diff options
author | Ondřej Surý <ondrej@sury.org> | 2011-01-17 12:40:45 +0100 |
---|---|---|
committer | Ondřej Surý <ondrej@sury.org> | 2011-01-17 12:40:45 +0100 |
commit | 3e45412327a2654a77944249962b3652e6142299 (patch) | |
tree | bc3bf69452afa055423cbe0c5cfa8ca357df6ccf /src/pkg/testing/regexp.go | |
parent | c533680039762cacbc37db8dc7eed074c3e497be (diff) | |
download | golang-3e45412327a2654a77944249962b3652e6142299.tar.gz |
Imported Upstream version 2011.01.12upstream/2011.01.12
Diffstat (limited to 'src/pkg/testing/regexp.go')
-rw-r--r-- | src/pkg/testing/regexp.go | 831 |
1 files changed, 0 insertions, 831 deletions
diff --git a/src/pkg/testing/regexp.go b/src/pkg/testing/regexp.go deleted file mode 100644 index 78d801d51..000000000 --- a/src/pkg/testing/regexp.go +++ /dev/null @@ -1,831 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// The testing package implements a simple regular expression library. -// It is a reduced version of the regular expression package suitable -// for use in tests; it avoids many dependencies. -// -// The syntax of the regular expressions accepted is: -// -// regexp: -// concatenation { '|' concatenation } -// concatenation: -// { closure } -// closure: -// term [ '*' | '+' | '?' ] -// term: -// '^' -// '$' -// '.' -// character -// '[' [ '^' ] character-ranges ']' -// '(' regexp ')' -// - -package testing - -import ( - "utf8" -) - -var debug = false - -// Error codes returned by failures to parse an expression. -var ( - ErrInternal = "internal error" - ErrUnmatchedLpar = "unmatched '('" - ErrUnmatchedRpar = "unmatched ')'" - ErrUnmatchedLbkt = "unmatched '['" - ErrUnmatchedRbkt = "unmatched ']'" - ErrBadRange = "bad range in character class" - ErrExtraneousBackslash = "extraneous backslash" - ErrBadClosure = "repeated closure (**, ++, etc.)" - ErrBareClosure = "closure applies to nothing" - ErrBadBackslash = "illegal backslash escape" -) - -// An instruction executed by the NFA -type instr interface { - kind() int // the type of this instruction: _CHAR, _ANY, etc. - next() instr // the instruction to execute after this one - setNext(i instr) - index() int - setIndex(i int) - print() -} - -// Fields and methods common to all instructions -type common struct { - _next instr - _index int -} - -func (c *common) next() instr { return c._next } -func (c *common) setNext(i instr) { c._next = i } -func (c *common) index() int { return c._index } -func (c *common) setIndex(i int) { c._index = i } - -// The representation of a compiled regular expression. -// The public interface is entirely through methods. -type Regexp struct { - expr string // the original expression - inst []instr - start instr - nbra int // number of brackets in expression, for subexpressions -} - -const ( - _START = iota // beginning of program - _END // end of program: success - _BOT // '^' beginning of text - _EOT // '$' end of text - _CHAR // 'a' regular character - _CHARCLASS // [a-z] character class - _ANY // '.' any character including newline - _NOTNL // [^\n] special case: any character but newline - _BRA // '(' parenthesized expression - _EBRA // ')'; end of '(' parenthesized expression - _ALT // '|' alternation - _NOP // do nothing; makes it easy to link without patching -) - -// --- START start of program -type _Start struct { - common -} - -func (start *_Start) kind() int { return _START } -func (start *_Start) print() { print("start") } - -// --- END end of program -type _End struct { - common -} - -func (end *_End) kind() int { return _END } -func (end *_End) print() { print("end") } - -// --- BOT beginning of text -type _Bot struct { - common -} - -func (bot *_Bot) kind() int { return _BOT } -func (bot *_Bot) print() { print("bot") } - -// --- EOT end of text -type _Eot struct { - common -} - -func (eot *_Eot) kind() int { return _EOT } -func (eot *_Eot) print() { print("eot") } - -// --- CHAR a regular character -type _Char struct { - common - char int -} - -func (char *_Char) kind() int { return _CHAR } -func (char *_Char) print() { print("char ", string(char.char)) } - -func