diff options
-rw-r--r-- | src/runtime/chan.c | 42 | ||||
-rw-r--r-- | src/runtime/hashmap.c | 11 | ||||
-rw-r--r-- | src/runtime/runtime.c | 3 | ||||
-rw-r--r-- | src/runtime/runtime.h | 2 | ||||
-rw-r--r-- | test/chan/powser2.go | 720 |
5 files changed, 755 insertions, 23 deletions
diff --git a/src/runtime/chan.c b/src/runtime/chan.c index 45b32d3e9..14b5ce3a6 100644 --- a/src/runtime/chan.c +++ b/src/runtime/chan.c @@ -17,10 +17,10 @@ typedef struct Scase Scase; struct SudoG { G* g; // g and selgen constitute - byte elem[8]; // synch data element int16 offset; // offset of case number int32 selgen; // a weak pointer to g SudoG* link; + byte elem[8]; // synch data element (+ more) }; struct WaitQ @@ -45,7 +45,7 @@ struct Hchan struct Link { Link* link; // asynch queue circular linked list - byte elem[8]; // asynch queue data element + byte elem[8]; // asynch queue data element (+ more) }; struct Scase @@ -65,7 +65,7 @@ struct Select uint16 tcase; // total count of scase[] uint16 ncase; // currently filled scase[] Select* link; // for freelist - Scase scase[1]; // one per case + Scase* scase[1]; // one per case }; static Select* selfree[20]; @@ -108,7 +108,7 @@ sys·newchan(uint32 elemsize, uint32 elemalg, uint32 hint, b = nil; e = nil; for(i=0; i<hint; i++) { - d = mal(sizeof(*d)); + d = mal(sizeof(*d) + c->elemsize - sizeof(d->elem)); if(e == nil) e = d; d->link = b; @@ -430,7 +430,11 @@ sys·selectsend(Select *sel, Hchan *c, ...) if(i >= sel->tcase) throw("selectsend: too many cases"); sel->ncase = i+1; - cas = &sel->scase[i]; + cas = sel->scase[i]; + if(cas == nil) { + cas = mal(sizeof *cas + c->elemsize - sizeof(cas->u.elem)); + sel->scase[i] = cas; + } cas->pc = sys·getcallerpc(&sel); cas->chan = c; @@ -473,8 +477,11 @@ sys·selectrecv(Select *sel, Hchan *c, ...) if(i >= sel->tcase) throw("selectrecv: too many cases"); sel->ncase = i+1; - cas = &sel->scase[i]; - + cas = sel->scase[i]; + if(cas == nil) { + cas = mal(sizeof *cas); + sel->scase[i] = cas; + } cas->pc = sys·getcallerpc(&sel); cas->chan = c; @@ -506,13 +513,16 @@ sys·selectdefault(Select *sel, ...) { int32 i; Scase *cas; - + i = sel->ncase; if(i >= sel->tcase) throw("selectdefault: too many cases"); sel->ncase = i+1; - cas = &sel->scase[i]; - + cas = sel->scase[i]; + if(cas == nil) { + cas = mal(sizeof *cas); + sel->scase[i] = cas; + } cas->pc = sys·getcallerpc(&sel); cas->chan = nil; @@ -579,7 +589,7 @@ sys·selectgo(Select *sel) // pass 1 - look for something already waiting dfl = nil; for(i=0; i<sel->ncase; i++) { - cas = &sel->scase[o]; + cas = sel->scase[o]; if(cas->send == 2) { // default dfl = cas; @@ -613,16 +623,16 @@ sys·selectgo(Select *sel) if(o >= sel->ncase) o -= sel->ncase; } - + if(dfl != nil) { cas = dfl; goto retc; } - + // pass 2 - enqueue on all chans for(i=0; i<sel->ncase; i++) { - cas = &sel->scase[o]; + cas = sel->scase[o]; c = cas->chan; if(c->dataqsiz > 0) { @@ -682,7 +692,7 @@ sys·selectgo(Select *sel) lock(&chanlock); sg = g->param; o = sg->offset; - cas = &sel->scase[o]; + cas = sel->scase[o]; c = cas->chan; if(xxx) { @@ -832,7 +842,7 @@ allocsg(Hchan *c) if(sg != nil) { c->free = sg->link; } else - sg = mal(sizeof(*sg)); + sg = mal(sizeof(*sg) + c->elemsize - sizeof(sg->elem)); sg->selgen = g->selgen; sg->g = g; sg->offset = 0; diff --git a/src/runtime/hashmap.c b/src/runtime/hashmap.c index 