MSpan *s, **allspans; + uint32 spanidx; + + work.nroot = 0; + + // data & bss + // TODO(atom): load balancing + addroot((Obj){data, edata - data, (uintptr)gcdata}); + addroot((Obj){bss, ebss - bss, (uintptr)gcbss}); + + // MSpan.types + allspans = runtime·mheap->allspans; + for(spanidx=0; spanidx<runtime·mheap->nspan; spanidx++) { + s = allspans[spanidx]; + if(s->state == MSpanInUse) { + switch(s->types.compression) { + case MTypes_Empty: + case MTypes_Single: + break; + case MTypes_Words: + case MTypes_Bytes: + // TODO(atom): consider using defaultProg instead of 0 + addroot((Obj){(byte*)&s->types.data, sizeof(void*), 0}); + break; + } + } + } - // mark data+bss. - scan(data, ebss - data); - - // mark stacks + // stacks for(gp=runtime·allg; gp!=nil; gp=gp->alllink) { switch(gp->status){ default: @@ -658,37 +1405,30 @@ mark(void (*scan)(byte*, int64)) case Grunning: if(gp != g) runtime·throw("mark - world not stopped"); - scanstack(scan, gp); + addstackroots(gp); break; case Grunnable: case Gsyscall: case Gwaiting: - scanstack(scan, gp); + addstackroots(gp); break; } } - // mark things pointed at by objects with finalizers - if(scan == debug_scanblock) - runtime·walkfintab(debug_markfin); - else - runtime·walkfintab(markfin); + runtime·walkfintab(addfinroots); for(fb=allfin; fb; fb=fb->alllink) - scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0])); - - // in multiproc mode, join in the queued work. - scan(nil, 0); + addroot((Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); } static bool handlespecial(byte *p, uintptr size) { - void (*fn)(void*); - int32 nret; + FuncVal *fn; + uintptr nret; FinBlock *block; Finalizer *f; - + if(!runtime·getfinalizer(p, true, &fn, &nret)) { runtime·setblockspecial(p, false); runtime·MProf_Free(p, size); @@ -699,6 +1439,8 @@ handlespecial(byte *p, uintptr size) if(finq == nil || finq->cnt == finq->cap) { if(finc == nil) { finc = runtime·SysAlloc(PageSize); + if(finc == nil) + runtime·throw("runtime: cannot allocate memory"); finc->cap = (PageSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; finc->alllink = allfin; allfin = finc; @@ -713,124 +1455,225 @@ handlespecial(byte *p, uintptr size) f->fn = fn; f->nret = nret; f->arg = p; - runtime·unlock(&finlock); + runtime·unlock(&finlock); return true; } // Sweep frees or collects finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void -sweep(void) +sweepspan(ParFor *desc, uint32 idx) { - MSpan *s; int32 cl, n, npages; uintptr size; byte *p; MCache *c; byte *arena_start; - int64 now; + MLink head, *end; + int32 nfree; + byte *type_data; + byte compression; + uintptr type_data_inc; + MSpan *s; - arena_start = runtime·mheap.arena_start; - now = runtime·nanotime(); + USED(&desc); + s = runtime·mheap->allspans[idx]; + if(s->state != MSpanInUse) + return; + arena_start = runtime·mheap->arena_start; + p = (byte*)(s->start << PageShift); + cl = s->sizeclass; + size = s->elemsize; + if(cl == 0) { + n = 1; + } else { + // Chunk full of small blocks. + npages = runtime·class_to_allocnpages[cl]; + n = (npages << PageShift) / size; + } + nfree = 0; + end = &head; + c = m->mcache; + + type_data = (byte*)s->types.data; + type_data_inc = sizeof(uintptr); + compression = s->types.compression; + switch(compression) { + case MTypes_Bytes: + type_data += 8*sizeof(uintptr); + type_data_inc = 1; + break; + } - for(;;) { - s = work.spans; - if(s == nil) - break; - if(!runtime·casp(&work.spans, s, s->allnext)) - continue; + // Sweep through n objects of given size starting at p. + // This thread owns the span now, so it can manipulate + // the block bitmap without atomic operations. + for(; n > 0; n--, p += size, type_data+=type_data_inc) { + uintptr off, *bitp, shift, bits; - // Stamp newly unused spans. The scavenger will use that - // info to potentially give back some pages to the OS. - if(s->state == MSpanFree && s->unusedsince == 0) - s->unusedsince = now; + off = (uintptr*)p - (uintptr*)arena_start; + bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; + shift = off % wordsPerBitmapWord; + bits = *bitp>>shift; - if(s->state != MSpanInUse) + if((bits & bitAllocated) == 0) continue; - p = (byte*)(s->start << PageShift); - cl = s->sizeclass; + if((bits & bitMarked) != 0) { + if(DebugMark) { + if(!