newChar(char int) *_Char { - c := new(_Char) - c.char = char - return c -} - -// --- CHARCLASS [a-z] - -type _CharClass struct { - common - char int - negate bool // is character class negated? ([^a-z]) - // stored pairwise: [a-z] is (a,z); x is (x,x): - ranges []int -} - -func (cclass *_CharClass) kind() int { return _CHARCLASS } - -func (cclass *_CharClass) print() { - print("charclass") - if cclass.negate { - print(" (negated)") - } - for i := 0; i < len(cclass.ranges); i += 2 { - l := cclass.ranges[i] - r := cclass.ranges[i+1] - if l == r { - print(" [", string(l), "]") - } else { - print(" [", string(l), "-", string(r), "]") - } - } -} - -func (cclass *_CharClass) addRange(a, b int) { - // range is a through b inclusive - n := len(cclass.ranges) - if n >= cap(cclass.ranges) { - nr := make([]int, n, 2*n) - for i, j := range nr { - nr[i] = j - } - cclass.ranges = nr - } - cclass.ranges = cclass.ranges[0 : n+2] - cclass.ranges[n] = a - n++ - cclass.ranges[n] = b - n++ -} - -func (cclass *_CharClass) matches(c int) bool { - for i := 0; i < len(cclass.ranges); i = i + 2 { - min := cclass.ranges[i] - max := cclass.ranges[i+1] - if min <= c && c <= max { - return !cclass.negate - } - } - return cclass.negate -} - -func newCharClass() *_CharClass { - c := new(_CharClass) - c.ranges = make([]int, 0, 20) - return c -} - -// --- ANY any character -type _Any struct { - common -} - -func (any *_Any) kind() int { return _ANY } -func (any *_Any) print() { print("any") } - -// --- NOTNL any character but newline -type _NotNl struct { - common -} - -func (notnl *_NotNl) kind() int { return _NOTNL } -func (notnl *_NotNl) print() { print("notnl") } - -// --- BRA parenthesized expression -type _Bra struct { - common - n int // subexpression number -} - -func (bra *_Bra) kind() int { return _BRA } -func (bra *_Bra) print() { print("bra", bra.n) } - -// --- EBRA end of parenthesized expression -type _Ebra struct { - common - n int // subexpression number -} - -func (ebra *_Ebra) kind() int { return _EBRA } -func (ebra *_Ebra) print() { print("ebra ", ebra.n) } - -// --- ALT alternation -type _Alt struct { - common - left instr // other branch -} - -func (alt *_Alt) kind() int { return _ALT } -func (alt *_Alt) print() { print("alt(", alt.left.index(), ")") } - -// --- NOP no operation -type _Nop struct { - common -} - -func (nop *_Nop) kind() int { return _NOP } -func (nop *_Nop) print() { print("nop") } - -func (re *Regexp) add(i instr) instr { - n := len(re.inst) - i.setIndex(len(re.inst)) - if n >= cap(re.inst) { - ni := make([]instr, n, 2*n) - for i, j := range re.inst { - ni[i] = j - } - re.inst = ni - } - re.inst = re.inst[0 : n+1] - re.inst[n] = i - return i -} - -type parser struct { - re *Regexp - nlpar int // number of unclosed lpars - pos int - ch int -} - -func (p *parser) error(err string) { - panic(err) -} - -const endOfFile = -1 - -func (p *parser) c() int { return p.ch } - -func (p *parser) nextc() int { - if p.pos >= len(p.re.expr) { - p.ch = endOfFile - } else { - c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:]) - p.ch = c - p.pos += w - } - return p.ch -} - -func newParser(re *Regexp) *parser { - p := new(parser) - p.re = re - p.nextc() // load p.ch - return p -} - -func special(c int) bool { - s := `\.+*?()|[]^$` - for i := 0; i < len(s); i++ { - if c == int(s[i]) { - return true - } - } - return false -} - -func specialcclass(c int) bool { - s := `\-[]` - for i := 0; i < len(s); i++ { - if c == int(s[i]) { - return true - } - } - return false -} - -func (p *parser) charClass() instr { - cc := newCharClass() - if p.c() == '^' { - cc.negate = true - p.nextc() - } - left := -1 - for { - switch c := p.c(); c { - case ']', endOfFile: - if left >= 0 { - p.error(ErrBadRange) - } - // Is it [^\n]? - if cc.negate && len(cc.ranges) == 2 && - cc.ranges[0] == '\n' && cc.ranges[1] == '\n' { - nl := new(_NotNl) - p.re.add(nl) - return nl - } - p.re.add(cc) - return cc - case '-': // do this before backslash processing - p.error(ErrBadRange) - case '\\': - c = p.nextc() - switch { - case c == endOfFile: - p.error(ErrExtraneousBackslash) - case c == 'n': - c = '\n' - case specialcclass(c): - // c is as delivered - default: - p.error(ErrBadBackslash) - } - fallthrough - default: - p.nextc() - switch { - case left < 0: // first of pair - if p.c() == '-' { // range - p.nextc() - left = c - } else { // single char - cc.addRange(c, c) - } - case left <= c: // second of pair - cc.addRange(left, c) - left = -1 - default: - p.error(ErrBadRange) - } - } - } - return nil -} - -func (p *parser) term() (start, end instr) { - switch c := p.c(); c { - case '|', endOfFile: - return nil, nil - case '*', '+': - p.error(ErrBareClosure) - return - case ')': - if p.nlpar == 0 { - p.error(ErrUnmatchedRpar) - } - return nil, nil - case ']': - p.error(ErrUnmatchedRbkt) - case '^': - p.nextc() - start = p.re.add(new(_Bot)) - return start, start - case '$': - p.nextc() - start = p.re.add(new(_Eot)) - return start, start - case '.': - p.nextc() - start = p.re.add(new(_Any)) - return start, start - case '[': - p.nextc() - start = p.charClass() - if p.c() != ']' { - p.error(ErrUnmatchedLbkt) - } - p.nextc() - return start, start - case '(': - p.nextc() - p.nlpar++ - p.re.nbra++ // increment first so first subexpr is \1 - nbra := p.re.nbra - start, end = p.regexp() - if p.c() != ')' { - p.error(ErrUnmatchedLpar) - } - p.nlpar-- - p.nextc() - bra := new(_Bra) - p.re.add(bra) - ebra := new(_Ebra) - p.re.add(ebra) - bra.n = nbra - ebra.n = nbra - if start == nil { - if end == nil { - p.error(ErrInternal) - } - start = ebra - } else { - end.setNext(ebra) - } - bra.setNext(start) - return bra, ebra - case '\\': - c = p.nextc() - switch { - case c == endOfFile: - p.error(ErrExtraneousBackslash) - return - case c == 'n': - c = '\n' - case special(c): - // c is as delivered - default: - p.error(ErrBadBackslash) - } - fallthrough - default: - p.nextc() - start = newChar(c) - p.re.add(start) - return start, start - } - panic("unreachable") -} - -func (p *parser) closure() (start, end instr) { - start, end = p.term() - if start == nil { - return - } - switch p.c() { - case '*': - // (start,end)*: - alt := new(_Alt) - p.re.add(alt) - end.setNext(alt) // after end, do alt - alt.left = start // alternate brach: return to start - start = alt // alt becomes new (start, end) - end = alt - case '+': - // (start,end)+: - alt := new(_Alt) - p.re.add(alt) - end.setNext(alt) // after end, do alt - alt.left = start // alternate brach: return to start - end = alt // start is unchanged; end is alt - case '?': - // (start,end)?: - alt := new(_Alt) - p.re.add(alt) - nop := new(_Nop) - p.re.add(nop) - alt.left = start // alternate branch is start - alt.setNext(nop) // follow on to nop - end.setNext(nop) // after end, go to nop - start = alt // start is now alt - end = nop // end is nop pointed to by both branches - default: - return - } - switch p.nextc() { - case '*', '+', '?': - p.error(ErrBadClosure) - } - return -} - -func (p *parser) concatenation() (start, end instr) { - for { - nstart, nend := p.closure() - switch { - case nstart == nil: // end of this concatenation - if start == nil { // this is the empty string - nop := p.re.add(new(_Nop)) - return nop, nop - } - return - case start == nil: // this is first element of concatenation - start, end = nstart, nend - default: - end.setNext(nstart) - end = nend - } - } - panic("unreachable") -} - -func (p *parser) regexp() (start, end instr) { - start, end = p.concatenation() - for { - switch p.c() { - default: - return - case '|': - p.nextc() - nstart, nend := p.concatenation() - alt := new(_Alt) - p.re.add(alt) - alt.left = start - alt.setNext(nstart) - nop := new(_Nop) - p.re.add(nop) - end.setNext(nop) - nend.setNext(nop) - start, end = alt, nop - } - } - panic("unreachable") -} - -func unNop(i instr) instr { - for i.kind() == _NOP { - i = i.next() - } - return i -} - -func (re *Regexp) eliminateNops() { - for i := 0; i < len(re.inst); i++ { - inst := re.inst[i] - if inst.kind() == _END { - continue - } - inst.setNext(unNop(inst.next())) - if inst.kind() == _ALT { - alt := inst.