summaryrefslogtreecommitdiff
path: root/doc/articles
diff options
context:
space:
mode:
Diffstat (limited to 'doc/articles')
-rw-r--r--doc/articles/c_go_cgo.html179
-rw-r--r--doc/articles/concurrency_patterns.html79
-rw-r--r--doc/articles/defer_panic_recover.html197
-rw-r--r--doc/articles/error_handling.html316
-rw-r--r--doc/articles/gobs_of_data.html315
-rw-r--r--doc/articles/godoc_documenting_go_code.html147
-rw-r--r--doc/articles/gos_declaration_syntax.html348
-rw-r--r--doc/articles/image-20.pngbin95383 -> 0 bytes
-rw-r--r--doc/articles/image-2a.pngbin3625 -> 0 bytes
-rw-r--r--doc/articles/image-2b.pngbin95423 -> 0 bytes
-rw-r--r--doc/articles/image-2c.pngbin60552 -> 0 bytes
-rw-r--r--doc/articles/image-2d.pngbin68314 -> 0 bytes
-rw-r--r--doc/articles/image-2e.pngbin96721 -> 0 bytes
-rw-r--r--doc/articles/image-2f.pngbin62662 -> 0 bytes
-rw-r--r--doc/articles/image-package-01.pngbin1393 -> 0 bytes
-rw-r--r--doc/articles/image-package-02.pngbin1494 -> 0 bytes
-rw-r--r--doc/articles/image-package-03.pngbin1477 -> 0 bytes
-rw-r--r--doc/articles/image-package-04.pngbin1631 -> 0 bytes
-rw-r--r--doc/articles/image-package-05.pngbin1613 -> 0 bytes
-rw-r--r--doc/articles/image_draw.html222
-rw-r--r--doc/articles/image_package.html312
-rw-r--r--doc/articles/index.html3
-rw-r--r--doc/articles/json_and_go.html357
-rw-r--r--doc/articles/json_rpc_tale_of_interfaces.html78
-rw-r--r--doc/articles/laws_of_reflection.html649
-rw-r--r--doc/articles/race_detector.html383
-rw-r--r--doc/articles/slice-1.pngbin6334 -> 0 bytes
-rw-r--r--doc/articles/slice-2.pngbin7220 -> 0 bytes
-rw-r--r--doc/articles/slice-3.pngbin7303 -> 0 bytes
-rw-r--r--doc/articles/slice-array.pngbin1237 -> 0 bytes
-rw-r--r--doc/articles/slice-struct.pngbin3650 -> 0 bytes
-rw-r--r--doc/articles/slices_usage_and_internals.html438
-rw-r--r--doc/articles/wiki/Makefile12
-rw-r--r--doc/articles/wiki/final-noclosure.go14
-rw-r--r--doc/articles/wiki/final-noerror.go6
-rw-r--r--doc/articles/wiki/final-parsetemplate.go10
-rw-r--r--doc/articles/wiki/final-template.go8
-rw-r--r--doc/articles/wiki/final.go10
-rw-r--r--doc/articles/wiki/htmlify.go16
-rw-r--r--doc/articles/wiki/index.html39
-rw-r--r--doc/articles/wiki/notemplate.go6
-rw-r--r--doc/articles/wiki/part2.go4
-rw-r--r--doc/articles/wiki/part3-errorhandling.go8
-rw-r--r--doc/articles/wiki/part3.go6
-rw-r--r--doc/articles/wiki/srcextract.go76
-rwxr-xr-xdoc/articles/wiki/test.bash9
46 files changed, 58 insertions, 4189 deletions
diff --git a/doc/articles/c_go_cgo.html b/doc/articles/c_go_cgo.html
deleted file mode 100644
index b37a6ba65..000000000
--- a/doc/articles/c_go_cgo.html
+++ /dev/null
@@ -1,179 +0,0 @@
-<!--{
-"Title": "C? Go? Cgo!",
-"Template": true
-}-->
-
-<p>
-Cgo lets Go packages call C code. Given a Go source file written with some
-special features, cgo outputs Go and C files that can be combined into a
-single Go package.