83fe06c66..5b32fe588 100644 --- a/src/runtime/hashmap.c +++ b/src/runtime/hashmap.c @@ -8,6 +8,7 @@ /* Return a pointer to the struct/union of type "type" whose "field" field is addressed by pointer "p". */ + struct hash { /* a hash table; initialize with hash_init() */ uint32 count; /* elements in table - must be first */ @@ -291,7 +292,7 @@ hash_lookup (struct hash *h, void *data, void **pres) int32 shift = HASH_BITS - (st->power + used); int32 index_mask = (1 << st->power) - 1; int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */ - + e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */ e_hash = e->hash; if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */ @@ -332,7 +333,7 @@ hash_remove (struct hash *h, void *data, void *arg) int32 shift = HASH_BITS - (st->power + used); int32 index_mask = (1 << st->power) - 1; int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */ - + e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */ e_hash = e->hash; if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */ @@ -378,7 +379,7 @@ hash_insert_internal (struct hash_subtable **pst, int32 flags, hash_hash_t hash, struct hash_entry *e = start_e; /* e is going to range over [start_e, end_e) */ struct hash_entry *end_e; hash_hash_t e_hash = e->hash; - + if ((e_hash & HASH_MASK) == HASH_SUBHASH) { /* a subtable */ pst = (struct hash_subtable **) e->data; flags += HASH_MAKE_USED (st->power); @@ -662,8 +663,8 @@ sys·newmap(uint32 keysize, uint32 valsize, { Hmap *h; - if(keyalg >= 3 || - valalg >= 3) { + if(keyalg >= 4 || + valalg >= 4) { prints("0<="); sys·printint(keyalg); prints("<"); diff --git a/src/runtime/runtime.c b/src/runtime/runtime.c index baf6eb68b..3d0ee7f1e 100644 --- a/src/runtime/runtime.c +++ b/src/runtime/runtime.c @@ -644,11 +644,12 @@ pointercopy(uint32 s, void **a, void **b) } Alg -algarray[3] = +algarray[4] = { { memhash, memequal, memprint, memcopy }, // 0 { stringhash, stringequal, stringprint, stringcopy }, // 1 // { pointerhash, pointerequal, pointerprint, pointercopy }, // 2 { memhash, memequal, memprint, memcopy }, // 2 - treat pointers as ints + { memhash, memequal, memprint, memcopy }, // 3 - treat interfaces as memory }; diff --git a/src/runtime/runtime.h b/src/runtime/runtime.h index dea47f72e..b2395e236 100644 --- a/src/runtime/runtime.h +++ b/src/runtime/runtime.h @@ -220,7 +220,7 @@ struct Func /* * external data */ -extern Alg algarray[3]; +extern Alg algarray[4]; extern string emptystring; G* allg; int32 goidgen; diff --git a/test/chan/powser2.go b/test/chan/powser2.go new file mode 100644 index 000000000..52f89ca5b --- /dev/null +++ b/test/chan/powser2.go @@ -0,0 +1,720 @@ +// $G $D/$F.go && $L $F.$A && ./$A.out + +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Power series package +// A power series is a channel, along which flow rational +// coefficients. A denominator of zero signifies the end. +// Original code in Newsqueak by Doug McIlroy. +// See Squinting at Power Series by Doug McIlroy, +// http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf +// Like powser1.go but uses channels of interfaces. + +package main + +type rat struct { + num, den int64; // numerator, denominator +} + +type item interface { + pr(); + eq(c item) bool; +} + +func (u *rat) pr(){ + if u.den==1 { print(u.num) } + else { print(u.num, "/", u.den) } + print(" ") +} + +func (u *rat) eq(c item) bool { + c1 := c.