(*_Alt) - alt.left = unNop(alt.left) - } - } -} - -func (re *Regexp) doParse() { - p := newParser(re) - start := new(_Start) - re.add(start) - s, e := p.regexp() - start.setNext(s) - re.start = start - e.setNext(re.add(new(_End))) - re.eliminateNops() -} - -// CompileRegexp parses a regular expression and returns, if successful, a Regexp -// object that can be used to match against text. -func CompileRegexp(str string) (regexp *Regexp, error string) { - regexp = new(Regexp) - // doParse will panic if there is a parse error. - defer func() { - if e := recover(); e != nil { - regexp = nil - error = e.(string) // Will re-panic if error was not a string, e.g. nil-pointer exception - } - }() - regexp.expr = str - regexp.inst = make([]instr, 0, 20) - regexp.doParse() - return -} - -// MustCompileRegexp is like CompileRegexp but panics if the expression cannot be parsed. -// It simplifies safe initialization of global variables holding compiled regular -// expressions. -func MustCompile(str string) *Regexp { - regexp, error := CompileRegexp(str) - if error != "" { - panic(`regexp: compiling "` + str + `": ` + error) - } - return regexp -} - -type state struct { - inst instr // next instruction to execute - match []int // pairs of bracketing submatches. 0th is start,end -} - -// Append new state to to-do list. Leftmost-longest wins so avoid -// adding a state that's already active. -func addState(s []state, inst instr, match []int) []state { - index := inst.index() - l := len(s) - pos := match[0] - // TODO: Once the state is a vector and we can do insert, have inputs always - // go in order correctly and this "earlier" test is never necessary, - for i := 0; i < l; i++ { - if s[i].inst.index() == index && // same instruction - s[i].match[0] < pos { // earlier match already going; lefmost wins - return s - } - } - if l == cap(s) { - s1 := make([]state, 2*l)[0:l] - for i := 0; i < l; i++ { - s1[i] = s[i] - } - s = s1 - } - s = s[0 : l+1] - s[l].inst = inst - s[l].match = match - return s -} - -// Accepts either string or bytes - the logic is identical either way. -// If bytes == nil, scan str. -func (re *Regexp) doExecute(str string, bytes []byte, pos int) []int { - var s [2][]state // TODO: use a vector when state values (not ptrs) can be vector elements - s[0] = make([]state, 10)[0:0] - s[1] = make([]state, 10)[0:0] - in, out := 0, 1 - var final state - found := false - end := len(str) - if bytes != nil { - end = len(bytes) - } - for pos <= end { - if !found { - // prime the pump if we haven't seen a match yet - match := make([]int, 2*(re.nbra+1)) - for i := 0; i < len(match); i++ { - match[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac" - } - match[0] = pos - s[out] = addState(s[out], re.start.next(), match) - } - in, out = out, in // old out state is new in state - s[out] = s[out][0:0] // clear out state - if len(s[in]) == 0 { - // machine has completed - break - } - charwidth := 1 - c := endOfFile - if pos < end { - if bytes == nil { - c, charwidth = utf8.DecodeRuneInString(str[pos:end]) - } else { - c, charwidth = utf8.DecodeRune(bytes[pos:end]) - } - } - for i := 0; i < len(s[in]); i++ { - st := s[in][i] - switch s[in][i].inst.kind() { - case _BOT: - if pos == 0 { - s[in] = addState(s[in], st.inst.next(), st.match) - } - case _EOT: - if pos == end { - s[in] = addState(s[in], st.inst.next(), st.match) - } - case _CHAR: - if c == st.inst.(*_Char).char { - s[out] = addState(s[out], st.inst.next(), st.match) - } - case _CHARCLASS: - if st.inst.(*_CharClass).matches(c) { - s[out] = addState(s[out], st.inst.next(), st.match) - } - case _ANY: - if c != endOfFile { - s[out] = addState(s[out], st.inst.next(), st.match) - } - case _NOTNL: - if c != endOfFile && c != '\n' { - s[out] = addState(s[out], st.inst.next(), st.match) - } - case _BRA: - n := st.inst.(*_Bra).n - st.match[2*n] = pos - s[in] = addState(s[in], st.inst.next(), st.match) - case _EBRA: - n := st.inst.(*_Ebra).n - st.match[2*n+1] = pos - s[in] = addState(s[in], st.inst.next(), st.match) - case _ALT: - s[in] = addState(s[in], st.inst.