diff options
author | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
---|---|---|
committer | Tianon Gravi <admwiggin@gmail.com> | 2015-01-15 11:54:00 -0700 |
commit | f154da9e12608589e8d5f0508f908a0c3e88a1bb (patch) | |
tree | f8255d51e10c6f1e0ed69702200b966c9556a431 /src/strings/strings.go | |
parent | 8d8329ed5dfb9622c82a9fbec6fd99a580f9c9f6 (diff) | |
download | golang-upstream/1.4.tar.gz |
Imported Upstream version 1.4upstream/1.4
Diffstat (limited to 'src/strings/strings.go')
-rw-r--r-- | src/strings/strings.go | 762 |
1 files changed, 762 insertions, 0 deletions
diff --git a/src/strings/strings.go b/src/strings/strings.go new file mode 100644 index 000000000..27d384983 --- /dev/null +++ b/src/strings/strings.go @@ -0,0 +1,762 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package strings implements simple functions to manipulate strings. +package strings + +import ( + "unicode" + "unicode/utf8" +) + +// explode splits s into an array of UTF-8 sequences, one per Unicode character (still strings) up to a maximum of n (n < 0 means no limit). +// Invalid UTF-8 sequences become correct encodings of U+FFF8. +func explode(s string, n int) []string { + if n == 0 { + return nil + } + l := utf8.RuneCountInString(s) + if n <= 0 || n > l { + n = l + } + a := make([]string, n) + var size int + var ch rune + i, cur := 0, 0 + for ; i+1 < n; i++ { + ch, size = utf8.DecodeRuneInString(s[cur:]) + if ch == utf8.RuneError { + a[i] = string(utf8.RuneError) + } else { + a[i] = s[cur : cur+size] + } + cur += size + } + // add the rest, if there is any + if cur < len(s) { + a[i] = s[cur:] + } + return a +} + +// primeRK is the prime base used in Rabin-Karp algorithm. +const primeRK = 16777619 + +// hashStr returns the hash and the appropriate multiplicative +// factor for use in Rabin-Karp algorithm. +func hashStr(sep string) (uint32, uint32) { + hash := uint32(0) + for i := 0; i < len(sep); i++ { + hash = hash*primeRK + uint32(sep[i]) + } + var pow, sq uint32 = 1, primeRK + for i := len(sep); i > 0; i >>= 1 { + if i&1 != 0 { + pow *= sq + } + sq *= sq + } + return hash, pow +} + +// hashStrRev returns the hash of the reverse of sep and the +// appropriate multiplicative factor for use in Rabin-Karp algorithm. +func hashStrRev(sep string) (uint32, uint32) { + hash := uint32(0) + for i := len(sep) - 1; i >= 0; i-- { + hash = hash*primeRK + uint32(sep[i]) + } + var pow, sq uint32 = 1, primeRK + for i := len(sep); i > 0; i >>= 1 { + if i&1 != 0 { + pow *= sq + } + sq *= sq + } + return hash, pow +} + +// Count counts the number of non-overlapping instances of sep in s. +func Count(s, sep string) int { + n := 0 + // special cases + switch { + case len(sep) == 0: + return utf8.RuneCountInString(s) + 1 + case len(sep) == 1: + // special case worth making fast + c := sep[0] + for i := 0; i < len(s); i++ { + if s[i] == c { + n++ + } + } + return n + case len(sep) > len(s): + return 0 + case len(sep) == len(s): + if sep == s { + return 1 + } + return 0 + } + // Rabin-Karp search + hashsep, pow := hashStr(sep) + h := uint32(0) + for i := 0; i < len(sep); i++ { + h = h*primeRK + uint32(s[i]) + } + lastmatch := 0 + if h == hashsep && s[:len(sep)] == sep { + n++ + lastmatch = len(sep) + } + for i := len(sep); i < len(s); { + h *= primeRK + h += uint32(s[i]) + h -= pow * uint32(s[i-len(sep)]) + i++ + if h == hashsep && lastmatch <= i-len(sep) && s[i-len(sep):i] == sep { + n++ + lastmatch = i + } + } + return n +} + +// Contains returns true if substr is within s. +func Contains(s, substr string) bool { + return Index(s, substr) >= 0 +} + +// ContainsAny returns true if any Unicode code points in chars are within s. +func ContainsAny(s, chars string) bool { + return IndexAny(s, chars) >= 0 +} + +// ContainsRune returns true if the Unicode code point r is within s. +func ContainsRune(s string, r rune) bool { + return IndexRune(s, r) >= 0 +} + +// Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. +func Index(s, sep string) int { + n := len(sep) + switch { + case n == 0: + return 0 + case n == 1: + return IndexByte(s, sep[0]) + case