diff options
author | Russ Cox <rsc@golang.org> | 2009-10-14 18:10:43 -0700 |
---|---|---|
committer | Russ Cox <rsc@golang.org> | 2009-10-14 18:10:43 -0700 |
commit | 8f49b30671161bc5425c4f2f56cee96ad11befeb (patch) | |
tree | a545d9b275fbbc2346c40d8ea51b2c741ba9faa2 /usr/austin/eval/expr.go | |
parent | 9615b0b1cfb8bbfc2b963b471bf9ac2afb7c8662 (diff) | |
download | golang-8f49b30671161bc5425c4f2f56cee96ad11befeb.tar.gz |
move austin/eval and austin/ogle to exp/eval and exp/ogle
R=r
OCL=35736
CL=35746
Diffstat (limited to 'usr/austin/eval/expr.go')
-rw-r--r-- | usr/austin/eval/expr.go | 2007 |
1 files changed, 0 insertions, 2007 deletions
diff --git a/usr/austin/eval/expr.go b/usr/austin/eval/expr.go deleted file mode 100644 index ea4fc082b..000000000 --- a/usr/austin/eval/expr.go +++ /dev/null @@ -1,2007 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package eval - -import ( - "bignum"; - "go/ast"; - "go/token"; - "log"; - "strconv"; - "strings"; - "os"; -) - -// An expr is the result of compiling an expression. It stores the -// type of the expression and its evaluator function. -type expr struct { - *exprInfo; - t Type; - - // Evaluate this node as the given type. - eval interface{}; - - // Map index expressions permit special forms of assignment, - // for which we need to know the Map and key. - evalMapValue func(t *Thread) (Map, interface{}); - - // Evaluate to the "address of" this value; that is, the - // settable Value object. nil for expressions whose address - // cannot be taken. - evalAddr func(t *Thread) Value; - - // Execute this expression as a statement. Only expressions - // that are valid expression statements should set this. - exec func(t *Thread); - - // If this expression is a type, this is its compiled type. - // This is only permitted in the function position of a call - // expression. In this case, t should be nil. - valType Type; - - // A short string describing this expression for error - // messages. - desc string; -} - -// exprInfo stores information needed to compile any expression node. -// Each expr also stores its exprInfo so further expressions can be -// compiled from it. -type exprInfo struct { - *compiler; - pos token.Position; -} - -func (a *exprInfo) newExpr(t Type, desc string) *expr { - return &expr{exprInfo: a, t: t, desc: desc}; -} - -func (a *exprInfo) diag(format string, args ...) { - a.diagAt(&a.pos, format, args); -} - -func (a *exprInfo) diagOpType(op token.Token, vt Type) { - a.diag("illegal operand type for '%v' operator\n\t%v", op, vt); -} - -func (a *exprInfo) diagOpTypes(op token.Token, lt Type, rt Type) { - a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt); -} - -/* - * Common expression manipulations - */ - -// a.convertTo(t) converts the value of the analyzed expression a, -// which must be a constant, ideal number, to a new analyzed -// expression with a constant value of type t. -// -// TODO(austin) Rename to resolveIdeal or something? -func (a *expr) convertTo(t Type) *expr { - if !a.t.isIdeal() { - log.Crashf("attempted to convert from %v, expected ideal", a.t); - } - - var rat *bignum.Rational; - - // XXX(Spec) The spec says "It is erroneous". - // - // It is an error to assign a value with a non-zero fractional - // part to an integer, or if the assignment would overflow or - // underflow, or in general if the value cannot be represented - // by the type of the variable. - switch a.t { - case IdealFloatType: - rat = a.asIdealFloat()(); - if t.isInteger() && !rat.IsInt() { - a.diag("constant %v truncated to integer", ratToString(rat)); - return nil; - } - case IdealIntType: - i := a.asIdealInt()(); - rat = bignum.MakeRat(i, bignum.Nat(1)); - default: - log.Crashf("unexpected ideal type %v", a.t); - } - - // Check bounds - if t, ok := t.lit().(BoundedType); ok { - if rat.Cmp(t.minVal()) < 0 { - a.diag("constant %v underflows %v", ratToString(rat), t); - return nil; - } - if rat.Cmp(t.maxVal()) > 0 { - a.diag("constant %v overflows %v", ratToString(rat), t); - return nil; - } - } - - // Convert rat to type t. - res := a.newExpr(t, a.desc); - switch t := t.lit().(type) { - case *uintType: - n, d := rat.Value(); - f := n.Quo(bignum.MakeInt(false, d)); - v := f.Abs().Value(); - res.eval = func(*Thread) uint64 { return v }; - case *intType: - n, d := rat.Value(); - f := n.Quo(bignum.MakeInt(false, d)); - v := f.Value(); - res.eval = func(*Thread) int64 { return v }; - case *idealIntType: - n, d := rat.Value(); - f := n.Quo(bignum.MakeInt(false, d)); - res.eval = func() *bignum.Integer { return f }; - case *floatType: - n, d := rat.Value(); - v := float64(n.Value())/float64(d.Value()); - res.eval = func(*Thread) float64 { return v }; - case *idealFloatType: - res.eval = func() *bignum.Rational { return rat }; - default: - log.Crashf("cannot convert to type %T", t); - } - - return res; -} - -// convertToInt converts this expression to an integer, if possible, -// or produces an error if not. This accepts ideal ints, uints, and -// ints. If max is not -1, produces an error if possible if the value -// exceeds max. If negErr is not "", produces an error if possible if -// the value is negative. -func (a *expr) convertToInt(max int64, negErr string, errOp string) *expr { - switch a.t.lit().(type) { - case *idealIntType: - val := a.asIdealInt()(); - if negErr != "" && val.IsNeg() { - a.diag("negative %s: %s", negErr, val); - return nil; - } - bound := max; - if negErr == "slice" { - bound++; - } - if max != -1 && val.Cmp(bignum.Int(bound)) >= 0 { - a.diag("index %s exceeds length %d", val, max); - return nil; - } - return a.convertTo(IntType); - - case *uintType: - // Convert to int - na := a.newExpr(IntType, a.desc); - af := a.asUint(); - na.eval = func(t *Thread) int64 { - return int64(af(t)); - }; - return na; - - case *intType: - // Good as is - return a; - } - - a.diag("illegal operand type for %s\n\t%v", errOp, a.t); - return nil; -} - -// derefArray returns an expression of array type if the given -// expression is a *array type. Otherwise, returns the given -// expression. -func (a *expr) derefArray() *expr { - if pt, ok := a.t.lit().(*PtrType); ok { - if _, ok := pt.Elem.lit().