(bits & bitSpecial)) + runtime·printf("found spurious mark on %p\n", p); + *bitp &= ~(bitSpecial<<shift); + } + *bitp &= ~(bitMarked<<shift); + continue; + } + + // Special means it has a finalizer or is being profiled. + // In DebugMark mode, the bit has been coopted so + // we have to assume all blocks are special. + if(DebugMark || (bits & bitSpecial) != 0) { + if(handlespecial(p, size)) + continue; + } + + // Mark freed; restore block boundary bit. + *bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); + if(cl == 0) { - size = s->npages<<PageShift; - n = 1; + // Free large span. + runtime·unmarkspan(p, 1<<PageShift); + *(uintptr*)p = 1; // needs zeroing + runtime·MHeap_Free(runtime·mheap, s, 1); + c->local_alloc -= size; + c->local_nfree++; } else { - // Chunk full of small blocks. - size = runtime·class_to_size[cl]; - npages = runtime·class_to_allocnpages[cl]; - n = (npages << PageShift) / size; + // Free small object. + switch(compression) { + case MTypes_Words: + *(uintptr*)type_data = 0; + break; + case MTypes_Bytes: + *(byte*)type_data = 0; + break; + } + if(size > sizeof(uintptr)) + ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" + + end->next = (MLink*)p; + end = (MLink*)p; + nfree++; } + } - // Sweep through n objects of given size starting at p. - // This thread owns the span now, so it can manipulate - // the block bitmap without atomic operations. - for(; n > 0; n--, p += size) { - uintptr off, *bitp, shift, bits; + if(nfree) { + c->local_by_size[cl].nfree += nfree; + c->local_alloc -= size * nfree; + c->local_nfree += nfree; + c->local_cachealloc -= nfree * size; + c->local_objects -= nfree; + runtime·MCentral_FreeSpan(&runtime·mheap->central[cl], s, nfree, head.next, end); + } +} - off = (uintptr*)p - (uintptr*)arena_start; - bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; - shift = off % wordsPerBitmapWord; - bits = *bitp>>shift; +static void +dumpspan(uint32 idx) +{ + int32 sizeclass, n, npages, i, column; + uintptr size; + byte *p; + byte *arena_start; + MSpan *s; + bool allocated, special; - if((bits & bitAllocated) == 0) - continue; + s = runtime·mheap->allspans[idx]; + if(s->state != MSpanInUse) + return; + arena_start = runtime·mheap->arena_start; + p = (byte*)(s->start << PageShift); + sizeclass = s->sizeclass; + size = s->elemsize; + if(sizeclass == 0) { + n = 1; + } else { + npages = runtime·class_to_allocnpages[sizeclass]; + n = (npages << PageShift) / size; + } + + runtime·printf("%p .. %p:\n", p, p+n*size); + column = 0; + for(; n>0; n--, p+=size) { + uintptr off, *bitp, shift, bits; - if((bits & bitMarked) != 0) { - if(DebugMark) { - if(!(bits & bitSpecial)) - runtime·printf("found spurious mark on %p\n", p); - *bitp &= ~(bitSpecial<<shift); - } - *bitp &= ~(bitMarked<<shift); - continue; - } + off = (uintptr*)p - (uintptr*)arena_start; + bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; + shift = off % wordsPerBitmapWord; + bits = *bitp>>shift; - // Special means it has a finalizer or is being profiled. - // In DebugMark mode, the bit has been coopted so - // we have to assume all blocks are special. - if(DebugMark || (bits & bitSpecial) != 0) { - if(handlespecial(p, size)) - continue; + allocated = ((bits & bitAllocated) != 0); + special = ((bits & bitSpecial) != 0); + + for(i=0; i<size; i+=sizeof(void*)) { + if(column == 0) { + runtime·printf("\t"); + } + if(i == 0) { + runtime·printf(allocated ? "(" : "["); + runtime·printf(special ? "@" : ""); + runtime·printf("%p: ", p+i); + } else { + runtime·printf(" "); } - // Mark freed; restore block boundary bit. - *bitp = (*bitp & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); + runtime·printf("%p", *(void**)(p+i)); - c = m->mcache; - if(s->sizeclass == 0) { - // Free large span. - runtime·unmarkspan(p, 1<<PageShift); - *(uintptr*)p = 1; // needs zeroing - runtime·MHeap_Free(&runtime·mheap, s, 1); - } else { - // Free small object. - if(size > sizeof(uintptr)) - ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" - c->local_by_size[s->sizeclass].nfree++; - runtime·MCache_Free(c, p, s->sizeclass, size); + if(i+sizeof(void*) >= size) { + runtime·printf(allocated ? ") " : "] "); + } + + column++; + if(column == 8) { + runtime·printf("\n"); + column = 0; } - c->local_alloc -= size; - c->local_nfree++; } } + runtime·printf("\n"); +} + +// A debugging function to dump the contents of memory +void +runtime·memorydump(void) +{ + uint32 spanidx; + + for(spanidx=0; spanidx<runtime·mheap->nspan; spanidx++) { + dumpspan(spanidx); + } } void runtime·gchelper(void) { - // Wait until main proc is ready for mark help. - runtime·lock(&work.markgate); - runtime·unlock(&work.markgate); - scanblock(nil, 0); + // parallel mark for over gc roots + runtime·parfordo(work.markfor); + + // help other threads scan secondary blocks + scanblock(nil, nil, 0, true); - // Wait until main proc is ready for sweep help. - runtime·lock(&work.sweepgate); - runtime·unlock(&work.sweepgate); - sweep(); + if(DebugMark) { + // wait while the main thread executes mark(debug_scanblock) + while(runtime·atomicload(&work.debugmarkdone) == 0) + runtime·usleep(10); + } + runtime·parfordo(work.sweepfor); if(runtime·xadd(&work.ndone, +1) == work.nproc-1) runtime·notewakeup(&work.alldone); } +#define GcpercentUnknown (-2) + // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of @@ -840,33 +1683,36 @@ runtime·gchelper(void) // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). -static int32 gcpercent = -2; +static int32 gcpercent = GcpercentUnknown; static void -stealcache(void) +cachestats(GCStats *stats) { - M *m; - - for(m=runtime·allm; m; m=m->alllink) - runtime·MCache_ReleaseAll(m->mcache); -} - -static void -cachestats(void) -{ - M *m; + M *mp; MCache *c; + P *p, **pp; int32 i; uint64 stacks_inuse; - uint64 stacks_sys; + uint64 *src, *dst; + if(stats) + runtime·memclr((byte*)stats, sizeof(*stats)); stacks_inuse = 0; - stacks_sys = 0; - for(m=runtime·allm; m; m=m->alllink) { - runtime·purgecachedstats(m); - stacks_inuse += m->stackalloc->inuse; - stacks_sys += m->stackalloc->sys; - c = m->mcache; + for(mp=runtime·allm; mp; mp=mp->alllink) { + stacks_inuse += mp->stackinuse*FixedStack; + if(stats) { + src = (uint64*)&mp->gcstats; + dst = (uint64*)stats; + for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) + dst[i] += src[i]; + runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats)); + } + } + for(pp=runtime·allp; p=*pp; pp++) { + c = p->mcache; + if(c==nil) + continue; + runtime·purgecachedstats(c); for(i=0; i<nelem(c->local_by_size); i++) { mstats.by_size[i].nmalloc += c->local_by_size[i].nmalloc; c->local_by_size[i].nmalloc = 0; @@ -875,16 +1721,42 @@ cachestats(void) } } mstats.stacks_inuse = stacks_inuse; - mstats.stacks_sys = stacks_sys; +} + +// Structure of arguments passed to function gc(). +// This allows the arguments to be passed via reflect·call. +struct gc_args +{ + int32 force; +}; + +static void gc(struct gc_args *args); + +static int32 +readgogc(void) +{ + byte *p; + + p = runtime·getenv("GOGC"); + if(p == nil || p[0] == '\0') + return 100; + if(runtime·strcmp(p, (byte*)"off") == 0) + return -1; + return runtime·atoi(p); } void runtime·gc(int32 force) { - int64 t0, t1, t2, t3; - uint64 heap0, heap1, obj0, obj1; byte *p; - bool extra; + struct gc_args a, *ap; + FuncVal gcv; + + // The atomic operations are not atomic if the uint64s + // are