n == len(s): + if sep == s { + return 0 + } + return -1 + case n > len(s): + return -1 + } + // Rabin-Karp search + hashsep, pow := hashStr(sep) + var h uint32 + for i := 0; i < n; i++ { + h = h*primeRK + uint32(s[i]) + } + if h == hashsep && s[:n] == sep { + return 0 + } + for i := n; i < len(s); { + h *= primeRK + h += uint32(s[i]) + h -= pow * uint32(s[i-n]) + i++ + if h == hashsep && s[i-n:i] == sep { + return i - n + } + } + return -1 +} + +// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. +func LastIndex(s, sep string) int { + n := len(sep) + switch { + case n == 0: + return len(s) + case n == 1: + // special case worth making fast + c := sep[0] + for i := len(s) - 1; i >= 0; i-- { + if s[i] == c { + return i + } + } + return -1 + case n == len(s): + if sep == s { + return 0 + } + return -1 + case n > len(s): + return -1 + } + // Rabin-Karp search from the end of the string + hashsep, pow := hashStrRev(sep) + last := len(s) - n + var h uint32 + for i := len(s) - 1; i >= last; i-- { + h = h*primeRK + uint32(s[i]) + } + if h == hashsep && s[last:] == sep { + return last + } + for i := last - 1; i >= 0; i-- { + h *= primeRK + h += uint32(s[i]) + h -= pow * uint32(s[i+n]) + if h == hashsep && s[i:i+n] == sep { + return i + } + } + return -1 +} + +// IndexRune returns the index of the first instance of the Unicode code point +// r, or -1 if rune is not present in s. +func IndexRune(s string, r rune) int { + switch { + case r < utf8.RuneSelf: + return IndexByte(s, byte(r)) + default: + for i, c := range s { + if c == r { + return i + } + } + } + return -1 +} + +// IndexAny returns the index of the first instance of any Unicode code point +// from chars in s, or -1 if no Unicode code point from chars is present in s. +func IndexAny(s, chars string) int { + if len(chars) > 0 { + for i, c := range s { + for _, m := range chars { + if c == m { + return i + } + } + } + } + return -1 +} + +// LastIndexAny returns the index of the last instance of any Unicode code +// point from chars in s, or -1 if no Unicode code point from chars is +// present in s. +func LastIndexAny(s, chars string) int { + if len(chars) > 0 { + for i := len(s); i > 0; { + rune, size := utf8.DecodeLastRuneInString(s[0:i]) + i -= size + for _, m := range chars { + if rune == m { + return i + } + } + } + } + return -1 +} + +// Generic split: splits after each instance of sep, +// including sepSave bytes of sep in the subarrays. +func genSplit(s, sep string, sepSave, n int) []string { + if n == 0 { + return nil + } + if sep == "" { + return explode(s, n) + } + if n < 0 { + n = Count(s, sep) + 1 + } + c := sep[0] + start := 0 + a := make([]string, n) + na := 0 + for i := 0; i+len(sep) <= len(s) && na+1 < n; i++ { + if s[i] == c && (len(sep) == 1 || s[i:i+len(sep)] == sep) { + a[na] = s[start : i+sepSave] + na++ + start = i + len(sep) + i += len(sep) - 1 + } + } + a[na] = s[start:] + return a[0 : na+1] +} + +// SplitN slices s into substrings separated by sep and returns a slice of +// the substrings between those separators. +// If sep is empty, SplitN splits after each UTF-8 sequence. +// The count determines the number of substrings to return: +// n > 0: at most n substrings; the last substring will be the unsplit remainder. +// n == 0: the result is nil (zero substrings) +// n < 0: all substrings +func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } + +// SplitAfterN slices s into substrings after each instance of sep and +// returns a slice of those substrings. +// If sep is empty, SplitAfterN splits after each UTF-8 sequence. +// The count determines the number of substrings to return: +// n > 0: at most n substrings; the last substring will be the unsplit remainder. +// n == 0: the result is nil (zero substrings) +// n < 0: all substrings +func SplitAfterN(s, sep string, n int) []string { + return genSplit(s, sep, len(sep), n) +} + +// Split slices s into all substrings separated by sep and returns a slice of +// the substrings between those separators. +// If sep is empty, Split splits after each UTF-8 sequence. +// It