(*ArrayType); ok { - deref := a.compileStarExpr(a); - if deref == nil { - log.Crashf("failed to dereference *array"); - } - return deref; - } - } - return a; -} - -/* - * Assignments - */ - -// An assignCompiler compiles assignment operations. Anything other -// than short declarations should use the compileAssign wrapper. -// -// There are three valid types of assignment: -// 1) T = T -// Assigning a single expression with single-valued type to a -// single-valued type. -// 2) MT = T, T, ... -// Assigning multiple expressions with single-valued types to a -// multi-valued type. -// 3) MT = MT -// Assigning a single expression with multi-valued type to a -// multi-valued type. -type assignCompiler struct { - *compiler; - pos token.Position; - // The RHS expressions. This may include nil's for - // expressions that failed to compile. - rs []*expr; - // The (possibly unary) MultiType of the RHS. - rmt *MultiType; - // Whether this is an unpack assignment (case 3). - isUnpack bool; - // Whether map special assignment forms are allowed. - allowMap bool; - // Whether this is a "r, ok = a[x]" assignment. - isMapUnpack bool; - // The operation name to use in error messages, such as - // "assignment" or "function call". - errOp string; - // The name to use for positions in error messages, such as - // "argument". - errPosName string; -} - -// Type check the RHS of an assignment, returning a new assignCompiler -// and indicating if the type check succeeded. This always returns an -// assignCompiler with rmt set, but if type checking fails, slots in -// the MultiType may be nil. If rs contains nil's, type checking will -// fail and these expressions given a nil type. -func (a *compiler) checkAssign(pos token.Position, rs []*expr, errOp, errPosName string) (*assignCompiler, bool) { - c := &assignCompiler{ - compiler: a, - pos: pos, - rs: rs, - errOp: errOp, - errPosName: errPosName, - }; - - // Is this an unpack? - if len(rs) == 1 && rs[0] != nil { - if rmt, isUnpack := rs[0].t.(*MultiType); isUnpack { - c.rmt = rmt; - c.isUnpack = true; - return c, true; - } - } - - // Create MultiType for RHS and check that all RHS expressions - // are single-valued. - rts := make([]Type, len(rs)); - ok := true; - for i, r := range rs { - if r == nil { - ok = false; - continue; - } - - if _, isMT := r.t.(*MultiType); isMT { - r.diag("multi-valued expression not allowed in %s", errOp); - ok = false; - continue; - } - - rts[i] = r.t; - } - - c.rmt = NewMultiType(rts); - return c, ok; -} - -func (a *assignCompiler) allowMapForms(nls int) { - a.allowMap = true; - - // Update unpacking info if this is r, ok = a[x] - if nls == 2 && len(a.rs) == 1 && a.rs[0] != nil && a.rs[0].evalMapValue != nil { - a.isUnpack = true; - a.rmt = NewMultiType([]Type {a.rs[0].t, BoolType}); - a.isMapUnpack = true; - } -} - -// compile type checks and compiles an assignment operation, returning -// a function that expects an l-value and the frame in which to -// evaluate the RHS expressions. The l-value must have exactly the -// type given by lt. Returns nil if type checking fails. -func (a *assignCompiler) compile(b *block, lt Type) (func(Value, *Thread)) { - lmt, isMT := lt.(*MultiType); - rmt, isUnpack := a.rmt, a.isUnpack; - - // Create unary MultiType for single LHS - if !isMT { - lmt = NewMultiType([]Type{lt}); - } - - // Check that the assignment count matches - lcount := len(lmt.Elems); - rcount := len(rmt.Elems); - if lcount != rcount { - msg := "not enough"; - pos := a.pos; - if rcount > lcount { - msg = "too many"; - if lcount > 0 { - pos = a.rs[lcount-1].pos; - } - } - a.diagAt(&pos, "%s %ss for %s\n\t%s\n\t%s", msg, a.errPosName, a.errOp, lt, rmt); - return nil; - } - - bad := false; - - // If this is an unpack, create a temporary to store the - // multi-value and replace the RHS with expressions to pull - // out values from the temporary. Technically, this is only - // necessary when we need to perform assignment conversions. - var effect func(*Thread); - if isUnpack { - // This leaks a slot, but is definitely safe. - temp := b.DefineTemp(a.rmt); - tempIdx := temp.Index; - if tempIdx < 0 { - panicln("tempidx", tempIdx); - } - if a.isMapUnpack { - rf := a.rs[0].evalMapValue; - vt := a.rmt.Elems[0]; - effect = func(t *Thread) { - m, k := rf(t); - v := m.Elem(t, k); - found := boolV(true); - if v == nil { - found = boolV(false); - v = vt.Zero(); - } - t.f.Vars[tempIdx] = multiV([]Value {v, &found}); - }; - } else { - rf := a.rs[0].asMulti(); - effect = func(t *Thread) { - t.f.Vars[tempIdx] = multiV(rf(t)); - }; - } - orig := a.rs[0]; - a.rs = make([]*expr, len(a.rmt.Elems)); - for i, t := range a.rmt.Elems { - if t.isIdeal() { - log.Crashf("Right side of unpack contains ideal: %s", rmt); - } - a.rs[i] = orig.newExpr(t, orig.desc); - index := i; - a.rs[i].genValue(func(t *Thread) Value { return t.f.Vars[tempIdx].(multiV)[index] }); - } - } - // Now len(a.rs) == len(a.rmt) and we've reduced any unpacking - // to multi-assignment. - - // TODO(austin) Deal with assignment special cases. - - // Values of any type may always be assigned to variables of - // compatible static type. - for i, lt := range lmt.Elems { - rt := rmt.Elems[i]; - - // When [an ideal is] (used in an expression) assigned - // to a variable or typed constant, the destination - // must be able to represent the assigned value. - if rt.isIdeal() { - a.rs[i] = a.rs[i].convertTo(lmt.Elems[i]); - if a.rs[i] == nil { - bad = true; - continue; - } - rt = a.rs[i].t; - } - - // A pointer p to an array can be assigned to a slice - // variable v with compatible element type if the type - // of p or v is unnamed. - if rpt, ok := rt.lit().(*PtrType); ok { - if at, ok := rpt.Elem.lit().(*ArrayType); ok { - if lst, ok := lt.lit().(*SliceType); ok { - if lst.Elem.compat(at.Elem, false) && (rt.lit() == Type(rt) || lt.lit() == Type(lt)) { - rf := a.rs[i].asPtr(); - a.rs[i] = a.rs[i].newExpr(lt, a.rs[i].desc); - len := at.Len; - a.rs[i].eval = func(t *Thread) Slice { - return Slice{rf(t).(ArrayValue), len, len}; - }; - rt = a.rs[i].t; - } - } - } - } - - if !lt.compat(rt, false) { - if len(a.rs) == 1 { - a.rs[0].diag("illegal operand types for %s\n\t%v\n\t%v", a.errOp, lt, rt); - } else { - a.rs[i].diag("illegal operand types in %s %d of %s\n\t%v\n\t%v", a.errPosName, i+1, a.errOp, lt, rt); - } - bad = true; - } - } - if bad { - return nil; - } - - // Compile - if !isMT { - // Case 1 - return genAssign(lt, a.rs[0]); - } - // Case 2 or 3 - as := make([]func(lv Value, t *Thread), len(a.rs)); - for i, r := range a.rs { - as[i] = genAssign(lmt.Elems[i], r); - } - return func(lv Value, t *Thread) { - if effect != nil { - effect(t); - } - lmv := lv.