-</p>
-
-<p>
-To lead with an example, here's a Go package that provides two functions -
-<code>Random</code> and <code>Seed</code> - that wrap C's <code>random</code>
-and <code>srandom</code> functions.
-</p>
-
-{{code "/doc/progs/cgo1.go" `/package rand/` `/END/`}}
-
-<p>
-Let's look at what's happening here, starting with the import statement.
-</p>
-
-<p>
-The <code>rand</code> package imports <code>"C"</code>, but you'll find there's
-no such package in the standard Go library. That's because <code>C</code> is a
-"pseudo-package", a special name interpreted by cgo as a reference to C's
-name space.
-</p>
-
-<p>
-The <code>rand</code> package contains four references to the <code>C</code>
-package: the calls to <code>C.random</code> and <code>C.srandom</code>, the
-conversion <code>C.uint(i)</code>, and the <code>import</code> statement.
-</p>
-
-<p>
-The <code>Random</code> function calls the standard C library's <code>random</code>
-function and returns the result. In C, <code>random</code> returns a value of the
-C type <code>long</code>, which cgo represents as the type <code>C.long</code>.
-It must be converted to a Go type before it can be used by Go code outside this
-package, using an ordinary Go type conversion:
-</p>
-
-{{code "/doc/progs/cgo1.go" `/func Random/` `/STOP/`}}
-
-<p>
-Here's an equivalent function that uses a temporary variable to illustrate
-the type conversion more explicitly:
-</p>
-
-{{code "/doc/progs/cgo2.go" `/func Random/` `/STOP/`}}
-
-<p>
-The <code>Seed</code> function does the reverse, in a way. It takes a
-regular Go <code>int</code>, converts it to the C <code>unsigned int</code>
-type, and passes it to the C function <code>srandom</code>.
-</p>
-
-{{code "/doc/progs/cgo1.go" `/func Seed/` `/END/`}}
-
-<p>
-Note that cgo knows the <code>unsigned int</code> type as <code>C.uint</code>;
-see the <a href="/cmd/cgo">cgo documentation</a> for a complete list of
-these numeric type names.
-</p>
-
-<p>
-The one detail of this example we haven't examined yet is the comment
-above the <code>import</code> statement.
-</p>
-
-{{code "/doc/progs/cgo1.go" `/\/\*/` `/STOP/`}}
-
-<p>
-Cgo recognizes this comment. Any lines starting
-with <code>#cgo</code>
-followed
-by a space character are removed; these become directives for cgo.
-The remaining lines are used as a header when compiling the C parts of
-the package. In this case those lines are just a
-single <code>#include</code>
-statement, but they can be almost any C code. The <code>#cgo</code>
-directives are
-used to provide flags for the compiler and linker when building the C
-parts of the package.
-</p>
-
-<p>
-There is a limitation: if your program uses any <code>//export</code>
-directives, then the C code in the comment may only include declarations
-(<code>extern int f();</code>), not definitions (<code>int f() {
-return 1; }</code>). You can use <code>//export</code> directives to
-make Go functions accessible to C code.
-</p>
-
-<p>
-The <code>#cgo</code> and <code>//export</code> directives are
-documented in
-the <a href="/cmd/cgo/">cgo documentation</a>.
-</p>
-
-<p>
-<b>Strings and things</b>
-</p>
-
-<p>
-Unlike Go, C doesn't have an explicit string type. Strings in C are
-represented by a zero-terminated array of chars.
-</p>
-
-<p>
-Conversion between Go and C strings is done with the
-<code>C.CString</code>, <code>C.GoString</code>, and
-<code>C.GoStringN</code> functions. These conversions make a copy of the
-string data.