is equivalent to SplitN with a count of -1. +func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } + +// SplitAfter slices s into all substrings after each instance of sep and +// returns a slice of those substrings. +// If sep is empty, SplitAfter splits after each UTF-8 sequence. +// It is equivalent to SplitAfterN with a count of -1. +func SplitAfter(s, sep string) []string { + return genSplit(s, sep, len(sep), -1) +} + +// Fields splits the string s around each instance of one or more consecutive white space +// characters, as defined by unicode.IsSpace, returning an array of substrings of s or an +// empty list if s contains only white space. +func Fields(s string) []string { + return FieldsFunc(s, unicode.IsSpace) +} + +// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) +// and returns an array of slices of s. If all code points in s satisfy f(c) or the +// string is empty, an empty slice is returned. +// FieldsFunc makes no guarantees about the order in which it calls f(c). +// If f does not return consistent results for a given c, FieldsFunc may crash. +func FieldsFunc(s string, f func(rune) bool) []string { + // First count the fields. + n := 0 + inField := false + for _, rune := range s { + wasInField := inField + inField = !f(rune) + if inField && !wasInField { + n++ + } + } + + // Now create them. + a := make([]string, n) + na := 0 + fieldStart := -1 // Set to -1 when looking for start of field. + for i, rune := range s { + if f(rune) { + if fieldStart >= 0 { + a[na] = s[fieldStart:i] + na++ + fieldStart = -1 + } + } else if fieldStart == -1 { + fieldStart = i + } + } + if fieldStart >= 0 { // Last field might end at EOF. + a[na] = s[fieldStart:] + } + return a +} + +// Join concatenates the elements of a to create a single string. The separator string +// sep is placed between elements in the resulting string. +func Join(a []string, sep string) string { + if len(a) == 0 { + return "" + } + if len(a) == 1 { + return a[0] + } + n := len(sep) * (len(a) - 1) + for i := 0; i < len(a); i++ { + n += len(a[i]) + } + + b := make([]byte, n) + bp := copy(b, a[0]) + for _, s := range a[1:] { + bp += copy(b[bp:], sep) + bp += copy(b[bp:], s) + } + return string(b) +} + +// HasPrefix tests whether the string s begins with prefix. +func HasPrefix(s, prefix string) bool { + return len(s) >= len(prefix) && s[0:len(prefix)] == prefix +} + +// HasSuffix tests whether the string s ends with suffix. +func HasSuffix(s, suffix string) bool { + return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix +} + +// Map returns a copy of the string s with all its characters modified +// according to the mapping function. If mapping returns a negative value, the character is +// dropped from the string with no replacement. +func Map(mapping func(rune) rune, s string) string { + // In the worst case, the string can grow when mapped, making + // things unpleasant. But it's so rare we barge in assuming it's + // fine. It could also shrink but that falls out naturally. + maxbytes := len(s) // length of b + nbytes := 0 // number of bytes encoded in b + // The output buffer b is initialized on demand, the first + // time a character differs. + var b []byte + + for i, c := range s { + r := mapping(c) + if b == nil { + if r == c { + continue + } + b = make([]byte, maxbytes) + nbytes = copy(b, s[:i]) + } + if r >= 0 { + wid := 1 + if r >= utf8.RuneSelf { + wid = utf8.RuneLen(r) + } + if nbytes+wid > maxbytes { + // Grow the buffer. + maxbytes = maxbytes*2 + utf8.UTFMax + nb := make([]byte, maxbytes) + copy(nb, b[0:nbytes]) + b = nb + } + nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) + } + } + if b == nil { + return s + } + return string(b[0:nbytes]) +} + +// Repeat returns a new string consisting of count copies of the string s. +func Repeat(s string, count int) string { + b := make([]byte, len(s)*count) + bp := copy(b, s) + for bp < len(b) { + copy(b[bp:], b[:bp]) + bp *= 2 + } + return string(b) +} + +// ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case. +func ToUpper(s string) string { return