diff options
Diffstat (limited to 'doc/articles/json_and_go.html')
-rw-r--r-- | doc/articles/json_and_go.html | 356 |
1 files changed, 356 insertions, 0 deletions
diff --git a/doc/articles/json_and_go.html b/doc/articles/json_and_go.html new file mode 100644 index 000000000..af7776c0a --- /dev/null +++ b/doc/articles/json_and_go.html @@ -0,0 +1,356 @@ +<!--{ +"Title": "JSON and Go", +"Template": true +}--> + +<p> +JSON (JavaScript Object Notation) is a simple data interchange format. +Syntactically it resembles the objects and lists of JavaScript. It is most +commonly used for communication between web back-ends and JavaScript programs +running in the browser, but it is used in many other places, too. Its home page, +<a href="http://json.org">json.org</a>, provides a wonderfully clear and concise +definition of the standard. +</p> + +<p> +With the <a href="/pkg/encoding/json/">json package</a> it's a snap to read and +write JSON data from your Go programs. +</p> + +<p> +<b>Encoding</b> +</p> + +<p> +To encode JSON data we use the +<a href="/pkg/encoding/json/#Marshal"><code>Marshal</code></a> function. +</p> + +<pre> +func Marshal(v interface{}) ([]byte, error) +</pre> + +<p> +Given the Go data structure, <code>Message</code>, +</p> + +{{code "/doc/progs/json1.go" `/type Message/` `/STOP/`}} + +<p> +and an instance of <code>Message</code> +</p> + +{{code "/doc/progs/json1.go" `/m :=/`}} + +<p> +we can marshal a JSON-encoded version of m using <code>json.Marshal</code>: +</p> + +{{code "/doc/progs/json1.go" `/b, err :=/`}} + +<p> +If all is well, <code>err</code> will be <code>nil</code> and <code>b</code> +will be a <code>[]byte</code> containing this JSON data: +</p> + +<pre> +b == []byte(`{"Name":"Alice","Body":"Hello","Time":1294706395881547000}`) +</pre> + +<p> +Only data structures that can be represented as valid JSON will be encoded: +</p> + +<ul> +<li> +JSON objects only support strings as keys; to encode a Go map type it must be +of the form <code>map[string]T</code> (where <code>T</code> is any Go type +supported by the json package). +</li> +<li> +Channel, complex, and function types cannot be encoded. +</li> +<li> +Cyclic data structures are not supported; they will cause <code>Marshal</code> +to go into an infinite loop. +</li> +<li> +Pointers will be encoded as the values they point to (or 'null' if the pointer +is <code>nil</code>). +</li> +</ul> + +<p> +The json package only accesses the exported fields of struct types (those that +begin with an uppercase letter). Therefore only the the exported fields of a +struct will be present in the JSON output. +</p> + +<p> +<b>Decoding</b> +</p> + +<p> +To decode JSON data we use the +<a href="/pkg/encoding/json/#Unmarshal"><code>Unmarshal</code></a> function. +</p> + +<pre> +func Unmarshal(data []byte, v interface{}) error +</pre> + +<p> +We must first create a place where the decoded data will be stored +</p> + +{{code "/doc/progs/json1.go" `/var m Message/`}} + +<p> +and call <code>json.Unmarshal</code>, passing it a <code>[]byte</code> of JSON +data and a pointer to <code>m</code> +</p> + +{{code "/doc/progs/json1.go" `/err := json.Unmarshal/`}} + +<p> +If <code>b</code> contains valid JSON that fits in <code>m</code>, after the +call <code>err</code> will be <code>nil</code> and the data from <code>b</code> +will have been stored in the struct <code>m</code>, as if by an assignment +like: +</p> + +{{code "/doc/progs/json1.go" `/m = Message/` `/STOP/`}} + +<p> +How does <code>Unmarshal</code> identify the fields in which to store the +decoded data? For a given JSON key <code>"Foo"</code>, <code>Unmarshal</code> +will look through the destination struct's fields to find (in order of +preference): +</p> + +<ul> +<li> +An exported field with a tag of <code>"Foo"</code> (see the +<a href="/ref/spec#Struct_types">Go spec</a> for more on struct tags), +</li> +<li> +An exported field named <code>"Foo"</code>, or +</li> +<li> +An exported field named <code>"FOO"</code> or <code>"FoO"</code> or some other +case-insensitive match of <code>"Foo"</code>. +</li> +</ul> + +<p> +What happens when the structure of the JSON data doesn't exactly match the Go +type? +</p> + +{{code "/doc/progs/json1.go" `/"Food":"Pickle"/` `/STOP/`}} + +<p> +<code>Unmarshal</code> will decode only the fields that it can find in the +destination type. In this case, only the Name field of m will be populated, +and the Food field will be ignored. This behavior is particularly useful when +you wish to pick only a few specific fields out of a large JSON blob. It also +means that any unexported fields in the destination struct will be unaffected +by <code>Unmarshal</code>. +</p> + +<p> +But what if you don't know the structure of your JSON data beforehand? +</p> + +<p> +<b>Generic JSON with interface{}</b> +</p> + +<p> +The <code>interface{}</code> (empty interface) type describes an interface with +zero methods. Every Go type implements at least zero methods and therefore +satisfies the empty interface. +</p> + +<p> +The empty interface serves as a general container type: +</p> + +{{code "/doc/progs/json2.go" `/var i interface{}/` `/STOP/`}} + +<p> +A type assertion accesses the underlying concrete type: +</p> + +{{code "/doc/progs/json2.go" `/r := i/` `/STOP/`}} + +<p> +Or, if the underlying type is unknown, a type switch determines the type: +</p> + +{{code "/doc/progs/json2.go" `/switch v/` `/STOP/`}} + + +The json package uses <code>map[string]interface{}</code> and +<code>[]interface{}</code> values to store arbitrary JSON objects and arrays; +it will happily unmarshal any valid JSON blob into a plain +<code>interface{}</code> value. The default concrete Go types are: + +<ul> +<li> +<code>bool</code> for JSON booleans, +</li> +<li> +<code>float64</code> for JSON numbers, +</li> +<li> +<code>string</code> for JSON strings, and +</li> +<li> +<code>nil</code> for JSON null. +</li> +</ul> + +<p> +<b>Decoding arbitrary data</b> +</p> + +<p> +Consider this JSON data, stored in the variable <code>b</code>: +</p> + +{{code "/doc/progs/json3.go" `/b :=/`}} + +<p> +Without knowing this data's structure, we can decode it into an +<code>interface{}</code> value with <code>Unmarshal</code>: +</p> + +{{code "/doc/progs/json3.go" `/var f interface/` `/STOP/`}} + +<p> +At this point the Go value in <code>f</code> would be a map whose keys are +strings and whose values are themselves stored as empty interface values: +</p> + +{{code "/doc/progs/json3.go" `/f = map/` `/STOP/`}} + +<p> +To access this data we can use a type assertion to access <code>f</code>'s +underlying <code>map[string]interface{}</code>: +</p> + +{{code "/doc/progs/json3.go" `/m := f/`}} + +<p> +We can then iterate through the map with a range statement and use a type switch +to access its values as their concrete types: +</p> + +{{code "/doc/progs/json3.go" `/for k, v/` `/STOP/`}} + +<p> +In this way you can work with unknown JSON data while still enjoying the +benefits of type safety. +</p> + +<p> +<b>Reference Types</b> +</p> + +<p> +Let's define a Go type to contain the data from the previous example: +</p> + +{{code "/doc/progs/json4.go" `/type FamilyMember/` `/STOP/`}} + +{{code "/doc/progs/json4.go" `/var m FamilyMember/` `/STOP/`}} + +<p> +Unmarshaling that data into a <code>FamilyMember</code> value works as +expected, but if we look closely we can see a remarkable thing has happened. +With the var statement we allocated a <code>FamilyMember</code> struct, and +then provided a pointer to that value to <code>Unmarshal</code>, but at that +time the <code>Parents</code> field was a <code>nil</code> slice value. To +populate the <code>Parents</code> field, <code>Unmarshal</code> allocated a new +slice behind the scenes. This is typical of how <code>Unmarshal</code> works +with the supported reference types (pointers, slices, and maps). +</p> + +<p> +Consider unmarshaling into this data structure: +</p> + +<pre> +type Foo struct { + Bar *Bar +} +</pre> + +<p> +If there were a <code>Bar</code> field in the JSON object, +<code>Unmarshal</code> would allocate a new <code>Bar</code> and populate it. +If not, <code>Bar</code> would be left as a <code>nil</code> pointer. +</p> + +<p> +From this a useful pattern arises: if you have an application that receives a +few distinct message types, you might define "receiver" structure like +</p> + +<pre> +type IncomingMessage struct { + Cmd *Command + Msg *Message +} +</pre> + +<p> +and the sending party can populate the <code>Cmd</code> field and/or the +<code>Msg</code> field of the top-level JSON object, depending on the type of +message they want to communicate. <code>Unmarshal</code>, when decoding the +JSON into an <code>IncomingMessage</code> struct, will only allocate the data +structures present in the JSON data. To know which messages to process, the +programmer need simply test that either <code>Cmd</code> or <code>Msg</code> is +not <code>nil</code>. +</p> + +<p> +<b>Streaming Encoders and Decoders</b> +</p> + +<p> +The json package provides <code>Decoder</code> and <code>Encoder</code> types +to support the common operation of reading and writing streams of JSON data. +The <code>NewDecoder</code> and <code>NewEncoder</code> functions wrap the +<a href="/pkg/io/#Reader"><code>io.Reader</code></a> and +<a href="/pkg/io/#Writer"><code>io.Writer</code></a> interface types. +</p> + +<pre> +func NewDecoder(r io.Reader) *Decoder +func NewEncoder(w io.Writer) *Encoder +</pre> + +<p> +Here's an example program that reads a series of JSON objects from standard +input, removes all but the <code>Name</code> field from each object, and then +writes the objects to standard output: +</p> + +{{code "/doc/progs/json5.go" `/package main/` `$`}} + +<p> +Due to the ubiquity of Readers and Writers, these <code>Encoder</code> and +<code>Decoder</code> types can be used in a broad range of scenarios, such as +reading and writing to HTTP connections, WebSockets, or files. +</p> + +<p> +<b>References</b> +</p> + +<p> +For more information see the <a href="/pkg/encoding/json/">json package documentation</a>. For an example usage of +json see the source files of the <a href="/pkg/net/rpc/jsonrpc/">jsonrpc package</a>. +</p> |