(*rat); + return u.num == c1.num && u.den == c1.den +} + +type dch struct { + req *chan int; + dat *chan item; + nam int; +} + +type dch2 [2] *dch + +var chnames string +var chnameserial int +var seqno int + +func Init(); + +func mkdch() *dch { + c := chnameserial % len(chnames); + chnameserial++; + d := new(dch); + d.req = new(chan int); + d.dat = new(chan item); + d.nam = c; + return d; +} + +func mkdch2() *dch2 { + d2 := new(dch2); + d2[0] = mkdch(); + d2[1] = mkdch(); + return d2; +} + +// split reads a single demand channel and replicates its +// output onto two, which may be read at different rates. +// A process is created at first demand for an item and dies +// after the item has been sent to both outputs. + +// When multiple generations of split exist, the newest +// will service requests on one channel, which is +// always renamed to be out[0]; the oldest will service +// requests on the other channel, out[1]. All generations but the +// newest hold queued data that has already been sent to +// out[0]. When data has finally been sent to out[1], +// a signal on the release-wait channel tells the next newer +// generation to begin servicing out[1]. + +func dosplit(in *dch, out *dch2, wait *chan int ){ + var t *dch; + both := false; // do not service both channels + + select { + case <-out[0].req: + ; + case <-wait: + both = true; + select { + case <-out[0].req: + ; + case <-out[1].req: + t=out[0]; out[0]=out[1]; out[1]=t; + } + } + + seqno++; + in.req <- seqno; + release := new(chan int); + go dosplit(in, out, release); + dat := <-in.dat; + out[0].dat <- dat; + if !both { + <-wait + } + <-out[1].req; + out[1].dat <- dat; + release <- 0; +} + +func split(in *dch, out *dch2){ + release := new(chan int); + go dosplit(in, out, release); + release <- 0; +} + +func put(dat item, out *dch){ + <-out.req; + out.dat <- dat; +} + +func get(in *dch) *rat { + seqno++; + in.req <- seqno; + return <-in.dat; +} + +// Get one item from each of n demand channels + +func getn(in *[]*dch, n int) *[]item { + // BUG n:=len(in); + if n != 2 { panic("bad n in getn") }; + req := new([2] *chan int); + dat := new([2] *chan item); + out := new([2] item); + var i int; + var it item; + for i=0; i<n; i++ { + req[i] = in[i].req; + dat[i] = nil; + } + for n=2*n; n>0; n-- { + seqno++; + + select{ + case req[0] <- seqno: + dat[0] = in[0].dat; + req[0] = nil; + case req[1] <- seqno: + dat[1] = in[1].dat; + req[1] = nil; + case it = <-dat[0]: + out[0] = it; + dat[0] = nil; + case it = <-dat[1]: + out[1] = it; + dat[1] = nil; + } + } + return out; +} + +// Get one item from each of 2 demand channels + +func get2(in0 *dch, in1 *dch) *[]item { + x := new([2] *dch); + x[0] = in0; + x[1] = in1; + return getn(x, 2); +} + +func copy(in *dch, out *dch){ + for { + <-out.req; + out.dat <- get(in); + } +} + +func repeat(dat item, out *dch){ + for { + put(dat, out) + } +} + +type PS *dch; // power series +type PS2 *[2] PS; // pair of power series + +var Ones PS +var Twos PS + +func mkPS() *dch { + return mkdch() +} + +func mkPS2() *dch2 { + return mkdch2() +} + +// Conventions +// Upper-case for power series. +// Lower-case for rationals. +// Input variables: U,V,... +// Output variables: ...,Y,Z + +// Integer gcd; needed for rational arithmetic + +func gcd (u, v