Map(unicode.ToUpper, s) } + +// ToLower returns a copy of the string s with all Unicode letters mapped to their lower case. +func ToLower(s string) string { return Map(unicode.ToLower, s) } + +// ToTitle returns a copy of the string s with all Unicode letters mapped to their title case. +func ToTitle(s string) string { return Map(unicode.ToTitle, s) } + +// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their +// upper case, giving priority to the special casing rules. +func ToUpperSpecial(_case unicode.SpecialCase, s string) string { + return Map(func(r rune) rune { return _case.ToUpper(r) }, s) +} + +// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their +// lower case, giving priority to the special casing rules. +func ToLowerSpecial(_case unicode.SpecialCase, s string) string { + return Map(func(r rune) rune { return _case.ToLower(r) }, s) +} + +// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their +// title case, giving priority to the special casing rules. +func ToTitleSpecial(_case unicode.SpecialCase, s string) string { + return Map(func(r rune) rune { return _case.ToTitle(r) }, s) +} + +// isSeparator reports whether the rune could mark a word boundary. +// TODO: update when package unicode captures more of the properties. +func isSeparator(r rune) bool { + // ASCII alphanumerics and underscore are not separators + if r <= 0x7F { + switch { + case '0' <= r && r <= '9': + return false + case 'a' <= r && r <= 'z': + return false + case 'A' <= r && r <= 'Z': + return false + case r == '_': + return false + } + return true + } + // Letters and digits are not separators + if unicode.IsLetter(r) || unicode.IsDigit(r) { + return false + } + // Otherwise, all we can do for now is treat spaces as separators. + return unicode.IsSpace(r) +} + +// Title returns a copy of the string s with all Unicode letters that begin words +// mapped to their title case. +// +// BUG: The rule Title uses for word boundaries does not handle Unicode punctuation properly. +func Title(s string) string { + // Use a closure here to remember state. + // Hackish but effective. Depends on Map scanning in order and calling + // the closure once per rune. + prev := ' ' + return Map( + func(r rune) rune { + if isSeparator(prev) { + prev = r + return unicode.ToTitle(r) + } + prev = r + return r + }, + s) +} + +// TrimLeftFunc returns a slice of the string s with all leading +// Unicode code points c satisfying f(c) removed. +func TrimLeftFunc(s string, f func(rune) bool) string { + i := indexFunc(s, f, false) + if i == -1 { + return "" + } + return s[i:] +} + +// TrimRightFunc returns a slice of the string s with all trailing +// Unicode code points c satisfying f(c) removed. +func TrimRightFunc(s string, f func(rune) bool) string { + i := lastIndexFunc(s, f, false) + if i >= 0 && s[i] >= utf8.RuneSelf { + _, wid := utf8.DecodeRuneInString(s[i:]) + i += wid + } else { + i++ + } + return s[0:i] +} + +// TrimFunc returns a slice of the string s with all leading +// and trailing Unicode code points c satisfying f(c) removed. +func TrimFunc(s string, f func(rune) bool) string { + return TrimRightFunc(TrimLeftFunc(s, f), f) +} + +// IndexFunc returns the index into s of the first Unicode +// code point satisfying f(c), or -1 if none do. +func IndexFunc(s string, f func(rune) bool) int { + return indexFunc(s, f, true) +} + +// LastIndexFunc returns the index into s of the last +// Unicode code point satisfying f(c), or -1 if none do. +func LastIndexFunc(s string, f func(rune) bool) int { + return lastIndexFunc(s, f, true) +} + +// indexFunc is the same as IndexFunc except that if +// truth==false, the sense of the predicate function is +// inverted. +func indexFunc(s string, f func(rune) bool, truth bool) int { + start := 0 + for start < len(s) { + wid := 1 + r := rune(s[start]) + if r >= utf8.RuneSelf { + r, wid = utf8.DecodeRuneInString(s[start:]) + } + if f(r) == truth { + return start + } + start += wid + } + return -1 +} + +// lastIndexFunc is the same as LastIndexFunc except that if +// truth==false, the sense of the