(*_Alt).left, st.match) - // give other branch a copy of this match vector - s1 := make([]int, 2*(re.nbra+1)) - for i := 0; i < len(s1); i++ { - s1[i] = st.match[i] - } - s[in] = addState(s[in], st.inst.next(), s1) - case _END: - // choose leftmost longest - if !found || // first - st.match[0] < final.match[0] || // leftmost - (st.match[0] == final.match[0] && pos > final.match[1]) { // longest - final = st - final.match[1] = pos - } - found = true - default: - st.inst.print() - panic("unknown instruction in execute") - } - } - pos += charwidth - } - return final.match -} - - -// ExecuteString matches the Regexp against the string s. -// The return value is an array of integers, in pairs, identifying the positions of -// substrings matched by the expression. -// s[a[0]:a[1]] is the substring matched by the entire expression. -// s[a[2*i]:a[2*i+1]] for i > 0 is the substring matched by the ith parenthesized subexpression. -// A negative value means the subexpression did not match any element of the string. -// An empty array means "no match". -func (re *Regexp) ExecuteString(s string) (a []int) { - return re.doExecute(s, nil, 0) -} - - -// Execute matches the Regexp against the byte slice b. -// The return value is an array of integers, in pairs, identifying the positions of -// subslices matched by the expression. -// b[a[0]:a[1]] is the subslice matched by the entire expression. -// b[a[2*i]:a[2*i+1]] for i > 0 is the subslice matched by the ith parenthesized subexpression. -// A negative value means the subexpression did not match any element of the slice. -// An empty array means "no match". -func (re *Regexp) Execute(b []byte) (a []int) { return re.doExecute("", b, 0) } - - -// MatchString returns whether the Regexp matches the string s. -// The return value is a boolean: true for match, false for no match. -func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(s, nil, 0)) > 0 } - - -// Match returns whether the Regexp matches the byte slice b. -// The return value is a boolean: true for match, false for no match. -func (re *Regexp) Match(b []byte) bool { return len(re.doExecute("", b, 0)) > 0 } - - -// MatchStrings matches the Regexp against the string s. -// The return value is an array of strings matched by the expression. -// a[0] is the substring matched by the entire expression. -// a[i] for i > 0 is the substring matched by the ith parenthesized subexpression. -// An empty array means ``no match''. -func (re *Regexp) MatchStrings(s string) (a []string) { - r := re.doExecute(s, nil, 0) - if r == nil { - return nil - } - a = make([]string, len(r)/2) - for i := 0; i < len(r); i += 2 { - if r[i] != -1 { // -1 means no match for this subexpression - a[i/2] = s[r[i]:r[i+1]] - } - } - return -} - -// MatchSlices matches the Regexp against the byte slice b. -// The return value is an array of subslices matched by the expression. -// a[0] is the subslice matched by the entire expression. -// a[i] for i > 0 is the subslice matched by the ith parenthesized subexpression. -// An empty array means ``no match''. -func (re *Regexp) MatchSlices(b []byte) (a [][]byte) { - r := re.doExecute("", b, 0) - if r == nil { - return nil - } - a = make([][]byte, len(r)/2) - for i := 0; i < len(r); i += 2 { - if r[i] != -1 { // -1 means no match for this subexpression - a[i/2] = b[r[i]:r[i+1]] - } - } - return -} - -// MatchString checks whether a textual regular expression -// matches a string. More complicated queries need -// to use Compile and the full Regexp interface. -func MatchString(pattern string, s string) (matched bool, error string) { - re, err := CompileRegexp(pattern) - if err != "" { - return false, err - } - return re.MatchString(s), "" -} - -// Match checks whether a textual regular expression -// matches a byte slice. More complicated queries need -// to use Compile and the full Regexp interface. -func Match(pattern string, b []byte) (matched bool, error string) { - re, err := CompileRegexp(pattern) - if err != "" { - return false, err - } - return re.Match(b), "" -} |