not aligned on uint64 boundaries. This has been + // a problem in the past. + if((((uintptr)&work.empty) & 7) != 0) + runtime·throw("runtime: gc work buffer is misaligned"); // The gc is turned off (via enablegc) until // the bootstrap has completed. @@ -897,14 +1769,8 @@ runtime·gc(int32 force) if(!mstats.enablegc || m->locks > 0 || runtime·panicking) return; - if(gcpercent == -2) { // first time through - p = runtime·getenv("GOGC"); - if(p == nil || p[0] == '\0') - gcpercent = 100; - else if(runtime·strcmp(p, (byte*)"off") == 0) - gcpercent = -1; - else - gcpercent = runtime·atoi(p); + if(gcpercent == GcpercentUnknown) { // first time through + gcpercent = readgogc(); p = runtime·getenv("GOGCTRACE"); if(p != nil) @@ -913,103 +1779,171 @@ runtime·gc(int32 force) if(gcpercent < 0) return; + // Run gc on a bigger stack to eliminate + // a potentially large number of calls to runtime·morestack. + a.force = force; + ap = &a; + m->moreframesize_minalloc = StackBig; + gcv.fn = (void*)gc; + reflect·call(&gcv, (byte*)&ap, sizeof(ap)); + + if(gctrace > 1 && !force) { + a.force = 1; + gc(&a); + } +} + +static FuncVal runfinqv = {runfinq}; + +static void +gc(struct gc_args *args) +{ + int64 t0, t1, t2, t3, t4; + uint64 heap0, heap1, obj0, obj1, ninstr; + GCStats stats; + M *mp; + uint32 i; + Eface eface; + runtime·semacquire(&runtime·worldsema); - if(!force && mstats.heap_alloc < mstats.next_gc) { + if(!args->force && mstats.heap_alloc < mstats.next_gc) { runtime·semrelease(&runtime·worldsema); return; } t0 = runtime·nanotime(); - nhandoff = 0; m->gcing = 1; runtime·stoptheworld(); - cachestats(); - heap0 = mstats.heap_alloc; - obj0 = mstats.nmalloc - mstats.nfree; + if(CollectStats) + runtime·memclr((byte*)&gcstats, sizeof(gcstats)); - runtime·lock(&work.markgate); - runtime·lock(&work.sweepgate); + for(mp=runtime·allm; mp; mp=mp->alllink) + runtime·settype_flush(mp, false); - extra = false; - work.nproc = 1; - if(runtime·gomaxprocs > 1 && runtime·ncpu > 1) { - runtime·noteclear(&work.alldone); - work.nproc += runtime·helpgc(&extra); + heap0 = 0; + obj0 = 0; + if(gctrace) { + cachestats(nil); + heap0 = mstats.heap_alloc; + obj0 = mstats.nmalloc - mstats.nfree; } + + m->locks++; // disable gc during mallocs in parforalloc + if(work.markfor == nil) + work.markfor = runtime·parforalloc(MaxGcproc); + if(work.sweepfor == nil) + work.sweepfor = runtime·parforalloc(MaxGcproc); + m->locks--; + + if(itabtype == nil) { + // get C pointer to the Go type "itab" + runtime·gc_itab_ptr(&eface); + itabtype = ((PtrType*)eface.type)->elem; + } + work.nwait = 0; work.ndone = 0; + work.debugmarkdone = 0; + work.nproc = runtime·gcprocs(); + addroots(); + runtime·parforsetup(work.markfor, work.nproc, work.nroot, nil, false, markroot); + runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap->nspan, nil, true, sweepspan); + if(work.nproc > 1) { + runtime·noteclear(&work.alldone); + runtime·helpgc(work.nproc); + } - runtime·unlock(&work.markgate); // let the helpers in - mark(scanblock); - if(DebugMark) - mark(debug_scanblock); t1 = runtime·nanotime(); - work.spans = runtime·mheap.allspans; - runtime·unlock(&work.sweepgate); // let the helpers in - sweep(); + runtime·parfordo(work.markfor); + scanblock(nil, nil, 0, true); + + if(DebugMark) { + for(i=0; i<work.nroot; i++) + debug_scanblock(work.roots[i].p, work.roots[i].n); + runtime·atomicstore(&work.debugmarkdone, 1); + } + t2 = runtime·nanotime(); + + runtime·parfordo(work.sweepfor); + t3 = runtime·nanotime(); + if(work.nproc > 1) runtime·notesleep(&work.alldone); - t2 = runtime·nanotime(); - stealcache(); - cachestats(); + cachestats(&stats); + + stats.nprocyield += work.sweepfor->nprocyield; + stats.nosyield += work.sweepfor->nosyield; + stats.nsleep += work.sweepfor->nsleep; mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; m->gcing = 0; - m->locks++; // disable gc during