int64) int64{ + if u < 0 { return gcd(-u, v) } + if u == 0 { return v } + return gcd(v%u, u) +} + +// Make a rational from two ints and from one int + +func i2tor(u, v int64) *rat{ + g := gcd(u,v); + r := new(rat); + if v > 0 { + r.num = u/g; + r.den = v/g; + } else { + r.num = -u/g; + r.den = -v/g; + } + return r; +} + +func itor(u int64) *rat{ + return i2tor(u, 1); +} + +var zero *rat; +var one *rat; + + +// End mark and end test + +var finis *rat; + +func end(u *rat) int64 { + if u.den==0 { return 1 } + return 0 +} + +// Operations on rationals + +func add(u, v *rat) *rat { + g := gcd(u.den,v.den); + return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g)); +} + +func mul(u, v *rat) *rat{ + g1 := gcd(u.num,v.den); + g2 := gcd(u.den,v.num); + r := new(rat); + r.num =(u.num/g1)*(v.num/g2); + r.den = (u.den/g2)*(v.den/g1); + return r; +} + +func neg(u *rat) *rat{ + return i2tor(-u.num, u.den); +} + +func sub(u, v *rat) *rat{ + return add(u, neg(v)); +} + +func inv(u *rat) *rat{ // invert a rat + if u.num == 0 { panic("zero divide in inv") } + return i2tor(u.den, u.num); +} + +// print eval in floating point of PS at x=c to n terms +func +Evaln(c *rat, U PS, n int) +{ + xn := float64(1); + x := float64(c.num)/float64(c.den); + val := float64(0); + for i:=0; i<n; i++ { + u := get(U); + if end(u) != 0 { + break; + } + val = val + x * float64(u.num)/float64(u.den); + xn = xn*x; + } + print(val, "\n"); +} + +// Print n terms of a power series +func Printn(U PS, n int){ + done := false; + for ; !done && n>0; n-- { + u := get(U); + if end(u) != 0 { done = true } + else { u.pr() } + } + print(("\n")); +} + +func Print(U PS){ + Printn(U,1000000000); +} + +// Evaluate n terms of power series U at x=c +func eval(c *rat, U PS, n int) *rat{ + if n==0 { return zero } + y := get(U); + if end(y) != 0 { return zero } + return add(y,mul(c,eval(c,U,n-1))); +} + +// Power-series constructors return channels on which power +// series flow. They start an encapsulated generator that +// puts the terms of the series on the channel. + +// Make a pair of power series identical to a given power series + +func Split(U PS) *dch2{ + UU := mkdch2(); + go split(U,UU); + return UU; +} + +// Add two power series +func Add(U, V PS) PS{ + Z := mkPS(); + go func(U, V, Z PS){ + var uv *[] item; + for { + <-Z.req; + uv = get2(U,V); + switch end(uv[0])+2*end(uv[1]) { + case 0: + Z.dat <- add(uv[0], uv[1]); + case 1: + Z.dat <- uv[1]; + copy(V,Z); + case 2: + Z.dat <- uv[0]; + copy(U,Z); + case 3: + Z.dat <- finis; + } + } + }(U, V, Z); + return Z; +} + +// Multiply a power series by a constant +func Cmul(c *rat,U PS) PS{ + Z := mkPS(); + go func(c *rat, U, Z PS){ + done := false; + for !done { + <-Z.req; + u := get(U); + if end(u) != 0 { done = true } + else { Z.dat <- mul(c,u) } + } + Z.dat <- finis; + }(c, U, Z); + return Z; +} + +// Subtract + +func Sub(U, V PS) PS{ + return Add(U, Cmul(neg(one), V)); +} + +// Multiply a power series by the monomial x^n + +func Monmul(U PS, n int) PS{ + Z := mkPS(); + go func(n int, U PS, Z PS){ + for ; n>0; n-- { put(zero,Z) } + copy(U,Z); + }(n, U, Z); + return Z; +} + +// Multiply by x + +func Xmul(U PS) PS{ + return Monmul(U,1); +} + +func Rep(c *rat) PS{ + Z := mkPS(); + go repeat(c,Z); + return Z; +} + +// Monomial c*x^n + +func Mon(c *rat, n int) PS{ + Z:=mkPS(); + go func(c *rat, n int, Z PS){ + if(c.num!