predicate function is +// inverted. +func lastIndexFunc(s string, f func(rune) bool, truth bool) int { + for i := len(s); i > 0; { + r, size := utf8.DecodeLastRuneInString(s[0:i]) + i -= size + if f(r) == truth { + return i + } + } + return -1 +} + +func makeCutsetFunc(cutset string) func(rune) bool { + return func(r rune) bool { return IndexRune(cutset, r) >= 0 } +} + +// Trim returns a slice of the string s with all leading and +// trailing Unicode code points contained in cutset removed. +func Trim(s string, cutset string) string { + if s == "" || cutset == "" { + return s + } + return TrimFunc(s, makeCutsetFunc(cutset)) +} + +// TrimLeft returns a slice of the string s with all leading +// Unicode code points contained in cutset removed. +func TrimLeft(s string, cutset string) string { + if s == "" || cutset == "" { + return s + } + return TrimLeftFunc(s, makeCutsetFunc(cutset)) +} + +// TrimRight returns a slice of the string s, with all trailing +// Unicode code points contained in cutset removed. +func TrimRight(s string, cutset string) string { + if s == "" || cutset == "" { + return s + } + return TrimRightFunc(s, makeCutsetFunc(cutset)) +} + +// TrimSpace returns a slice of the string s, with all leading +// and trailing white space removed, as defined by Unicode. +func TrimSpace(s string) string { + return TrimFunc(s, unicode.IsSpace) +} + +// TrimPrefix returns s without the provided leading prefix string. +// If s doesn't start with prefix, s is returned unchanged. +func TrimPrefix(s, prefix string) string { + if HasPrefix(s, prefix) { + return s[len(prefix):] + } + return s +} + +// TrimSuffix returns s without the provided trailing suffix string. +// If s doesn't end with suffix, s is returned unchanged. +func TrimSuffix(s, suffix string) string { + if HasSuffix(s, suffix) { + return s[:len(s)-len(suffix)] + } + return s +} + +// Replace returns a copy of the string s with the first n +// non-overlapping instances of old replaced by new. +// If old is empty, it matches at the beginning of the string +// and after each UTF-8 sequence, yielding up to k+1 replacements +// for a k-rune string. +// If n < 0, there is no limit on the number of replacements. +func Replace(s, old, new string, n int) string { + if old == new || n == 0 { + return s // avoid allocation + } + + // Compute number of replacements. + if m := Count(s, old); m == 0 { + return s // avoid allocation + } else if n < 0 || m < n { + n = m + } + + // Apply replacements to buffer. + t := make([]byte, len(s)+n*(len(new)-len(old))) + w := 0 + start := 0 + for i := 0; i < n; i++ { + j := start + if len(old) == 0 { + if i > 0 { + _, wid := utf8.DecodeRuneInString(s[start:]) + j += wid + } + } else { + j += Index(s[start:], old) + } + w += copy(t[w:], s[start:j]) + w += copy(t[w:], new) + start = j + len(old) + } + w += copy(t[w:], s[start:]) + return string(t[0:w]) +} + +// EqualFold reports whether s and t, interpreted as UTF-8 strings, +// are equal under Unicode case-folding. +func EqualFold(s, t string) bool { + for s != "" && t != "" { + // Extract first rune from each string. + var sr, tr rune + if s[0] < utf8.RuneSelf { + sr, s = rune(s[0]), s[1:] + } else { + r, size := utf8.DecodeRuneInString(s) + sr, s = r, s[size:] + } + if t[0] < utf8.RuneSelf { + tr, t = rune(t[0]), t[1:] + } else { + r, size := utf8.DecodeRuneInString(t) + tr, t = r, t[size:] + } + + // If they match, keep going; if not, return false. + + // Easy case. + if tr == sr { + continue + } + + // Make sr < tr to simplify what follows. + if tr < sr { + tr, sr = sr, tr + } + // Fast check for ASCII. + if tr < utf8.RuneSelf && 'A' <= sr && sr <= 'Z' { + // ASCII, and sr is upper case. tr must be lower case. + if tr == sr+'a'-'A' { + continue + } + return false + } + + // General case. SimpleFold(x) returns the next equivalent rune > x + // or wraps around to smaller values. + r := unicode.SimpleFold(sr) + for r != sr && r < tr { + r = unicode.SimpleFold(r) + } + if r == tr { + continue + } + return false + } + + // One string is empty. Are both? + return s == t +} |