(multiV); - for i, a := range as { - a(lmv[i], t); - } - }; -} - -// compileAssign compiles an assignment operation without the full -// generality of an assignCompiler. See assignCompiler for a -// description of the arguments. -func (a *compiler) compileAssign(pos token.Position, b *block, lt Type, rs []*expr, errOp, errPosName string) (func(Value, *Thread)) { - ac, ok := a.checkAssign(pos, rs, errOp, errPosName); - if !ok { - return nil; - } - return ac.compile(b, lt); -} - -/* - * Expression compiler - */ - -// An exprCompiler stores information used throughout the compilation -// of a single expression. It does not embed funcCompiler because -// expressions can appear at top level. -type exprCompiler struct { - *compiler; - // The block this expression is being compiled in. - block *block; - // Whether this expression is used in a constant context. - constant bool; -} - -// compile compiles an expression AST. callCtx should be true if this -// AST is in the function position of a function call node; it allows -// the returned expression to be a type or a built-in function (which -// otherwise result in errors). -func (a *exprCompiler) compile(x ast.Expr, callCtx bool) *expr { - ei := &exprInfo{a.compiler, x.Pos()}; - - switch x := x.(type) { - // Literals - case *ast.BasicLit: - switch x.Kind { - case token.INT: - return ei.compileIntLit(string(x.Value)); - case token.FLOAT: - return ei.compileFloatLit(string(x.Value)); - case token.CHAR: - return ei.compileCharLit(string(x.Value)); - case token.STRING: - return ei.compileStringLit(string(x.Value)); - default: - log.Crashf("unexpected basic literal type %v", x.Kind); - } - - case *ast.CompositeLit: - goto notimpl; - - case *ast.FuncLit: - decl := ei.compileFuncType(a.block, x.Type); - if decl == nil { - // TODO(austin) Try compiling the body, - // perhaps with dummy argument definitions - return nil; - } - fn := ei.compileFunc(a.block, decl, x.Body); - if fn == nil { - return nil; - } - if a.constant { - a.diagAt(x, "function literal used in constant expression"); - return nil; - } - return ei.compileFuncLit(decl, fn); - - // Types - case *ast.ArrayType: - // TODO(austin) Use a multi-type case - goto typeexpr; - - case *ast.ChanType: - goto typeexpr; - - case *ast.Ellipsis: - goto typeexpr; - - case *ast.FuncType: - goto typeexpr; - - case *ast.InterfaceType: - goto typeexpr; - - case *ast.MapType: - goto typeexpr; - - // Remaining expressions - case *ast.BadExpr: - // Error already reported by parser - a.silentErrors++; - return nil; - - case *ast.BinaryExpr: - l, r := a.compile(x.X, false), a.compile(x.Y, false); - if l == nil || r == nil { - return nil; - } - return ei.compileBinaryExpr(x.Op, l, r); - - case *ast.CallExpr: - l := a.compile(x.Fun, true); - args := make([]*expr, len(x.Args)); - bad := false; - for i, arg := range x.Args { - if i == 0 && l != nil && (l.t == Type(makeType) || l.t == Type(newType)) { - argei := &exprInfo{a.compiler, arg.Pos()}; - args[i] = argei.exprFromType(a.compileType(a.block, arg)); - } else { - args[i] = a.compile(arg, false); - } - if args[i] == nil { - bad = true; - } - } - if bad || l == nil { - return nil; - } - if a.constant { - a.diagAt(x, "function call in constant context"); - return nil; - } - - if l.valType != nil { - a.diagAt(x, "type conversions not implemented"); - return nil; - } else if ft, ok := l.t.(*FuncType); ok && ft.builtin != "" { - return ei.compileBuiltinCallExpr(a.block, ft, args); - } else { - return ei.compileCallExpr(a.block, l, args); - } - - case *ast.Ident: - return ei.compileIdent(a.block, a.constant, callCtx, x.Value); - - case *ast.IndexExpr: - if x.End != nil { - arr := a.compile(x.X, false); - lo := a.compile(x.Index, false); - hi := a.compile(x.End, false); - if arr == nil || lo == nil || hi == nil { - return nil; - } - return ei.compileSliceExpr(arr, lo, hi); - } - l, r := a.compile(x.X, false), a.compile(x.Index, false); - if l == nil || r == nil { - return nil; - } - return ei.compileIndexExpr(l, r); - - case *ast.KeyValueExpr: - goto notimpl; - - case *ast.ParenExpr: - return a.compile(x.X, callCtx); - - case *ast.SelectorExpr: - v := a.compile(x.X, false); - if v == nil { - return nil; - } - return ei.compileSelectorExpr(v, x.Sel.Value); - - case *ast.StarExpr: - // We pass down our call context because this could be - // a pointer type (and thus a type conversion) - v := a.compile(x.X, callCtx); - if v == nil { - return nil; - } - if v.valType != nil { - // Turns out this was a pointer type, not a dereference - return ei.exprFromType(NewPtrType(v.valType)); - } - return ei.compileStarExpr(v); - - case *ast.StringList: - strings := make([]*expr, len(x.Strings)); - bad := false; - for i, s := range x.Strings { - strings[i] = a.compile(s, false); - if strings[i] == nil { - bad = true; - } - } - if bad { - return nil; - } - return ei.compileStringList(strings); - - case *ast.StructType: - goto notimpl; - - case *ast.TypeAssertExpr: - goto notimpl; - - case *ast.UnaryExpr: - v := a.compile(x.X, false); - if v == nil { - return nil; - } - return ei.compileUnaryExpr(x.Op, v); - } - log.Crashf("unexpected ast node type %T", x); - panic(); - -typeexpr: - if !callCtx { - a.diagAt(x, "type used as expression"); - return nil; - } - return ei.exprFromType(a.compileType(a.block, x)); - -notimpl: - a.diagAt(x, "%T expression node not implemented", x); - return nil; -} - -func (a *exprInfo) exprFromType(t Type) *expr { - if t == nil { - return nil; - } - expr := a.newExpr(nil, "type"); - expr.valType = t; - return expr; -} - -func (a *exprInfo) compileIdent(b *block, constant bool, callCtx bool, name string) *expr { - bl, level, def := b.Lookup(name); - if def == nil { - a.diag("%s: undefined", name); - return nil; - } - switch def := def.(type) { - case *Constant: - expr := a.newExpr(def.Type, "constant"); - if ft, ok := def.Type.