diff options
author | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
---|---|---|
committer | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
commit | f154da9e12608589e8d5f0508f908a0c3e88a1bb (patch) | |
tree | f8255d51e10c6f1e0ed69702200b966c9556a431 /src/pkg/time/time.go | |
parent | 8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff) | |
download | golang-upstream/1.4.tar.gz |
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/pkg/time/time.go')
-rw-r--r-- | src/pkg/time/time.go | 1206 |
1 files changed, 0 insertions, 1206 deletions
diff --git a/src/pkg/time/time.go b/src/pkg/time/time.go deleted file mode 100644 index 0a2b09142..000000000 --- a/src/pkg/time/time.go +++ /dev/null @@ -1,1206 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package time provides functionality for measuring and displaying time. -// -// The calendrical calculations always assume a Gregorian calendar. -package time - -import "errors" - -// A Time represents an instant in time with nanosecond precision. -// -// Programs using times should typically store and pass them as values, -// not pointers. That is, time variables and struct fields should be of -// type time.Time, not *time.Time. A Time value can be used by -// multiple goroutines simultaneously. -// -// Time instants can be compared using the Before, After, and Equal methods. -// The Sub method subtracts two instants, producing a Duration. -// The Add method adds a Time and a Duration, producing a Time. -// -// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. -// As this time is unlikely to come up in practice, the IsZero method gives -// a simple way of detecting a time that has not been initialized explicitly. -// -// Each Time has associated with it a Location, consulted when computing the -// presentation form of the time, such as in the Format, Hour, and Year methods. -// The methods Local, UTC, and In return a Time with a specific location. -// Changing the location in this way changes only the presentation; it does not -// change the instant in time being denoted and therefore does not affect the -// computations described in earlier paragraphs. -// -type Time struct { - // sec gives the number of seconds elapsed since - // January 1, year 1 00:00:00 UTC. - sec int64 - - // nsec specifies a non-negative nanosecond - // offset within the second named by Seconds. - // It must be in the range [0, 999999999]. - // - // It is declared as uintptr instead of int32 or uint32 - // to avoid garbage collector aliasing in the case where - // on a 64-bit system the int32 or uint32 field is written - // over the low half of a pointer, creating another pointer. - // TODO(rsc): When the garbage collector is completely - // precise, change back to int32. - nsec uintptr - - // loc specifies the Location that should be used to - // determine the minute, hour, month, day, and year - // that correspond to this Time. - // Only the zero Time has a nil Location. - // In that case it is interpreted to mean UTC. - loc *Location -} - -// After reports whether the time instant t is after u. -func (t Time) After(u Time) bool { - return t.sec > u.sec || t.sec == u.sec && t.nsec > u.nsec -} - -// Before reports whether the time instant t is before u. -func (t Time) Before(u Time) bool { - return t.sec < u.sec || t.sec == u.sec && t.nsec < u.nsec -} - -// Equal reports whether t and u represent the same time instant. -// Two times can be equal even if they are in different locations. -// For example, 6:00 +0200 CEST and 4:00 UTC are Equal. -// This comparison is different from using t == u, which also compares -// the locations. -func (t Time) Equal(u Time) bool { - return t.sec == u.sec && t.nsec == u.nsec -} - -// A Month specifies a month of the year (January = 1, ...). -type Month int - -const ( - January Month = 1 + iota - February - March - April - May - June - July - August - September - October - November - December -) - -var months = [...]string{ - "January", - "February", - "March", - "April", - "May", - "June", - "July", - "August", - "September", - "October", - "November", - "December", -} - -// String returns the English name of the month ("January", "February", ...). -func (m Month) String() string { return months[m-1] } - -// A Weekday specifies a day of the week (Sunday = 0, ...). -type Weekday int - -const ( - Sunday Weekday = iota - Monday - Tuesday - Wednesday - Thursday - Friday - Saturday -) - -var days = [...]string{ - "Sunday", - "Monday", - "Tuesday", - "Wednesday", - "Thursday", - "Friday", - "Saturday", -} - -// String returns the English name of the day ("Sunday", "Monday", ...). -func (d Weekday) String() string { return days[d] } - -// Computations on time. -// -// The zero value for a Time is defined to be -// January 1, year 1, 00:00:00.000000000 UTC -// which (1) looks like a zero, or as close as you can get in a date -// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to -// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a -// non-negative year even in time zones west of UTC, unlike 1-1-0 -// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. -// -// The zero Time value does not force a specific epoch for the time -// representation. For example, to use the Unix epoch internally, we -// could define that to distinguish a zero value from Jan 1 1970, that -// time would be represented by sec=-1, nsec=1e9. However, it does -// suggest a representation, namely using 1-1-1 00:00:00 UTC as the -// epoch, and that's what we do. -// -// The Add and Sub computations are oblivious to the choice of epoch. -// -// The presentation computations - year, month, minute, and so on - all -// rely heavily on division and modulus by positive constants. For -// calendrical calculations we want these divisions to round down, even -// for negative values, so that the remainder is always positive, but -// Go's division (like most hardware division instructions) rounds to -// zero. We can still do those computations and then adjust the result -// for a negative numerator, but it's annoying to write the adjustment -// over and over. Instead, we can change to a different epoch so long -// ago that all the times we care about will be positive, and then round -// to zero and round down coincide. These presentation routines already -// have to add the zone offset, so adding the translation to the -// alternate epoch is cheap. For example, having a non-negative time t -// means that we can write -// -// sec = t % 60 -// -// instead of -// -// sec = t % 60 -// if sec < 0 { -// sec += 60 -// } -// -// everywhere. -// -// The calendar runs on an exact 400 year cycle: a 400-year calendar -// printed for 1970-2469 will apply as well to 2470-2869. Even the days -// of the week match up. It simplifies the computations to choose the -// cycle boundaries so that the exceptional years are always delayed as -// long as possible. That means choosing a year equal to 1 mod 400, so -// that the first leap year is the 4th year, the first missed leap year -// is the 100th year, and the missed missed leap year is the 400th year. -// So we'd prefer instead to print a calendar for 2001-2400 and reuse it -// for 2401-2800. -// -// Finally, it's convenient if the delta between the Unix epoch and -// long-ago epoch is representable by an int64 constant. -// -// These three considerations—choose an epoch as early as possible, that -// uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds -// earlier than 1970—bring us to the year -292277022399. We refer to -// this year as the absolute zero year, and to times measured as a uint64 -// seconds since this year as absolute times. -// -// Times measured as an int64 seconds since the year 1—the representation -// used for Time's sec field—are called internal times. -// -// Times measured as an int64 seconds since the year 1970 are called Unix -// times. -// -// It is tempting to just use the year 1 as the absolute epoch, defining -// that the routines are only valid for years >= 1. However, the -// routines would then be invalid when displaying the epoch in time zones -// west of UTC, since it is year 0. It doesn't seem tenable to say that -// printing the zero time correctly isn't supported in half the time -// zones. By comparison, it's reasonable to mishandle some times in -// the year -292277022399. -// -// All this is opaque to clients of the API and can be changed if a -// better implementation presents itself. - -const ( - // The unsigned zero year for internal calculations. - // Must be 1 mod 400, and times before it will not compute correctly, - // but otherwise can be changed at will. - absoluteZeroYear = -292277022399 - - // The year of the zero Time. - // Assumed by the unixToInternal computation below. - internalYear = 1 - - // The year of the zero Unix time. - unixYear = 1970 - - // Offsets to convert between internal and absolute or Unix times. - absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay - internalToAbsolute = -absoluteToInternal - - unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay - internalToUnix int64 = -unixToInternal -) - -// IsZero reports whether t represents the zero time instant, -// January 1, year 1, 00:00:00 UTC. -func (t Time) IsZero() bool { - return t.sec == 0 && t.nsec == 0 -} - -// abs returns the time t as an absolute time, adjusted by the zone offset. -// It is called when computing a presentation property like Month or Hour. -func (t Time) abs() uint64 { - l := t.loc - // Avoid function calls when possible. - if l == nil || l == &localLoc { - l = l.get() - } - sec := t.sec + internalToUnix - if l != &utcLoc { - if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { - sec += int64(l.cacheZone.offset) - } else { - _, offset, _, _, _ := l.lookup(sec) - sec += int64(offset) - } - } - return uint64(sec + (unixToInternal + internalToAbsolute)) -} - -// locabs is a combination of the Zone and abs methods, -// extracting both return values from a single zone lookup. -func (t Time) locabs() (name string, offset int, abs uint64) { - l := t.loc - if l == nil || l == &localLoc { - l = l.get() - } - // Avoid function call if we hit the local time cache. - sec := t.sec + internalToUnix - if l != &utcLoc { - if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { - name = l.cacheZone.name - offset = l.cacheZone.offset - } else { - name, offset, _, _, _ = l.lookup(sec) - } - sec += int64(offset) - } else { - name = "UTC" - } - abs = uint64(sec + (unixToInternal + internalToAbsolute)) - return -} - -// Date returns the year, month, and day in which t occurs. -func (t Time) Date() (year int, month Month, day int) { - year, month, day, _ = t.date(true) - return -} - -// Year returns the year in which t occurs. -func (t Time) Year() int { - year, _, _, _ := t.date(false) - return year -} - -// Month returns the month of the year specified by t. -func (t Time) Month() Month { - _, month, _, _ := t.date(true) - return month -} - -// Day returns the day of the month specified by t. -func (t Time) Day() int { - _, _, day, _ := t.date(true) - return day -} - -// Weekday returns the day of the week specified by t. -func (t Time) Weekday() Weekday { - return absWeekday(t.abs()) -} - -// absWeekday is like Weekday but operates on an absolute time. -func absWeekday(abs uint64) Weekday { - // January 1 of the absolute year, like January 1 of 2001, was a Monday. - sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek - return Weekday(int(sec) / secondsPerDay) -} - -// ISOWeek returns the ISO 8601 year and week number in which t occurs. -// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to -// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 -// of year n+1. -func (t Time) ISOWeek() (year, week int) { - year, month, day, yday := t.date(true) - wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0. - const ( - Mon int = iota - Tue - Wed - Thu - Fri - Sat - Sun - ) - - // Calculate week as number of Mondays in year up to - // and including today, plus 1 because the first week is week 0. - // Putting the + 1 inside the numerator as a + 7 keeps the - // numerator from being negative, which would cause it to - // round incorrectly. - week = (yday - wday + 7) / 7 - - // The week number is now correct under the assumption - // that the first Monday of the year is in week 1. - // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday - // is actually in week 2. - jan1wday := (wday - yday + 7*53) % 7 - if Tue <= jan1wday && jan1wday <= Thu { - week++ - } - - // If the week number is still 0, we're in early January but in - // the last week of last year. - if week == 0 { - year-- - week = 52 - // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday, - // meaning Jan 1 of the next year is a Friday - // or it was a leap year and Jan 1 of the next year is a Saturday. - if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) { - week++ - } - } - - // December 29 to 31 are in week 1 of next year if - // they are after the last Thursday of the year and - // December 31 is a Monday, Tuesday, or Wednesday. - if month == December && day >= 29 && wday < Thu { - if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed { - year++ - week = 1 - } - } - - return -} - -// Clock returns the hour, minute, and second within the day specified by t. -func (t Time) Clock() (hour, min, sec int) { - return absClock(t.abs()) -} - -// absClock is like clock but operates on an absolute time. -func absClock(abs uint64) (hour, min, sec int) { - sec = int(abs % secondsPerDay) - hour = sec / secondsPerHour - sec -= hour * secondsPerHour - min = sec / secondsPerMinute - sec -= min * secondsPerMinute - return -} - -// Hour returns the hour within the day specified by t, in the range [0, 23]. -func (t Time) Hour() int { - return int(t.abs()%secondsPerDay) / secondsPerHour -} - -// Minute returns the minute offset within the hour specified by t, in the range [0, 59]. -func (t Time) Minute() int { - return int(t.abs()%secondsPerHour) / secondsPerMinute -} - -// Second returns the second offset within the minute specified by t, in the range [0, 59]. -func (t Time) Second() int { - return int(t.abs() % secondsPerMinute) -} - -// Nanosecond returns the nanosecond offset within the second specified by t, -// in the range [0, 999999999]. -func (t Time) Nanosecond() int { - return int(t.nsec) -} - -// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, -// and [1,366] in leap years. -func (t Time) YearDay() int { - _, _, _, yday := t.date(false) - return yday + 1 -} - -// A Duration represents the elapsed time between two instants -// as an int64 nanosecond count. The representation limits the -// largest representable duration to approximately 290 years. -type Duration int64 - -const ( - minDuration Duration = -1 << 63 - maxDuration Duration = 1<<63 - 1 -) - -// Common durations. There is no definition for units of Day or larger -// to avoid confusion across daylight savings time zone transitions. -// -// To count the number of units in a Duration, divide: -// second := time.Second -// fmt.Print(int64(second/time.Millisecond)) // prints 1000 -// -// To convert an integer number of units to a Duration, multiply: -// seconds := 10 -// fmt.Print(time.Duration(seconds)*time.Second) // prints 10s -// -const ( - Nanosecond Duration = 1 - Microsecond = 1000 * Nanosecond - Millisecond = 1000 * Microsecond - Second = 1000 * Millisecond - Minute = 60 * Second - Hour = 60 * Minute -) - -// String returns a string representing the duration in the form "72h3m0.5s". -// Leading zero units are omitted. As a special case, durations less than one -// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure -// that the leading digit is non-zero. The zero duration formats as 0, -// with no unit. -func (d Duration) String() string { - // Largest time is 2540400h10m10.000000000s - var buf [32]byte - w := len(buf) - - u := uint64(d) - neg := d < 0 - if neg { - u = -u - } - - if u < uint64(Second) { - // Special case: if duration is smaller than a second, - // use smaller units, like 1.2ms - var ( - prec int - unit byte - ) - switch { - case u == 0: - return "0" - case u < uint64(Microsecond): - // print nanoseconds - prec = 0 - unit = 'n' - case u < uint64(Millisecond): - // print microseconds - prec = 3 - unit = 'u' - default: - // print milliseconds - prec = 6 - unit = 'm' - } - w -= 2 - buf[w] = unit - buf[w+1] = 's' - w, u = fmtFrac(buf[:w], u, prec) - w = fmtInt(buf[:w], u) - } else { - w-- - buf[w] = 's' - - w, u = fmtFrac(buf[:w], u, 9) - - // u is now integer seconds - w = fmtInt(buf[:w], u%60) - u /= 60 - - // u is now integer minutes - if u > 0 { - w-- - buf[w] = 'm' - w = fmtInt(buf[:w], u%60) - u /= 60 - - // u is now integer hours - // Stop at hours because days can be different lengths. - if u > 0 { - w-- - buf[w] = 'h' - w = fmtInt(buf[:w], u) - } - } - } - - if neg { - w-- - buf[w] = '-' - } - - return string(buf[w:]) -} - -// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the -// tail of buf, omitting trailing zeros. it omits the decimal -// point too when the fraction is 0. It returns the index where the -// output bytes begin and the value v/10**prec. -func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { - // Omit trailing zeros up to and including decimal point. - w := len(buf) - print := false - for i := 0; i < prec; i++ { - digit := v % 10 - print = print || digit != 0 - if print { - w-- - buf[w] = byte(digit) + '0' - } - v /= 10 - } - if print { - w-- - buf[w] = '.' - } - return w, v -} - -// fmtInt formats v into the tail of buf. -// It returns the index where the output begins. -func fmtInt(buf []byte, v uint64) int { - w := len(buf) - if v == 0 { - w-- - buf[w] = '0' - } else { - for v > 0 { - w-- - buf[w] = byte(v%10) + '0' - v /= 10 - } - } - return w -} - -// Nanoseconds returns the duration as an integer nanosecond count. -func (d Duration) Nanoseconds() int64 { return int64(d) } - -// These methods return float64 because the dominant -// use case is for printing a floating point number like 1.5s, and -// a truncation to integer would make them not useful in those cases. -// Splitting the integer and fraction ourselves guarantees that -// converting the returned float64 to an integer rounds the same -// way that a pure integer conversion would have, even in cases -// where, say, float64(d.Nanoseconds())/1e9 would have rounded -// differently. - -// Seconds returns the duration as a floating point number of seconds. -func (d Duration) Seconds() float64 { - sec := d / Second - nsec := d % Second - return float64(sec) + float64(nsec)*1e-9 -} - -// Minutes returns the duration as a floating point number of minutes. -func (d Duration) Minutes() float64 { - min := d / Minute - nsec := d % Minute - return float64(min) + float64(nsec)*(1e-9/60) -} - -// Hours returns the duration as a floating point number of hours. -func (d Duration) Hours() float64 { - hour := d / Hour - nsec := d % Hour - return float64(hour) + float64(nsec)*(1e-9/60/60) -} - -// Add returns the time t+d. -func (t Time) Add(d Duration) Time { - t.sec += int64(d / 1e9) - nsec := int32(t.nsec) + int32(d%1e9) - if nsec >= 1e9 { - t.sec++ - nsec -= 1e9 - } else if nsec < 0 { - t.sec-- - nsec += 1e9 - } - t.nsec = uintptr(nsec) - return t -} - -// Sub returns the duration t-u. If the result exceeds the maximum (or minimum) -// value that can be stored in a Duration, the maximum (or minimum) duration -// will be returned. -// To compute t-d for a duration d, use t.Add(-d). -func (t Time) Sub(u Time) Duration { - d := Duration(t.sec-u.sec)*Second + Duration(int32(t.nsec)-int32(u.nsec)) - // Check for overflow or underflow. - switch { - case u.Add(d).Equal(t): - return d // d is correct - case t.Before(u): - return minDuration // t - u is negative out of range - default: - return maxDuration // t - u is positive out of range - } -} - -// Since returns the time elapsed since t. -// It is shorthand for time.Now().Sub(t). -func Since(t Time) Duration { - return Now().Sub(t) -} - -// AddDate returns the time corresponding to adding the -// given number of years, months, and days to t. -// For example, AddDate(-1, 2, 3) applied to January 1, 2011 -// returns March 4, 2010. -// -// AddDate normalizes its result in the same way that Date does, -// so, for example, adding one month to October 31 yields -// December 1, the normalized form for November 31. -func (t Time) AddDate(years int, months int, days int) Time { - year, month, day := t.Date() - hour, min, sec := t.Clock() - return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec), t.loc) -} - -const ( - secondsPerMinute = 60 - secondsPerHour = 60 * 60 - secondsPerDay = 24 * secondsPerHour - secondsPerWeek = 7 * secondsPerDay - daysPer400Years = 365*400 + 97 - daysPer100Years = 365*100 + 24 - daysPer4Years = 365*4 + 1 -) - -// date computes the year, day of year, and when full=true, -// the month and day in which t occurs. -func (t Time) date(full bool) (year int, month Month, day int, yday int) { - return absDate(t.abs(), full) -} - -// absDate is like date but operates on an absolute time. -func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) { - // Split into time and day. - d := abs / secondsPerDay - - // Account for 400 year cycles. - n := d / daysPer400Years - y := 400 * n - d -= daysPer400Years * n - - // Cut off 100-year cycles. - // The last cycle has one extra leap year, so on the last day - // of that year, day / daysPer100Years will be 4 instead of 3. - // Cut it back down to 3 by subtracting n>>2. - n = d / daysPer100Years - n -= n >> 2 - y += 100 * n - d -= daysPer100Years * n - - // Cut off 4-year cycles. - // The last cycle has a missing leap year, which does not - // affect the computation. - n = d / daysPer4Years - y += 4 * n - d -= daysPer4Years * n - - // Cut off years within a 4-year cycle. - // The last year is a leap year, so on the last day of that year, - // day / 365 will be 4 instead of 3. Cut it back down to 3 - // by subtracting n>>2. - n = d / 365 - n -= n >> 2 - y += n - d -= 365 * n - - year = int(int64(y) + absoluteZeroYear) - yday = int(d) - - if !full { - return - } - - day = yday - if isLeap(year) { - // Leap year - switch { - case day > 31+29-1: - // After leap day; pretend it wasn't there. - day-- - case day == 31+29-1: - // Leap day. - month = February - day = 29 - return - } - } - - // Estimate month on assumption that every month has 31 days. - // The estimate may be too low by at most one month, so adjust. - month = Month(day / 31) - end := int(daysBefore[month+1]) - var begin int - if day >= end { - month++ - begin = end - } else { - begin = int(daysBefore[month]) - } - - month++ // because January is 1 - day = day - begin + 1 - return -} - -// daysBefore[m] counts the number of days in a non-leap year -// before month m begins. There is an entry for m=12, counting -// the number of days before January of next year (365). -var daysBefore = [...]int32{ - 0, - 31, - 31 + 28, - 31 + 28 + 31, - 31 + 28 + 31 + 30, - 31 + 28 + 31 + 30 + 31, - 31 + 28 + 31 + 30 + 31 + 30, - 31 + 28 + 31 + 30 + 31 + 30 + 31, - 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, - 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, - 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, - 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, - 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, -} - -func daysIn(m Month, year int) int { - if m == February && isLeap(year) { - return 29 - } - return int(daysBefore[m] - daysBefore[m-1]) -} - -// Provided by package runtime. -func now() (sec int64, nsec int32) - -// Now returns the current local time. -func Now() Time { - sec, nsec := now() - return Time{sec + unixToInternal, uintptr(nsec), Local} -} - -// UTC returns t with the location set to UTC. -func (t Time) UTC() Time { - t.loc = UTC - return t -} - -// Local returns t with the location set to local time. -func (t Time) Local() Time { - t.loc = Local - return t -} - -// In returns t with the location information set to loc. -// -// In panics if loc is nil. -func (t Time) In(loc *Location) Time { - if loc == nil { - panic("time: missing Location in call to Time.In") - } - t.loc = loc - return t -} - -// Location returns the time zone information associated with t. -func (t Time) Location() *Location { - l := t.loc - if l == nil { - l = UTC - } - return l -} - -// Zone computes the time zone in effect at time t, returning the abbreviated -// name of the zone (such as "CET") and its offset in seconds east of UTC. -func (t Time) Zone() (name string, offset int) { - name, offset, _, _, _ = t.loc.lookup(t.sec + internalToUnix) - return -} - -// Unix returns t as a Unix time, the number of seconds elapsed -// since January 1, 1970 UTC. -func (t Time) Unix() int64 { - return t.sec + internalToUnix -} - -// UnixNano returns t as a Unix time, the number of nanoseconds elapsed -// since January 1, 1970 UTC. The result is undefined if the Unix time -// in nanoseconds cannot be represented by an int64. Note that this -// means the result of calling UnixNano on the zero Time is undefined. -func (t Time) UnixNano() int64 { - return (t.sec+internalToUnix)*1e9 + int64(t.nsec) -} - -const timeBinaryVersion byte = 1 - -// MarshalBinary implements the encoding.BinaryMarshaler interface. -func (t Time) MarshalBinary() ([]byte, error) { - var offsetMin int16 // minutes east of UTC. -1 is UTC. - - if t.Location() == &utcLoc { - offsetMin = -1 - } else { - _, offset := t.Zone() - if offset%60 != 0 { - return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute") - } - offset /= 60 - if offset < -32768 || offset == -1 || offset > 32767 { - return nil, errors.New("Time.MarshalBinary: unexpected zone offset") - } - offsetMin = int16(offset) - } - - enc := []byte{ - timeBinaryVersion, // byte 0 : version - byte(t.sec >> 56), // bytes 1-8: seconds - byte(t.sec >> 48), - byte(t.sec >> 40), - byte(t.sec >> 32), - byte(t.sec >> 24), - byte(t.sec >> 16), - byte(t.sec >> 8), - byte(t.sec), - byte(t.nsec >> 24), // bytes 9-12: nanoseconds - byte(t.nsec >> 16), - byte(t.nsec >> 8), - byte(t.nsec), - byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes - byte(offsetMin), - } - - return enc, nil -} - -// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. -func (t *Time) UnmarshalBinary(data []byte) error { - buf := data - if len(buf) == 0 { - return errors.New("Time.UnmarshalBinary: no data") - } - - if buf[0] != timeBinaryVersion { - return errors.New("Time.UnmarshalBinary: unsupported version") - } - - if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 { - return errors.New("Time.UnmarshalBinary: invalid length") - } - - buf = buf[1:] - t.sec = int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | - int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 - - buf = buf[8:] - t.nsec = uintptr(int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24) - - buf = buf[4:] - offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 - - if offset == -1*60 { - t.loc = &utcLoc - } else if _, localoff, _, _, _ := Local.lookup(t.sec + internalToUnix); offset == localoff { - t.loc = Local - } else { - t.loc = FixedZone("", offset) - } - - return nil -} - -// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. -// The same semantics will be provided by the generic MarshalBinary, MarshalText, -// UnmarshalBinary, UnmarshalText. - -// GobEncode implements the gob.GobEncoder interface. -func (t Time) GobEncode() ([]byte, error) { - return t.MarshalBinary() -} - -// GobDecode implements the gob.GobDecoder interface. -func (t *Time) GobDecode(data []byte) error { - return t.UnmarshalBinary(data) -} - -// MarshalJSON implements the json.Marshaler interface. -// The time is a quoted string in RFC 3339 format, with sub-second precision added if present. -func (t Time) MarshalJSON() ([]byte, error) { - if y := t.Year(); y < 0 || y >= 10000 { - // RFC 3339 is clear that years are 4 digits exactly. - // See golang.org/issue/4556#c15 for more discussion. - return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]") - } - return []byte(t.Format(`"` + RFC3339Nano + `"`)), nil -} - -// UnmarshalJSON implements the json.Unmarshaler interface. -// The time is expected to be a quoted string in RFC 3339 format. -func (t *Time) UnmarshalJSON(data []byte) (err error) { - // Fractional seconds are handled implicitly by Parse. - *t, err = Parse(`"`+RFC3339+`"`, string(data)) - return -} - -// MarshalText implements the encoding.TextMarshaler interface. -// The time is formatted in RFC 3339 format, with sub-second precision added if present. -func (t Time) MarshalText() ([]byte, error) { - if y := t.Year(); y < 0 || y >= 10000 { - return nil, errors.New("Time.MarshalText: year outside of range [0,9999]") - } - return []byte(t.Format(RFC3339Nano)), nil -} - -// UnmarshalText implements the encoding.TextUnmarshaler interface. -// The time is expected to be in RFC 3339 format. -func (t *Time) UnmarshalText(data []byte) (err error) { - // Fractional seconds are handled implicitly by Parse. - *t, err = Parse(RFC3339, string(data)) - return -} - -// Unix returns the local Time corresponding to the given Unix time, -// sec seconds and nsec nanoseconds since January 1, 1970 UTC. -// It is valid to pass nsec outside the range [0, 999999999]. -func Unix(sec int64, nsec int64) Time { - if nsec < 0 || nsec >= 1e9 { - n := nsec / 1e9 - sec += n - nsec -= n * 1e9 - if nsec < 0 { - nsec += 1e9 - sec-- - } - } - return Time{sec + unixToInternal, uintptr(nsec), Local} -} - -func isLeap(year int) bool { - return year%4 == 0 && (year%100 != 0 || year%400 == 0) -} - -// norm returns nhi, nlo such that -// hi * base + lo == nhi * base + nlo -// 0 <= nlo < base -func norm(hi, lo, base int) (nhi, nlo int) { - if lo < 0 { - n := (-lo-1)/base + 1 - hi -= n - lo += n * base - } - if lo >= base { - n := lo / base - hi += n - lo -= n * base - } - return hi, lo -} - -// Date returns the Time corresponding to -// yyyy-mm-dd hh:mm:ss + nsec nanoseconds -// in the appropriate zone for that time in the given location. -// -// The month, day, hour, min, sec, and nsec values may be outside -// their usual ranges and will be normalized during the conversion. -// For example, October 32 converts to November 1. -// -// A daylight savings time transition skips or repeats times. -// For example, in the United States, March 13, 2011 2:15am never occurred, -// while November 6, 2011 1:15am occurred twice. In such cases, the -// choice of time zone, and therefore the time, is not well-defined. -// Date returns a time that is correct in one of the two zones involved -// in the transition, but it does not guarantee which. -// -// Date panics if loc is nil. -func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { - if loc == nil { - panic("time: missing Location in call to Date") - } - - // Normalize month, overflowing into year. - m := int(month) - 1 - year, m = norm(year, m, 12) - month = Month(m) + 1 - - // Normalize nsec, sec, min, hour, overflowing into day. - sec, nsec = norm(sec, nsec, 1e9) - min, sec = norm(min, sec, 60) - hour, min = norm(hour, min, 60) - day, hour = norm(day, hour, 24) - - y := uint64(int64(year) - absoluteZeroYear) - - // Compute days since the absolute epoch. - - // Add in days from 400-year cycles. - n := y / 400 - y -= 400 * n - d := daysPer400Years * n - - // Add in 100-year cycles. - n = y / 100 - y -= 100 * n - d += daysPer100Years * n - - // Add in 4-year cycles. - n = y / 4 - y -= 4 * n - d += daysPer4Years * n - - // Add in non-leap years. - n = y - d += 365 * n - - // Add in days before this month. - d += uint64(daysBefore[month-1]) - if isLeap(year) && month >= March { - d++ // February 29 - } - - // Add in days before today. - d += uint64(day - 1) - - // Add in time elapsed today. - abs := d * secondsPerDay - abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec) - - unix := int64(abs) + (absoluteToInternal + internalToUnix) - - // Look for zone offset for t, so we can adjust to UTC. - // The lookup function expects UTC, so we pass t in the - // hope that it will not be too close to a zone transition, - // and then adjust if it is. - _, offset, _, start, end := loc.lookup(unix) - if offset != 0 { - switch utc := unix - int64(offset); { - case utc < start: - _, offset, _, _, _ = loc.lookup(start - 1) - case utc >= end: - _, offset, _, _, _ = loc.lookup(end) - } - unix -= int64(offset) - } - - return Time{unix + unixToInternal, uintptr(nsec), loc} -} - -// Truncate returns the result of rounding t down to a multiple of d (since the zero time). -// If d <= 0, Truncate returns t unchanged. -func (t Time) Truncate(d Duration) Time { - if d <= 0 { - return t - } - _, r := div(t, d) - return t.Add(-r) -} - -// Round returns the result of rounding t to the nearest multiple of d (since the zero time). -// The rounding behavior for halfway values is to round up. -// If d <= 0, Round returns t unchanged. -func (t Time) Round(d Duration) Time { - if d <= 0 { - return t - } - _, r := div(t, d) - if r+r < d { - return t.Add(-r) - } - return t.Add(d - r) -} - -// div divides t by d and returns the quotient parity and remainder. -// We don't use the quotient parity anymore (round half up instead of round to even) -// but it's still here in case we change our minds. -func div(t Time, d Duration) (qmod2 int, r Duration) { - neg := false - nsec := int32(t.nsec) - if t.sec < 0 { - // Operate on absolute value. - neg = true - t.sec = -t.sec - nsec = -nsec - if nsec < 0 { - nsec += 1e9 - t.sec-- // t.sec >= 1 before the -- so safe - } - } - - switch { - // Special case: 2d divides 1 second. - case d < Second && Second%(d+d) == 0: - qmod2 = int(nsec/int32(d)) & 1 - r = Duration(nsec % int32(d)) - - // Special case: d is a multiple of 1 second. - case d%Second == 0: - d1 := int64(d / Second) - qmod2 = int(t.sec/d1) & 1 - r = Duration(t.sec%d1)*Second + Duration(nsec) - - // General case. - // This could be faster if more cleverness were applied, - // but it's really only here to avoid special case restrictions in the API. - // No one will care about these cases. - default: - // Compute nanoseconds as 128-bit number. - sec := uint64(t.sec) - tmp := (sec >> 32) * 1e9 - u1 := tmp >> 32 - u0 := tmp << 32 - tmp = uint64(sec&0xFFFFFFFF) * 1e9 - u0x, u0 := u0, u0+tmp - if u0 < u0x { - u1++ - } - u0x, u0 = u0, u0+uint64(nsec) - if u0 < u0x { - u1++ - } - - // Compute remainder by subtracting r<<k for decreasing k. - // Quotient parity is whether we subtract on last round. - d1 := uint64(d) - for d1>>63 != 1 { - d1 <<= 1 - } - d0 := uint64(0) - for { - qmod2 = 0 - if u1 > d1 || u1 == d1 && u0 >= d0 { - // subtract - qmod2 = 1 - u0x, u0 = u0, u0-d0 - if u0 > u0x { - u1-- - } - u1 -= d1 - } - if d1 == 0 && d0 == uint64(d) { - break - } - d0 >>= 1 - d0 |= (d1 & 1) << 63 - d1 >>= 1 - } - r = Duration(u0) - } - - if neg && r != 0 { - // If input was negative and not an exact multiple of d, we computed q, r such that - // q*d + r = -t - // But the right answers are given by -(q-1), d-r: - // q*d + r = -t - // -q*d - r = t - // -(q-1)*d + (d - r) = t - qmod2 ^= 1 - r = d - r - } - return -} |