=0) { + for ; n>0; n=n-1 { put(zero,Z) } + put(c,Z); + } + put(finis,Z); + }(c, n, Z); + return Z; +} + +func Shift(c *rat, U PS) PS{ + Z := mkPS(); + go func(c *rat, U, Z PS){ + put(c,Z); + copy(U,Z); + }(c, U, Z); + return Z; +} + +// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... + +// Convert array of coefficients, constant term first +// to a (finite) power series + +/* BUG: NEED LEN OF ARRAY +func Poly(a [] *rat) PS{ + Z:=mkPS(); + begin func(a [] *rat, Z PS){ + j:=0; + done:=0; + for j=len(a); !done&&j>0; j=j-1) + if(a[j-1].num!=0) done=1; + i:=0; + for(; i<j; i=i+1) put(a[i],Z); + put(finis,Z); + }(); + return Z; +} +*/ + +// Multiply. The algorithm is +// let U = u + x*UU +// let V = v + x*VV +// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV + +func Mul(U, V PS) PS{ + Z:=mkPS(); + go func(U, V, Z PS){ + <-Z.req; + uv := get2(U,V); + if end(uv[0])!=0 || end(uv[1]) != 0 { + Z.dat <- finis; + } else { + Z.dat <- mul(uv[0],uv[1]); + UU := Split(U); + VV := Split(V); + W := Add(Cmul(uv[0],VV[0]),Cmul(uv[1],UU[0])); + <-Z.req; + Z.dat <- get(W); + copy(Add(W,Mul(UU[1],VV[1])),Z); + } + }(U, V, Z); + return Z; +} + +// Differentiate + +func Diff(U PS) PS{ + Z:=mkPS(); + go func(U, Z PS){ + <-Z.req; + u := get(U); + if end(u) == 0 { + done:=false; + for i:=1; !done; i++ { + u = get(U); + if end(u) != 0 { done=true } + else { + Z.dat <- mul(itor(int64(i)),u); + <-Z.req; + } + } + } + Z.dat <- finis; + }(U, Z); + return Z; +} + +// Integrate, with const of integration +func Integ(c *rat,U PS) PS{ + Z:=mkPS(); + go func(c *rat, U, Z PS){ + put(c,Z); + done:=false; + for i:=1; !done; i++ { + <-Z.req; + u := get(U); + if end(u) != 0 { done= true } + Z.dat <- mul(i2tor(1,int64(i)),u); + } + Z.dat <- finis; + }(c, U, Z); + return Z; +} + +// Binomial theorem (1+x)^c + +func Binom(c *rat) PS{ + Z:=mkPS(); + go func(c *rat, Z PS){ + n := 1; + t := itor(1); + for c.num!=0 { + put(t,Z); + t = mul(mul(t,c),i2tor(1,int64(n))); + c = sub(c,one); + n++; + } + put(finis,Z); + }(c, Z); + return Z; +} + +// Reciprocal of a power series +// let U = u + x*UU +// let Z = z + x*ZZ +// (u+x*UU)*(z+x*ZZ) = 1 +// z = 1/u +// u*ZZ + z*UU +x*UU*ZZ = 0 +// ZZ = -UU*(z+x*ZZ)/u; + +func Recip(U PS) PS{ + Z:=mkPS(); + go func(U, Z PS){ + ZZ:=mkPS2(); + <-Z.req; + z := inv(get(U)); + Z.dat <- z; + split(Mul(Cmul(neg(z),U),Shift(z,ZZ[0])),ZZ); + copy(ZZ[1],Z); + }(U, Z); + return Z; +} + +// Exponential of a power series with constant term 0 +// (nonzero constant term would make nonrational coefficients) +// bug: the constant term is simply ignored +// Z = exp(U) +// DZ = Z*DU +// integrate to get Z + +func Exp(U PS) PS{ + ZZ := mkPS2(); + split(Integ(one,Mul(ZZ[0],Diff(U))),ZZ); + return ZZ[1]; +} + +// Substitute V for x in U, where the leading term of V is zero +// let U = u + x*UU +// let V = v + x*VV +// then S(U,V) = u + VV*S(V,UU) +// bug: a nonzero constant term is ignored + +func Subst(U, V PS) PS { + Z:= mkPS(); + go func(U, V, Z PS) { + VV := Split(V); + <-Z.req; + u := get(U); + Z.dat <- u; + if end(u) == 0 { + if end(get(VV[0])) != 0 { put(finis,Z); } + else { copy(Mul(VV[0],Subst(U,VV[1])),Z); } + } + }(U, V, Z); + return Z; +} + +// Monomial Substition: U(c x^n) +// Each Ui is multiplied by c^i and followed by n-1 zeros + +func MonSubst(U PS, c0 *rat, n int) PS { + Z:= mkPS(); + go func(U, Z PS, c0 *rat, n int) { + c := one; + for { + <-Z.req; + u := get(U); + Z.dat <- mul(u, c); + c = mul(c, c0); + if end(u) != 0 { + Z.dat <- finis; + break; + } + for i := 1; i < n; i++ { + <-Z.req; + Z.dat <- zero; + } + } + }(U, Z, c0, n); + return Z; +} + + +func Init() { + chnameserial = -1; + seqno = 0; + chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; + zero = itor(0); + one = itor(1); + finis = i2tor(1,0); + Ones = Rep(one); + Twos = Rep(itor(2)); +} + +func check(U PS, c *rat, count int, str string) { + for i := 0; i < count; i++ { + r := get(U); + if !r.eq(c) { + print("got: "); + r.pr(); + print("should get "); + c.pr(); + print("\n"); + panic(str) + } + } +} + +const N=10 +func checka(U PS, a *[]*rat, str string) { + for i := 0; i < N; i++ { + check(U, a[i], 1, str); + } +} + +func main() { + Init(); + if sys.argc() > 1 { // print + print("Ones: "); Printn(Ones, 10); + print("Twos: "); Printn(Twos, 10); + print("Add: "); Printn(Add(Ones, Twos), 10); + print("Diff: "); Printn(Diff(Ones), 10); + print("Integ: "); Printn(Integ(zero, Ones), 10); + print("CMul: "); Printn(Cmul(neg(one), Ones), 10); + print("Sub: "); Printn(Sub(Ones, Twos), 10); + print("Mul: "); Printn(Mul(Ones, Ones), 10); + print("Exp: "); Printn(Exp(Ones), 15); + print("MonSubst: "); Printn(MonSubst(Ones, neg(one), 2), 10); + print("ATan: "); Printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10); + } else { // test + check(Ones, one, 5, "Ones"); + check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones"); // 1 1 1 1 1 + check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos"); // 3 3 3 3 3 + a := new([N] *rat); + d := Diff(Ones); + // BUG: want array initializer + for i:=0; i < N; i++ { + a[i] = itor(int64(i+1)) + } + checka(d, a, "Diff"); // 1 2 3 4 5 + in := Integ(zero, Ones); + // BUG: want array initializer + a[0] = zero; // integration constant + for i:=1; i < N; i++ { + a[i] = i2tor(1, int64(i)) + } + checka(in, a, "Integ"); // 0 1 1/2 1/3 1/4 1/5 + check(Cmul(neg(one), Twos), itor(-2), 10, "CMul"); // -1 -1 -1 -1 -1 + check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos"); // -1 -1 -1 -1 -1 + m := Mul(Ones, Ones); + // BUG: want array initializer + for i:=0; i < N; i++ { + a[i] = itor(int64(i+1)) + } + checka(m, a, "Mul"); // 1 2 3 4 5 + e := Exp(Ones); + // BUG: want array initializer + a[0] = itor(1); + a[1] = itor(1); + a[2] = i2tor(3,2); + a[3] = i2tor(13,6); + a[4] = i2tor(73,24); + a[5] = i2tor(167,40); + a[6] = i2tor(4051,720); + a[7] = i2tor(37633,5040); + a[8] = i2tor(43817,4480); + a[9] = i2tor(4596553,362880); + checka(e, a, "Exp"); // 1 1 3/2 13/6 73/24 + at := Integ(zero, MonSubst(Ones, neg(one), 2)); + // BUG: want array initializer + for c, i := 1, 0; i < N; i++ { + if i%2 == 0 { + a[i] = zero + } else { + a[i] = i2tor(int64(c), int64(i)); + c *= -1 + } + } + checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5 +/* + t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))); + // BUG: want array initializer + a[0] = zero; + a[1] = itor(1); + a[2] = zero; + a[3] = i2tor(1,3); + a[4] = zero; + a[5] = i2tor(2,15); + a[6] = zero; + a[7] = i2tor(17,315); + a[8] = zero; + a[9] = i2tor(62,2835); + checka(t, a, "Tan"); // 0 1 0 1/3 0 2/15 +*/ + } + sys.exit(0); // BUG: force waiting goroutines to exit +} |