(*FuncType); ok && ft.builtin != "" { - // XXX(Spec) I don't think anything says that - // built-in functions can't be used as values. - if !callCtx { - a.diag("built-in function %s cannot be used as a value", ft.builtin); - return nil; - } - // Otherwise, we leave the evaluators empty - // because this is handled specially - } else { - expr.genConstant(def.Value); - } - return expr; - case *Variable: - if constant { - a.diag("variable %s used in constant expression", name); - return nil; - } - if bl.global { - return a.compileGlobalVariable(def); - } - return a.compileVariable(level, def); - case Type: - if callCtx { - return a.exprFromType(def); - } - a.diag("type %v used as expression", name); - return nil; - } - log.Crashf("name %s has unknown type %T", name, def); - panic(); -} - -func (a *exprInfo) compileVariable(level int, v *Variable) *expr { - if v.Type == nil { - // Placeholder definition from an earlier error - a.silentErrors++; - return nil; - } - expr := a.newExpr(v.Type, "variable"); - expr.genIdentOp(level, v.Index); - return expr; -} - -func (a *exprInfo) compileGlobalVariable(v *Variable) *expr { - if v.Type == nil { - // Placeholder definition from an earlier error - a.silentErrors++; - return nil; - } - if v.Init == nil { - v.Init = v.Type.Zero(); - } - expr := a.newExpr(v.Type, "variable"); - val := v.Init; - expr.genValue(func(t *Thread) Value { return val }); - return expr; -} - -func (a *exprInfo) compileIdealInt(i *bignum.Integer, desc string) *expr { - expr := a.newExpr(IdealIntType, desc); - expr.eval = func() *bignum.Integer { return i }; - return expr; -} - -func (a *exprInfo) compileIntLit(lit string) *expr { - i, _, _ := bignum.IntFromString(lit, 0); - return a.compileIdealInt(i, "integer literal"); -} - -func (a *exprInfo) compileCharLit(lit string) *expr { - if lit[0] != '\'' { - // Caught by parser - a.silentErrors++; - return nil; - } - v, _, tail, err := strconv.UnquoteChar(lit[1:len(lit)], '\''); - if err != nil || tail != "'" { - // Caught by parser - a.silentErrors++; - return nil; - } - return a.compileIdealInt(bignum.Int(int64(v)), "character literal"); -} - -func (a *exprInfo) compileFloatLit(lit string) *expr { - f, _, n := bignum.RatFromString(lit, 0); - if n != len(lit) { - log.Crashf("malformed float literal %s at %v passed parser", lit, a.pos); - } - expr := a.newExpr(IdealFloatType, "float literal"); - expr.eval = func() *bignum.Rational { return f }; - return expr; -} - -func (a *exprInfo) compileString(s string) *expr { - // Ideal strings don't have a named type but they are - // compatible with type string. - - // TODO(austin) Use unnamed string type. - expr := a.newExpr(StringType, "string literal"); - expr.eval = func(*Thread) string { return s }; - return expr; -} - -func (a *exprInfo) compileStringLit(lit string) *expr { - s, err := strconv.Unquote(lit); - if err != nil { - a.diag("illegal string literal, %v", err); - return nil; - } - return a.compileString(s); -} - -func (a *exprInfo) compileStringList(list []*expr) *expr { - ss := make([]string, len(list)); - for i, s := range list { - ss[i] = s.asString()(nil); - } - return a.compileString(strings.Join(ss, "")); -} - -func (a *exprInfo) compileFuncLit(decl *FuncDecl, fn func(*Thread) Func) *expr { - expr := a.newExpr(decl.Type, "function literal"); - expr.eval = fn; - return expr; -} - -func (a *exprInfo) compileSelectorExpr(v *expr, name string) *expr { - // mark marks a field that matches the selector name. It - // tracks the best depth found so far and whether more than - // one field has been found at that depth. - bestDepth := -1; - ambig := false; - amberr := ""; - mark := func(depth int, pathName string) { - switch { - case bestDepth == -1 || depth < bestDepth: - bestDepth = depth; - ambig = false; - amberr = ""; - - case depth == bestDepth: - ambig = true; - - default: - log.Crashf("Marked field at depth %d, but already found one at depth %d", depth, bestDepth); - } - amberr += "\n\t" + pathName[1:len(pathName)]; - }; - - visited := make(map[Type] bool); - - // find recursively searches for the named field, starting at - // type t. If it finds the named field, it returns a function - // which takes an expr that represents a value of type 't' and - // returns an expr that retrieves the named field. We delay - // expr construction to avoid producing lots of useless expr's - // as we search. - // - // TODO(austin) Now that the expression compiler works on - // semantic values instead of AST's, there should be a much - // better way of doing this. - var find func(Type, int, string) (func (*expr) *expr); - find = func(t Type, depth int, pathName string) (func (*expr) *expr) { - // Don't bother looking if we've found something shallower - if bestDepth != -1 && bestDepth < depth { - return nil; - } - - // Don't check the same type twice and avoid loops - if _, ok := visited[t]; ok { - return nil; - } - visited[t] = true; - - // Implicit dereference - deref := false; - if ti, ok := t.(*PtrType); ok { - deref = true; - t = ti.Elem; - } - - // If it's a named type, look for methods - if ti, ok := t.(*NamedType); ok { - _, ok := ti.methods[name]; - if ok { - mark(depth, pathName + "." + name); - log.Crash("Methods not implemented"); - } - t = ti.Def; - } - - // If it's a struct type, check fields and embedded types - var builder func(*expr) *expr; - if t, ok := t.(*StructType); ok { - for i, f := range t.Elems { - var sub func(*expr) *expr; - switch { - case f.Name == name: - mark(depth, pathName + "." + name); - sub = func(e *expr) *expr { return e }; - - case f.Anonymous: - sub = find(f.Type, depth+1, pathName + "." + f.Name); - if sub == nil { - continue; - } - - default: - continue; - } - - // We found something. Create a - // builder for accessing this field. - ft := f.Type; - index := i; - builder = func(parent *expr) *expr { - if deref { - parent = a.compileStarExpr(parent); - } - expr := a.newExpr(ft, "selector expression"); - pf := parent.asStruct(); - evalAddr := func(t *Thread) Value { - return pf(t).Field(t, index); - }; - expr.genValue(evalAddr); - return sub(expr); - }; - } - } - - return builder; - }; - - builder := find(v.t, 0, ""); - if builder == nil { - a.diag("type %v has no field or method %s", v.t, name); - return nil; - } - if ambig { - a.diag("field %s is ambiguous in type %v%s", name, v.t, amberr); - return nil; - } - - return builder(v); -} - -func (a *exprInfo) compileSliceExpr(arr, lo, hi *expr) *expr { - // Type check object - arr = arr.derefArray(); - - var at Type; - var maxIndex int64 = -1; - - switch lt := arr.t.lit().