the mallocs in newproc if(finq != nil) { + m->locks++; // disable gc during the mallocs in newproc // kick off or wake up goroutine to run queued finalizers if(fing == nil) - fing = runtime·newproc1((byte*)runfinq, nil, 0, 0, runtime·gc); + fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc); else if(fingwait) { fingwait = 0; runtime·ready(fing); } + m->locks--; } - m->locks--; - cachestats(); heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; - t3 = runtime·nanotime(); - mstats.last_gc = t3; - mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; - mstats.pause_total_ns += t3 - t0; + t4 = runtime·nanotime(); + mstats.last_gc = t4; + mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; + mstats.pause_total_ns += t4 - t0; mstats.numgc++; if(mstats.debuggc) - runtime·printf("pause %D\n", t3-t0); + runtime·printf("pause %D\n", t4-t0); if(gctrace) { - runtime·printf("gc%d(%d): %D+%D+%D ms %D -> %D MB %D -> %D (%D-%D) objects %D handoff\n", - mstats.numgc, work.nproc, (t1-t0)/1000000, (t2-t1)/1000000, (t3-t2)/1000000, + runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects," + " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", + mstats.numgc, work.nproc, (t2-t1)/1000000, (t3-t2)/1000000, (t1-t0+t4-t3)/1000000, heap0>>20, heap1>>20, obj0, obj1, mstats.nmalloc, mstats.nfree, - nhandoff); + stats.nhandoff, stats.nhandoffcnt, + work.sweepfor->nsteal, work.sweepfor->nstealcnt, + stats.nprocyield, stats.nosyield, stats.nsleep); + if(CollectStats) { + runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", + gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); + if(gcstats.ptr.cnt != 0) + runtime·printf("avg ptrbufsize: %D (%D/%D)\n", + gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); + if(gcstats.obj.cnt != 0) + runtime·printf("avg nobj: %D (%D/%D)\n", + gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); + runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); + + runtime·printf("instruction counts:\n"); + ninstr = 0; + for(i=0; i<nelem(gcstats.instr); i++) { + runtime·printf("\t%d:\t%D\n", i, gcstats.instr[i]); + ninstr += gcstats.instr[i]; + } + runtime·printf("\ttotal:\t%D\n", ninstr); + + runtime·printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull); + } } - + runtime·MProf_GC(); runtime·semrelease(&runtime·worldsema); + runtime·starttheworld(); - // If we could have used another helper proc, start one now, - // in the hope that it will be available next time. - // It would have been even better to start it before the collection, - // but doing so requires allocating memory, so it's tricky to - // coordinate. This lazy approach works out in practice: - // we don't mind if the first couple gc rounds don't have quite - // the maximum number of procs. - runtime·starttheworld(extra); - - // give the queued finalizers, if any, a chance to run - if(finq != nil) + // give the queued finalizers, if any, a chance to run + if(finq != nil) runtime·gosched(); - - if(gctrace > 1 && !force) - runtime·gc(1); } void @@ -1022,11 +1956,56 @@ runtime·ReadMemStats(MStats *stats) runtime·semacquire(&runtime·worldsema); m->gcing = 1; runtime·stoptheworld(); - cachestats(); + cachestats(nil); *stats = mstats; m->gcing = 0; runtime·semrelease(&runtime·worldsema); - runtime·starttheworld(false); + runtime·starttheworld(); +} + +void +runtime∕debug·readGCStats(Slice *pauses) +{ + uint64 *p; + uint32 i, n; + + // Calling code in runtime/debug should make the slice large enough. + if(pauses->cap < nelem(mstats.pause_ns)+3) + runtime·throw("runtime: short slice passed to readGCStats"); + + // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. + p = (uint64*)pauses->array; + runtime·lock(runtime·mheap); + n = mstats.numgc; + if(n > nelem(mstats.pause_ns)) + n = nelem(mstats.pause_ns); + + // The pause buffer is circular. The most recent pause is at + // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward + // from there to go back farther in time. We deliver the times + // most recent first (in p[0]). + for(i=0; i<n; i++) + p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)]; + + p[n] = mstats.last_gc; + p[n+1] = mstats.numgc; + p[n+2] = mstats.pause_total_ns; + runtime·unlock(runtime·mheap); + pauses->len = n+3; +} + +void +runtime∕debug·setGCPercent(intgo in, intgo out) +{ + runtime·lock(runtime·mheap); + if(gcpercent == GcpercentUnknown) + gcpercent = readgogc(); + out = gcpercent; + if(in < 0) + in = -1; + gcpercent = in; + runtime·unlock(runtime·mheap); + FLUSH(&out); } static void @@ -1050,11 +2029,11 @@ runfinq(void) finq = nil; if(fb == nil) { fingwait = 1; - g->status = Gwaiting; - g->waitreason = "finalizer wait"; - runtime·gosched(); + runtime·park(nil, nil, "finalizer wait"); continue; } + if(raceenabled) + runtime·racefingo(); for(; fb; fb=next) { next = fb->next; for(i=0; i<fb->cnt; i++) { @@ -1066,7 +2045,7 @@ runfinq(void) framecap = framesz; } *(void**)frame = f->arg; - reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret); + reflect·call(f->fn, frame, sizeof(uintptr) + f->nret); f->fn = nil; f->arg = nil; } @@ -1088,11 +2067,11 @@ runtime·markallocated(void *v, uintptr n, bool noptr) if(0) runtime·printf("markallocated %p+%p\n", v, n); - if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) + if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markallocated: bad pointer"); - off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { @@ -1120,11 +2099,11 @@ runtime·markfreed(void *v, uintptr n) if(0) runtime·printf("markallocated %p+%p\n", v, n); - if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) + if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markallocated: bad pointer"); - off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { @@ -1150,11 +2129,11 @@ runtime·checkfreed(void *v, uintptr n) if(!runtime·checking) return; - if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) + if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) return; // not allocated, so okay - off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; // word offset + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; @@ -1173,7 +2152,7 @@ runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) uintptr *b, off, shift; byte *p; - if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) + if((byte*)v+size*n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markspan: bad pointer"); p = v; @@ -1184,8 +2163,8 @@ runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. - off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)p - (uintptr*)runtime·mheap->arena_start; // word offset + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask<<shift)) | (bitBlockBoundary<<shift); } @@ -1197,14 +2176,14 @@ runtime·unmarkspan(void *v, uintptr n) { uintptr *p, *b, off; - if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) + if((byte*)v+n > (byte*)runtime·mheap->arena_used || (byte*)v < runtime·mheap->arena_start) runtime·throw("markspan: bad pointer"); p = v; - off = p - (uintptr*)runtime·mheap.arena_start; // word offset + off = p - (uintptr*)runtime·mheap->arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime·throw("markspan: unaligned pointer"); - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime·throw("unmarkspan: unaligned length"); @@ -1225,8 +2204,8 @@ runtime·blockspecial(void *v) if(DebugMark) return true; - off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial<<shift)) != 0; @@ -1240,8 +2219,8 @@ runtime·setblockspecial(void *v, bool s) if(DebugMark) return; - off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; - b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; + off = (uintptr*)v - (uintptr*)runtime·mheap->arena_start; + b = (uintptr*)runtime·mheap->arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { |