diff options
author | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
---|---|---|
committer | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
commit | f154da9e12608589e8d5f0508f908a0c3e88a1bb (patch) | |
tree | f8255d51e10c6f1e0ed69702200b966c9556a431 /src/strconv/atof.go | |
parent | 8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff) | |
download | golang-upstream/1.4.tar.gz |
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/strconv/atof.go')
-rw-r--r-- | src/strconv/atof.go | 540 |
1 files changed, 540 insertions, 0 deletions
diff --git a/src/strconv/atof.go b/src/strconv/atof.go new file mode 100644 index 000000000..286206481 --- /dev/null +++ b/src/strconv/atof.go @@ -0,0 +1,540 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package strconv implements conversions to and from string representations +// of basic data types. +package strconv + +// decimal to binary floating point conversion. +// Algorithm: +// 1) Store input in multiprecision decimal. +// 2) Multiply/divide decimal by powers of two until in range [0.5, 1) +// 3) Multiply by 2^precision and round to get mantissa. + +import "math" + +var optimize = true // can change for testing + +func equalIgnoreCase(s1, s2 string) bool { + if len(s1) != len(s2) { + return false + } + for i := 0; i < len(s1); i++ { + c1 := s1[i] + if 'A' <= c1 && c1 <= 'Z' { + c1 += 'a' - 'A' + } + c2 := s2[i] + if 'A' <= c2 && c2 <= 'Z' { + c2 += 'a' - 'A' + } + if c1 != c2 { + return false + } + } + return true +} + +func special(s string) (f float64, ok bool) { + if len(s) == 0 { + return + } + switch s[0] { + default: + return + case '+': + if equalIgnoreCase(s, "+inf") || equalIgnoreCase(s, "+infinity") { + return math.Inf(1), true + } + case '-': + if equalIgnoreCase(s, "-inf") || equalIgnoreCase(s, "-infinity") { + return math.Inf(-1), true + } + case 'n', 'N': + if equalIgnoreCase(s, "nan") { + return math.NaN(), true + } + case 'i', 'I': + if equalIgnoreCase(s, "inf") || equalIgnoreCase(s, "infinity") { + return math.Inf(1), true + } + } + return +} + +func (b *decimal) set(s string) (ok bool) { + i := 0 + b.neg = false + b.trunc = false + + // optional sign + if i >= len(s) { + return + } + switch { + case s[i] == '+': + i++ + case s[i] == '-': + b.neg = true + i++ + } + + // digits + sawdot := false + sawdigits := false + for ; i < len(s); i++ { + switch { + case s[i] == '.': + if sawdot { + return + } + sawdot = true + b.dp = b.nd + continue + + case '0' <= s[i] && s[i] <= '9': + sawdigits = true + if s[i] == '0' && b.nd == 0 { // ignore leading zeros + b.dp-- + continue + } + if b.nd < len(b.d) { + b.d[b.nd] = s[i] + b.nd++ + } else if s[i] != '0' { + b.trunc = true + } + continue + } + break + } + if !sawdigits { + return + } + if !sawdot { + b.dp = b.nd + } + + // optional exponent moves decimal point. + // if we read a very large, very long number, + // just be sure to move the decimal point by + // a lot (say, 100000). it doesn't matter if it's + // not the exact number. + if i < len(s) && (s[i] == 'e' || s[i] == 'E') { + i++ + if i >= len(s) { + return + } + esign := 1 + if s[i] == '+' { + i++ + } else if s[i] == '-' { + i++ + esign = -1 + } + if i >= len(s) || s[i] < '0' || s[i] > '9' { + return + } + e := 0 + for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { + if e < 10000 { + e = e*10 + int(s[i]) - '0' + } + } + b.dp += e * esign + } + + if i != len(s) { + return + } + + ok = true + return +} + +// readFloat reads a decimal mantissa and exponent from a float +// string representation. It sets ok to false if the number could +// not fit return types or is invalid. +func readFloat(s string) (mantissa uint64, exp int, neg, trunc, ok bool) { + const uint64digits = 19 + i := 0 + + // optional sign + if i >= len(s) { + return + } + switch { + case s[i] == '+': + i++ + case s[i] == '-': + neg = true + i++ + } + + // digits + sawdot := false + sawdigits := false + nd := 0 + ndMant := 0 + dp := 0 + for ; i < len(s); i++ { + switch c := s[i]; true { + case c == '.': + if sawdot { + return + } + sawdot = true + dp = nd + continue + + case '0' <= c && c <= '9': + sawdigits = true + if c == '0' && nd == 0 { // ignore leading zeros + dp-- + continue + } + nd++ + if ndMant < uint64digits { + mantissa *= 10 + mantissa += uint64(c - '0') + ndMant++ + } else if s[i] != '0' { + trunc = true + } + continue + } + break + } + if !sawdigits { + return + } + if !sawdot { + dp = nd + } + + // optional exponent moves decimal point. + // if we read a very large, very long number, + // just be sure to move the decimal point by + // a lot (say, 100000). it doesn't matter if it's + // not the exact number. + if i < len(s) && (s[i] == 'e' || s[i] == 'E') { + i++ + if i >= len(s) { + return + } + esign := 1 + if s[i] == '+' { + i++ + } else if s[i] == '-' { + i++ + esign = -1 + } + if i >= len(s) || s[i] < '0' || s[i] > '9' { + return + } + e := 0 + for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { + if e < 10000 { + e = e*10 + int(s[i]) - '0' + } + } + dp += e * esign + } + + if i != len(s) { + return + } + + exp = dp - ndMant + ok = true + return + +} + +// decimal power of ten to binary power of two. +var powtab = []int{1, 3, 6, 9, 13, 16, 19, 23, 26} + +func (d *decimal) floatBits(flt *floatInfo) (b uint64, overflow bool) { + var exp int + var mant uint64 + + // Zero is always a special case. + if d.nd == 0 { + mant = 0 + exp = flt.bias + goto out + } + + // Obvious overflow/underflow. + // These bounds are for 64-bit floats. + // Will have to change if we want to support 80-bit floats in the future. + if d.dp > 310 { + goto overflow + } + if d.dp < -330 { + // zero + mant = 0 + exp = flt.bias + goto out + } + + // Scale by powers of two until in range [0.5, 1.0) + exp = 0 + for d.dp > 0 { + var n int + if d.dp >= len(powtab) { + n = 27 + } else { + n = powtab[d.dp] + } + d.Shift(-n) + exp += n + } + for d.dp < 0 || d.dp == 0 && d.d[0] < '5' { + var n int + if -d.dp >= len(powtab) { + n = 27 + } else { + n = powtab[-d.dp] + } + d.Shift(n) + exp -= n + } + + // Our range is [0.5,1) but floating point range is [1,2). + exp-- + + // Minimum representable exponent is flt.bias+1. + // If the exponent is smaller, move it up and + // adjust d accordingly. + if exp < flt.bias+1 { + n := flt.bias + 1 - exp + d.Shift(-n) + exp += n + } + + if exp-flt.bias >= 1<<flt.expbits-1 { + goto overflow + } + + // Extract 1+flt.mantbits bits. + d.Shift(int(1 + flt.mantbits)) + mant = d.RoundedInteger() + + // Rounding might have added a bit; shift down. + if mant == 2<<flt.mantbits { + mant >>= 1 + exp++ + if exp-flt.bias >= 1<<flt.expbits-1 { + goto overflow + } + } + + // Denormalized? + if mant&(1<<flt.mantbits) == 0 { + exp = flt.bias + } + goto out + +overflow: + // ±Inf + mant = 0 + exp = 1<<flt.expbits - 1 + flt.bias + overflow = true + +out: + // Assemble bits. + bits := mant & (uint64(1)<<flt.mantbits - 1) + bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits + if d.neg { + bits |= 1 << flt.mantbits << flt.expbits + } + return bits, overflow +} + +// Exact powers of 10. +var float64pow10 = []float64{ + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22, +} +var float32pow10 = []float32{1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10} + +// If possible to convert decimal representation to 64-bit float f exactly, +// entirely in floating-point math, do so, avoiding the expense of decimalToFloatBits. +// Three common cases: +// value is exact integer +// value is exact integer * exact power of ten +// value is exact integer / exact power of ten +// These all produce potentially inexact but correctly rounded answers. +func atof64exact(mantissa uint64, exp int, neg bool) (f float64, ok bool) { + if mantissa>>float64info.mantbits != 0 { + return + } + f = float64(mantissa) + if neg { + f = -f + } + switch { + case exp == 0: + // an integer. + return f, true + // Exact integers are <= 10^15. + // Exact powers of ten are <= 10^22. + case exp > 0 && exp <= 15+22: // int * 10^k + // If exponent is big but number of digits is not, + // can move a few zeros into the integer part. + if exp > 22 { + f *= float64pow10[exp-22] + exp = 22 + } + if f > 1e15 || f < -1e15 { + // the exponent was really too large. + return + } + return f * float64pow10[exp], true + case exp < 0 && exp >= -22: // int / 10^k + return f / float64pow10[-exp], true + } + return +} + +// If possible to compute mantissa*10^exp to 32-bit float f exactly, +// entirely in floating-point math, do so, avoiding the machinery above. +func atof32exact(mantissa uint64, exp int, neg bool) (f float32, ok bool) { + if mantissa>>float32info.mantbits != 0 { + return + } + f = float32(mantissa) + if neg { + f = -f + } + switch { + case exp == 0: + return f, true + // Exact integers are <= 10^7. + // Exact powers of ten are <= 10^10. + case exp > 0 && exp <= 7+10: // int * 10^k + // If exponent is big but number of digits is not, + // can move a few zeros into the integer part. + if exp > 10 { + f *= float32pow10[exp-10] + exp = 10 + } + if f > 1e7 || f < -1e7 { + // the exponent was really too large. + return + } + return f * float32pow10[exp], true + case exp < 0 && exp >= -10: // int / 10^k + return f / float32pow10[-exp], true + } + return +} + +const fnParseFloat = "ParseFloat" + +func atof32(s string) (f float32, err error) { + if val, ok := special(s); ok { + return float32(val), nil + } + + if optimize { + // Parse mantissa and exponent. + mantissa, exp, neg, trunc, ok := readFloat(s) + if ok { + // Try pure floating-point arithmetic conversion. + if !trunc { + if f, ok := atof32exact(mantissa, exp, neg); ok { + return f, nil + } + } + // Try another fast path. + ext := new(extFloat) + if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float32info); ok { + b, ovf := ext.floatBits(&float32info) + f = math.Float32frombits(uint32(b)) + if ovf { + err = rangeError(fnParseFloat, s) + } + return f, err + } + } + } + var d decimal + if !d.set(s) { + return 0, syntaxError(fnParseFloat, s) + } + b, ovf := d.floatBits(&float32info) + f = math.Float32frombits(uint32(b)) + if ovf { + err = rangeError(fnParseFloat, s) + } + return f, err +} + +func atof64(s string) (f float64, err error) { + if val, ok := special(s); ok { + return val, nil + } + + if optimize { + // Parse mantissa and exponent. + mantissa, exp, neg, trunc, ok := readFloat(s) + if ok { + // Try pure floating-point arithmetic conversion. + if !trunc { + if f, ok := atof64exact(mantissa, exp, neg); ok { + return f, nil + } + } + // Try another fast path. + ext := new(extFloat) + if ok := ext.AssignDecimal(mantissa, exp, neg, trunc, &float64info); ok { + b, ovf := ext.floatBits(&float64info) + f = math.Float64frombits(b) + if ovf { + err = rangeError(fnParseFloat, s) + } + return f, err + } + } + } + var d decimal + if !d.set(s) { + return 0, syntaxError(fnParseFloat, s) + } + b, ovf := d.floatBits(&float64info) + f = math.Float64frombits(b) + if ovf { + err = rangeError(fnParseFloat, s) + } + return f, err +} + +// ParseFloat converts the string s to a floating-point number +// with the precision specified by bitSize: 32 for float32, or 64 for float64. +// When bitSize=32, the result still has type float64, but it will be +// convertible to float32 without changing its value. +// +// If s is well-formed and near a valid floating point number, +// ParseFloat returns the nearest floating point number rounded +// using IEEE754 unbiased rounding. +// +// The errors that ParseFloat returns have concrete type *NumError +// and include err.Num = s. +// +// If s is not syntactically well-formed, ParseFloat returns err.Err = ErrSyntax. +// +// If s is syntactically well-formed but is more than 1/2 ULP +// away from the largest floating point number of the given size, +// ParseFloat returns f = ±Inf, err.Err = ErrRange. +func ParseFloat(s string, bitSize int) (f float64, err error) { + if bitSize == 32 { + f1, err1 := atof32(s) + return float64(f1), err1 + } + f1, err1 := atof64(s) + return f1, err1 +} |