(type) { - case *ArrayType: - at = NewSliceType(lt.Elem); - maxIndex = lt.Len; - - case *SliceType: - at = lt; - - case *stringType: - at = lt; - - default: - a.diag("cannot slice %v", arr.t); - return nil; - } - - // Type check index and convert to int - // XXX(Spec) It's unclear if ideal floats with no - // fractional part are allowed here. 6g allows it. I - // believe that's wrong. - lo = lo.convertToInt(maxIndex, "slice", "slice"); - hi = hi.convertToInt(maxIndex, "slice", "slice"); - if lo == nil || hi == nil { - return nil; - } - - expr := a.newExpr(at, "slice expression"); - - // Compile - lof := lo.asInt(); - hif := hi.asInt(); - switch lt := arr.t.lit().(type) { - case *ArrayType: - arrf := arr.asArray(); - bound := lt.Len; - expr.eval = func(t *Thread) Slice { - arr, lo, hi := arrf(t), lof(t), hif(t); - if lo > hi || hi > bound || lo < 0 { - t.Abort(SliceError{lo, hi, bound}); - } - return Slice{arr.Sub(lo, bound - lo), hi - lo, bound - lo} - }; - - case *SliceType: - arrf := arr.asSlice(); - expr.eval = func(t *Thread) Slice { - arr, lo, hi := arrf(t), lof(t), hif(t); - if lo > hi || hi > arr.Cap || lo < 0 { - t.Abort(SliceError{lo, hi, arr.Cap}); - } - return Slice{arr.Base.Sub(lo, arr.Cap - lo), hi - lo, arr.Cap - lo} - }; - - case *stringType: - arrf := arr.asString(); - // TODO(austin) This pulls over the whole string in a - // remote setting, instead of creating a substring backed - // by remote memory. - expr.eval = func(t *Thread) string { - arr, lo, hi := arrf(t), lof(t), hif(t); - if lo > hi || hi > int64(len(arr)) || lo < 0 { - t.Abort(SliceError{lo, hi, int64(len(arr))}); - } - return arr[lo:hi]; - } - - default: - log.Crashf("unexpected left operand type %T", arr.t.lit()); - } - - return expr; -} - -func (a *exprInfo) compileIndexExpr(l, r *expr) *expr { - // Type check object - l = l.derefArray(); - - var at Type; - intIndex := false; - var maxIndex int64 = -1; - - switch lt := l.t.lit().(type) { - case *ArrayType: - at = lt.Elem; - intIndex = true; - maxIndex = lt.Len; - - case *SliceType: - at = lt.Elem; - intIndex = true; - - case *stringType: - at = Uint8Type; - intIndex = true; - - case *MapType: - at = lt.Elem; - if r.t.isIdeal() { - r = r.convertTo(lt.Key); - if r == nil { - return nil; - } - } - if !lt.Key.compat(r.t, false) { - a.diag("cannot use %s as index into %s", r.t, lt); - return nil; - } - - default: - a.diag("cannot index into %v", l.t); - return nil; - } - - // Type check index and convert to int if necessary - if intIndex { - // XXX(Spec) It's unclear if ideal floats with no - // fractional part are allowed here. 6g allows it. I - // believe that's wrong. - r = r.convertToInt(maxIndex, "index", "index"); - if r == nil { - return nil; - } - } - - expr := a.newExpr(at, "index expression"); - - // Compile - switch lt := l.t.lit().(type) { - case *ArrayType: - lf := l.asArray(); - rf := r.asInt(); - bound := lt.Len; - expr.genValue(func(t *Thread) Value { - l, r := lf(t), rf(t); - if r < 0 || r >= bound { - t.Abort(IndexError{r, bound}); - } - return l.Elem(t, r); - }); - - case *SliceType: - lf := l.asSlice(); - rf := r.asInt(); - expr.genValue(func(t *Thread) Value { - l, r := lf(t), rf(t); - if l.Base == nil { - t.Abort(NilPointerError{}); - } - if r < 0 || r >= l.Len { - t.Abort(IndexError{r, l.Len}); - } - return l.Base.Elem(t, r); - }); - - case *stringType: - lf := l.asString(); - rf := r.asInt(); - // TODO(austin) This pulls over the whole string in a - // remote setting, instead of just the one character. - expr.eval = func(t *Thread) uint64 { - l, r := lf(t), rf(t); - if r < 0 || r >= int64(len(l)) { - t.Abort(IndexError{r, int64(len(l))}); - } - return uint64(l[r]); - } - - case *MapType: - lf := l.asMap(); - rf := r.asInterface(); - expr.genValue(func(t *Thread) Value { - m := lf(t); - k := rf(t); - if m == nil { - t.Abort(NilPointerError{}); - } - e := m.Elem(t, k); - if e == nil { - t.Abort(KeyError{k}); - } - return e; - }); - // genValue makes things addressable, but map values - // aren't addressable. - expr.evalAddr = nil; - expr.evalMapValue = func(t *Thread) (Map, interface{}) { - // TODO(austin) Key check? nil check? - return lf(t), rf(t); - }; - - default: - log.Crashf("unexpected left operand type %T", l.t.lit()); - } - - return expr; -} - -func (a *exprInfo) compileCallExpr(b *block, l *expr, as []*expr) *expr { - // TODO(austin) Variadic functions. - - // Type check - - // XXX(Spec) Calling a named function type is okay. I really - // think there needs to be a general discussion of named - // types. A named type creates a new, distinct type, but the - // type of that type is still whatever it's defined to. Thus, - // in "type Foo int", Foo is still an integer type and in - // "type Foo func()", Foo is a function type. - lt, ok := l.t.lit().(*FuncType); - if !ok { - a.diag("cannot call non-function type %v", l.t); - return nil; - } - - // The arguments must be single-valued expressions assignment - // compatible with the parameters of F. - // - // XXX(Spec) The spec is wrong. It can also be a single - // multi-valued expression. - nin := len(lt.In); - assign := a.compileAssign(a.pos, b, NewMultiType(lt.In), as, "function call", "argument"); - if assign == nil { - return nil; - } - - var t Type; - nout := len(lt.Out); - switch nout { - case 0: - t = EmptyType; - case 1: - t = lt.Out[0]; - default: - t = NewMultiType(lt.Out); - } - expr := a.newExpr(t, "function call"); - - // Gather argument and out types to initialize frame variables - vts := make([]Type, nin + nout); - for i, t := range lt.In { - vts[i] = t; - } - for i, t := range lt.Out { - vts[i+nin] = t; - } - - // Compile - lf := l.asFunc(); - call := func(t *Thread) []Value { - fun := lf(t); - fr := fun.NewFrame(); - for i, t := range vts { - fr.Vars[i] = t.Zero(); - } - assign(multiV(fr.Vars[0:nin]), t); - oldf := t.f; - t.f = fr; - fun.Call(t); - t.f = oldf; - return fr.Vars[nin:nin+nout]; - }; - expr.genFuncCall(call); - - return expr; -} - -func (a *exprInfo) compileBuiltinCallExpr(b *block, ft *FuncType, as []*expr) *expr { - checkCount := func(min, max int) bool { - if len(as) < min { - a.diag("not enough arguments to %s", ft.builtin); - return false; - } else if len(as) > max { - a.diag("too many arguments to %s", ft.builtin); - return false; - } - return true; - }; - - switch ft { - case capType: - if !checkCount(1, 1) { - return nil; - } - arg := as[0].derefArray(); - expr := a.newExpr(IntType, "function call"); - switch t := arg.t.lit().(type) { - case *ArrayType: - // TODO(austin) It would be nice if this could - // be a constant int. - v := t.Len; - expr.eval = func(t *Thread) int64 { - return v; - }; - - case *SliceType: - vf := arg.asSlice(); - expr.eval = func(t *Thread) int64 { - return vf(t).Cap; - }; - - //case *ChanType: - - default: - a.diag("illegal argument type for cap function\n\t%v", arg.t); - return nil; - } - return expr; - - case lenType: - if !checkCount(1, 1) { - return nil; - } - arg := as[0].derefArray(); - expr := a.newExpr(IntType, "function call"); - switch t := arg.t.lit().(type) { - case *stringType: - vf := arg.asString(); - expr.eval = func(t *Thread) int64 { - return int64(len(vf(t))); - }; - - case *ArrayType: - // TODO(austin) It would be nice if this could - // be a constant int. - v := t.Len; - expr.eval = func(t *Thread) int64 { - return v; - }; - - case *SliceType: - vf := arg.asSlice(); - expr.eval = func(t *Thread) int64 { - return vf(t).Len; - }; - - case *MapType: - vf := arg.asMap(); - expr.eval = func(t *Thread) int64 { - // XXX(Spec) What's the len of an - // uninitialized map? - m := vf(t); - if m == nil { - return 0; - } - return m.Len(t); - }; - - //case *ChanType: - - default: - a.diag("illegal argument type for len function\n\t%v", arg.t); - return nil; - } - return expr; - - case makeType: - if !checkCount(1, 3) { - return nil; - } - // XXX(Spec) What are the types of the - // arguments? Do they have to be ints? 6g - // accepts any integral type. - var lenexpr, capexpr *expr; - var lenf, capf func(*Thread) int64; - if len(as) > 1 { - lenexpr = as[1].convertToInt(-1, "length", "make function"); - if lenexpr == nil { - return nil; - } - lenf = lenexpr.asInt(); - } - if len(as) > 2 { - capexpr = as[2].convertToInt(-1, "capacity", "make function"); - if capexpr == nil { - return nil; - } - capf = capexpr.asInt(); - } - - switch t := as[0].valType.lit().(type) { - case *SliceType: - // A new, initialized slice value for a given - // element type T is made using the built-in - // function make, which takes a slice type and - // parameters specifying the length and - // optionally the capacity. - if !checkCount(2, 3) { - return nil; - } - et := t.Elem; - expr := a.newExpr(t, "function call"); - expr.eval = func(t *Thread) Slice { - l := lenf(t); - // XXX(Spec) What if len or cap is - // negative? The runtime panics. - if l < 0 { - t.Abort(NegativeLengthError{l}); - } - c := l; - if capf != nil { - c = capf(t); - if c < 0 { - t.Abort(NegativeCapacityError{c}); - } - // XXX(Spec) What happens if - // len > cap? The runtime - // sets cap to len. - if l > c { - c = l; - } - } - base := arrayV(make([]Value, c)); - for i := int64(0); i < c; i++ { - base[i] = et.Zero(); - } - return Slice{&base, l, c}; - }; - return expr; - - case *MapType: - // A new, empty map value is made using the - // built-in function make, which takes the map - // type and an optional capacity hint as - // arguments. - if !checkCount(1, 2) { - return nil; - } - expr := a.newExpr(t, "function call"); - expr.eval = func(t *Thread) Map { - if lenf == nil { - return make(evalMap); - } - l := lenf(t); - return make(evalMap, l); - }; - return expr; - - //case *ChanType: - - default: - a.diag("illegal argument type for make function\n\t%v", as[0].valType); - return nil; - } - - case closeType, closedType: - a.diag("built-in function %s not implemented", ft.builtin); - return nil; - - case newType: - if !checkCount(1, 1) { - return nil; - } - - t := as[0].valType; - expr := a.newExpr(NewPtrType(t), "new"); - expr.eval = func(*Thread) Value { - return t.Zero(); - }; - return expr; - - case panicType, paniclnType, printType, printlnType: - evals := make([]func(*Thread)interface{}, len(as)); - for i, x := range as { - evals[i] = x.asInterface(); - } - spaces := ft == paniclnType || ft == printlnType; - newline := ft != printType; - printer := func(t *Thread) { - for i, eval := range evals { - if i > 0 && spaces { - print(" "); - } - v := eval(t); - type stringer interface { String() string } - switch v1 := v.(type) { - case bool: - print(v1); - case uint64: - print(v1); - case int64: - print(v1); - case float64: - print(v1); - case string: - print(v1); - case stringer: - print(v1.String()); - default: - print("???"); - } - } - if newline { - print("\n"); - } - }; - expr := a.newExpr(EmptyType, "print"); - expr.exec = printer; - if ft == panicType || ft == paniclnType { - expr.exec = func(t *Thread) { - printer(t); - t.Abort(os.NewError("panic")); - } - } - return expr; - } - - log.Crashf("unexpected built-in function '%s'", ft.builtin); - panic(); -} - -func (a *exprInfo) compileStarExpr(v *expr) *expr { - switch vt := v.t.lit().(type) { - case *PtrType: - expr := a.newExpr(vt.Elem, "indirect expression"); - vf := v.asPtr(); - expr.genValue(func(t *Thread) Value { - v := vf(t); - if v == nil { - t.Abort(NilPointerError{}); - } - return v; - }); - return expr; - } - - a.diagOpType(token.MUL, v.t); - return nil; -} - -var unaryOpDescs = make(map[token.Token] string) - -func (a *exprInfo) compileUnaryExpr(op token.Token, v *expr) *expr { - // Type check - var t Type; - switch op { - case token.ADD, token.SUB: - if !v.t.isInteger() && !v.t.isFloat() { - a.diagOpType(op, v.t); - return nil; - } - t = v.t; - - case token.NOT: - if !v.t.isBoolean() { - a.diagOpType(op, v.t); - return nil; - } - t = BoolType; - - case token.XOR: - if !v.t.isInteger() { - a.diagOpType(op, v.t); - return nil; - } - t = v.t; - - case token.AND: - // The unary prefix address-of operator & generates - // the address of its operand, which must be a - // variable, pointer indirection, field selector, or - // array or slice indexing operation. - if v.evalAddr == nil { - a.diag("cannot take the address of %s", v.desc); - return nil; - } - - // TODO(austin) Implement "It is illegal to take the - // address of a function result variable" once I have - // function result variables. - - t = NewPtrType(v.t); - - case token.ARROW: - log.Crashf("Unary op %v not implemented", op); - - default: - log.Crashf("unknown unary operator %v", op); - } - - desc, ok := unaryOpDescs[op]; - if !ok { - desc = "unary " + op.String() + " expression"; - unaryOpDescs[op] = desc; - } - - // Compile - expr := a.newExpr(t, desc); - switch op { - case token.ADD: - // Just compile it out - expr = v; - expr.desc = desc; - - case token.SUB: - expr.genUnaryOpNeg(v); - - case token.NOT: - expr.genUnaryOpNot(v); - - case token.XOR: - expr.genUnaryOpXor(v); - - case token.AND: - vf := v.evalAddr; - expr.eval = func(t *Thread) Value { return vf(t) }; - - default: - log.Crashf("Compilation of unary op %v not implemented", op); - } - - return expr; -} - -var binOpDescs = make(map[token.Token] string) - -func (a *exprInfo) compileBinaryExpr(op token.Token, l, r *expr) *expr { - // Save the original types of l.t and r.t for error messages. - origlt := l.t; - origrt := r.t; - - // XXX(Spec) What is the exact definition of a "named type"? - - // XXX(Spec) Arithmetic operators: "Integer types" apparently - // means all types compatible with basic integer types, though - // this is never explained. Likewise for float types, etc. - // This relates to the missing explanation of named types. - - // XXX(Spec) Operators: "If both operands are ideal numbers, - // the conversion is to ideal floats if one of the operands is - // an ideal float (relevant for / and %)." How is that - // relevant only for / and %? If I add an ideal int and an - // ideal float, I get an ideal float. - - if op != token.SHL && op != token.SHR { - // Except in shift expressions, if one operand has - // numeric type and the other operand is an ideal - // number, the ideal number is converted to match the - // type of the other operand. - if (l.t.isInteger() || l.t.isFloat()) && !l.t.isIdeal() && r.t.isIdeal() { - r = r.convertTo(l.t); - } else if (r.t.isInteger() || r.t.isFloat()) && !r.t.isIdeal() && l.t.isIdeal() { - l = l.convertTo(r.t); - } - if l == nil || r == nil { - return nil; - } - - // Except in shift expressions, if both operands are - // ideal numbers and one is an ideal float, the other - // is converted to ideal float. - if l.t.isIdeal() && r.t.isIdeal() { - if l.t.isInteger() && r.t.isFloat() { - l = l.convertTo(r.t); - } else if l.t.isFloat() && r.t.isInteger() { - r = r.convertTo(l.t); - } - if l == nil || r == nil { - return nil; - } - } - } - - // Useful type predicates - // TODO(austin) CL 33668 mandates identical types except for comparisons. - compat := func() bool { - return l.t.compat(r.t, false); - }; - integers := func() bool { - return l.t.isInteger() && r.t.isInteger(); - }; - floats := func() bool { - return l.t.isFloat() && r.t.isFloat(); - }; - strings := func() bool { - // TODO(austin) Deal with named types - return l.t == StringType && r.t == StringType; - }; - booleans := func() bool { - return l.t.isBoolean() && r.t.isBoolean(); - }; - - // Type check - var t Type; - switch op { - case token.ADD: - if !compat() || (!integers() && !floats() && !strings()) { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - t = l.t; - - case token.SUB, token.MUL, token.QUO: - if !compat() || (!integers() && !floats()) { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - t = l.t; - - case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT: - if !compat() || !integers() { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - t = l.t; - - case token.SHL, token.SHR: - // XXX(Spec) Is it okay for the right operand to be an - // ideal float with no fractional part? "The right - // operand in a shift operation must be always be of - // unsigned integer type or an ideal number that can - // be safely converted into an unsigned integer type - // (§Arithmetic operators)" suggests so and 6g agrees. - - if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - - // The right operand in a shift operation must be - // always be of unsigned integer type or an ideal - // number that can be safely converted into an - // unsigned integer type. - if r.t.isIdeal() { - r2 := r.convertTo(UintType); - if r2 == nil { - return nil; - } - - // If the left operand is not ideal, convert - // the right to not ideal. - if !l.t.isIdeal() { - r = r2; - } - - // If both are ideal, but the right side isn't - // an ideal int, convert it to simplify things. - if l.t.isIdeal() && !r.t.isInteger() { - r = r.convertTo(IdealIntType); - if r == nil { - log.Crashf("conversion to uintType succeeded, but conversion to idealIntType failed"); - } - } - } else if _, ok := r.t.lit().(*uintType); !ok { - a.diag("right operand of shift must be unsigned"); - return nil; - } - - if l.t.isIdeal() && !r.t.isIdeal() { - // XXX(Spec) What is the meaning of "ideal >> - // non-ideal"? Russ says the ideal should be - // converted to an int. 6g propagates the - // type down from assignments as a hint. - - l = l.convertTo(IntType); - if l == nil { - return nil; - } - } - - // At this point, we should have one of three cases: - // 1) uint SHIFT uint - // 2) int SHIFT uint - // 3) ideal int SHIFT ideal int - - t = l.t; - - case token.LOR, token.LAND: - if !booleans() { - return nil; - } - // XXX(Spec) There's no mention of *which* boolean - // type the logical operators return. From poking at - // 6g, it appears to be the named boolean type, NOT - // the type of the left operand, and NOT an unnamed - // boolean type. - - t = BoolType; - - case token.ARROW: - // The operands in channel sends differ in type: one - // is always a channel and the other is a variable or - // value of the channel's element type. - log.Crash("Binary op <- not implemented"); - t = BoolType; - - case token.LSS, token.GTR, token.LEQ, token.GEQ: - // XXX(Spec) It's really unclear what types which - // comparison operators apply to. I feel like the - // text is trying to paint a Venn diagram for me, - // which it's really pretty simple: <, <=, >, >= apply - // only to numeric types and strings. == and != apply - // to everything except arrays and structs, and there - // are some restrictions on when it applies to slices. - - if !compat() || (!integers() && !floats() && !strings()) { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - t = BoolType; - - case token.EQL, token.NEQ: - // XXX(Spec) The rules for type checking comparison - // operators are spread across three places that all - // partially overlap with each other: the Comparison - // Compatibility section, the Operators section, and - // the Comparison Operators section. The Operators - // section should just say that operators require - // identical types (as it does currently) except that - // there a few special cases for comparison, which are - // described in section X. Currently it includes just - // one of the four special cases. The Comparison - // Compatibility section and the Comparison Operators - // section should either be merged, or at least the - // Comparison Compatibility section should be - // exclusively about type checking and the Comparison - // Operators section should be exclusively about - // semantics. - - // XXX(Spec) Comparison operators: "All comparison - // operators apply to basic types except bools." This - // is very difficult to parse. It's explained much - // better in the Comparison Compatibility section. - - // XXX(Spec) Comparison compatibility: "Function - // values are equal if they refer to the same - // function." is rather vague. It should probably be - // similar to the way the rule for map values is - // written: Function values are equal if they were - // created by the same execution of a function literal - // or refer to the same function declaration. This is - // *almost* but not quite waht 6g implements. If a - // function literals does not capture any variables, - // then multiple executions of it will result in the - // same closure. Russ says he'll change that. - - // TODO(austin) Deal with remaining special cases - - if !compat() { - a.diagOpTypes(op, origlt, origrt); - return nil; - } - // Arrays and structs may not be compared to anything. - switch l.t.(type) { - case *ArrayType, *StructType: - a.diagOpTypes(op, origlt, origrt); - return nil; - } - t = BoolType; - - default: - log.Crashf("unknown binary operator %v", op); - } - - desc, ok := binOpDescs[op]; - if !ok { - desc = op.String() + " expression"; - binOpDescs[op] = desc; - } - - // Check for ideal divide by zero - switch op { - case token.QUO, token.REM: - if r.t.isIdeal() { - if (r.t.isInteger() && r.asIdealInt()().IsZero()) || - (r.t.isFloat() && r.asIdealFloat()().IsZero()) { - a.diag("divide by zero"); - return nil; - } - } - } - - // Compile - expr := a.newExpr(t, desc); - switch op { - case token.ADD: - expr.genBinOpAdd(l, r); - - case token.SUB: - expr.genBinOpSub(l, r); - - case token.MUL: - expr.genBinOpMul(l, r); - - case token.QUO: - expr.genBinOpQuo(l, r); - - case token.REM: - expr.genBinOpRem(l, r); - - case token.AND: - expr.genBinOpAnd(l, r); - - case token.OR: - expr.genBinOpOr(l, r); - - case token.XOR: - expr.genBinOpXor(l, r); - - case token.AND_NOT: - expr.genBinOpAndNot(l, r); - - case token.SHL: - if l.t.isIdeal() { - lv := l.asIdealInt()(); - rv := r.asIdealInt()(); - const maxShift = 99999; - if rv.Cmp(bignum.Int(maxShift)) > 0 { - a.diag("left shift by %v; exceeds implementation limit of %v", rv, maxShift); - expr.t = nil; - return nil; - } - val := lv.Shl(uint(rv.Value())); - expr.eval = func() *bignum.Integer { return val }; - } else { - expr.genBinOpShl(l, r); - } - - case token.SHR: - if l.t.isIdeal() { - lv := l.asIdealInt()(); - rv := r.asIdealInt()(); - val := lv.Shr(uint(rv.Value())); - expr.eval = func() *bignum.Integer { return val }; - } else { - expr.genBinOpShr(l, r); - } - - case token.LSS: - expr.genBinOpLss(l, r); - - case token.GTR: - expr.genBinOpGtr(l, r); - - case token.LEQ: - expr.genBinOpLeq(l, r); - - case token.GEQ: - expr.genBinOpGeq(l, r); - - case token.EQL: - expr.genBinOpEql(l, r); - - case token.NEQ: - expr.genBinOpNeq(l, r); - - case token.LAND: - expr.genBinOpLogAnd(l, r); - - case token.LOR: - expr.genBinOpLogOr(l, r); - - default: - log.Crashf("Compilation of binary op %v not implemented", op); - } - - return expr; -} - -// TODO(austin) This is a hack to eliminate a circular dependency -// between type.go and expr.go -func (a *compiler) compileArrayLen(b *block, expr ast.Expr) (int64, bool) { - lenExpr := a.compileExpr(b, true, expr); - if lenExpr == nil { - return 0, false; - } - - // XXX(Spec) Are ideal floats with no fractional part okay? - if lenExpr.t.isIdeal() { - lenExpr = lenExpr.convertTo(IntType); - if lenExpr == nil { - return 0, false; - } - } - - if !lenExpr.t.isInteger() { - a.diagAt(expr, "array size must be an integer"); - return 0, false; - } - - switch lenExpr.t.lit().(type) { - case *intType: - return lenExpr.asInt()(nil), true; - case *uintType: - return int64(lenExpr.asUint()(nil)), true; - } - log.Crashf("unexpected integer type %T", lenExpr.t); - return 0, false; -} - -func (a *compiler) compileExpr(b *block, constant bool, expr ast.Expr) *expr { - ec := &exprCompiler{a, b, constant}; - nerr := a.numError(); - e := ec.compile(expr, false); - if e == nil && nerr == a.numError() { - log.Crashf("expression compilation failed without reporting errors"); - } - return e; -} - -// extractEffect separates out any effects that the expression may -// have, returning a function that will perform those effects and a -// new exprCompiler that is guaranteed to be side-effect free. These -// are the moral equivalents of "temp := expr" and "temp" (or "temp := -// &expr" and "*temp" for addressable exprs). Because this creates a -// temporary variable, the caller should create a temporary block for -// the compilation of this expression and the evaluation of the -// results. -func (a *expr) extractEffect(b *block, errOp string) (func(*Thread), *expr) { - // Create "&a" if a is addressable - rhs := a; - if a.evalAddr != nil { - rhs = a.compileUnaryExpr(token.AND, rhs); - } - - // Create temp - ac, ok := a.checkAssign(a.pos, []*expr{rhs}, errOp, ""); - if !ok { - return nil, nil; - } - if len(ac.rmt.Elems) != 1 { - a.diag("multi-valued expression not allowed in %s", errOp); - return nil, nil; - } - tempType := ac.rmt.Elems[0]; - if tempType.isIdeal() { - // It's too bad we have to duplicate this rule. - switch { - case tempType.isInteger(): - tempType = IntType; - case tempType.isFloat(): - tempType = FloatType; - default: - log.Crashf("unexpected ideal type %v", tempType); - } - } - temp := b.DefineTemp(tempType); - tempIdx := temp.Index; - - // Create "temp := rhs" - assign := ac.compile(b, tempType); - if assign == nil { - log.Crashf("compileAssign type check failed"); - } - - effect := func(t *Thread) { - tempVal := tempType.Zero(); - t.f.Vars[tempIdx] = tempVal; - assign(tempVal, t); - }; - - // Generate "temp" or "*temp" - getTemp := a.compileVariable(0, temp); - if a.evalAddr == nil { - return effect, getTemp; - } - - deref := a.compileStarExpr(getTemp); - if deref == nil { - return nil, nil; - } - return effect, deref; -} |