-</p>
-
-<p>
-This next example implements a <code>Print</code> function that writes a
-string to standard output using C's <code>fputs</code> function from the
-<code>stdio</code> library:
-</p>
-
-{{code "/doc/progs/cgo3.go" `/package print/` `/END/`}}
-
-<p>
-Memory allocations made by C code are not known to Go's memory manager.
-When you create a C string with <code>C.CString</code> (or any C memory
-allocation) you must remember to free the memory when you're done with it
-by calling <code>C.free</code>.
-</p>
-
-<p>
-The call to <code>C.CString</code> returns a pointer to the start of the
-char array, so before the function exits we convert it to an
-<a href="/pkg/unsafe/#Pointer"><code>unsafe.Pointer</code></a> and release
-the memory allocation with <code>C.free</code>. A common idiom in cgo programs
-is to <a href="/doc/articles/defer_panic_recover.html"><code>defer</code></a>
-the free immediately after allocating (especially when the code that follows
-is more complex than a single function call), as in this rewrite of
-<code>Print</code>:
-</p>
-
-{{code "/doc/progs/cgo4.go" `/func Print/` `/END/`}}
-
-<p>
-<b>Building cgo packages</b>
-</p>
-
-<p>
-To build cgo packages, just use <a href="/cmd/go/#hdr-Compile_packages_and_dependencies">"
-<code>go build</code>"</a> or
-<a href="/cmd/go/#hdr-Compile_and_install_packages_and_dependencies">"<code>go install</code>
-"</a> as usual. The go tool recognizes the special <code>"C"</code> import and automatically
-uses cgo for those files.
-</p>
-
-<p>
-<b>More cgo resources</b>
-</p>
-
-<p>
-The <a href="/cmd/cgo/">cgo command</a> documentation has more detail about
-the C pseudo-package and the build process. The <a href="/misc/cgo/">cgo examples</a>
-in the Go tree demonstrate more advanced concepts.
-</p>
-
-<p>
-For a simple, idiomatic example of a cgo-based package, see Russ Cox's <a
-href="http://code.google.com/p/gosqlite/source/browse/sqlite/sqlite.go">gosqlite</a>.
-Also, the <a href="http://code.google.com/p/go-wiki/wiki/Projects">Go Community Wiki</a>
-lists many packages, some of which use cgo.
-</p>
-
-<p>
-Finally, if you're curious as to how all this works internally, take a look
-at the introductory comment of the runtime package's <a href="/src/pkg/runtime/cgocall.c">cgocall.c</a>.
-</p>
diff --git a/doc/articles/concurrency_patterns.html b/doc/articles/concurrency_patterns.html
deleted file mode 100644
index 62168b840..000000000
--- a/doc/articles/concurrency_patterns.html
+++ /dev/null
@@ -1,79 +0,0 @@
-<!--{
-"Title": "Go Concurrency Patterns: Timing out, moving on",
-"Template": true
-}-->
-
-<p>
-Concurrent programming has its own idioms. A good example is timeouts. Although
-Go's channels do not support them directly, they are easy to implement. Say we
-want to receive from the channel <code>ch</code>, but want to wait at most one
-second for the value to arrive. We would start by creating a signalling channel
-and launching a goroutine that sleeps before sending on the channel:
-</p>
-
-{{code "/doc/progs/timeout1.go" `/timeout :=/` `/STOP/`}}
-
-<p>
-We can then use a <code>select</code> statement to receive from either
-<code>ch</code> or <code>timeout</code>. If nothing arrives on <code>ch</code>
-after one second, the timeout case is selected and the attempt to read from
-<code>ch</code> is abandoned.
-</p>
-
-{{code "/doc/progs/timeout1.go" `/select {/` `/STOP/`}}
-
-<p>
-The <code>timeout</code> channel is buffered with space for 1 value, allowing
-the timeout goroutine to send to the channel and then exit. The goroutine
-doesn't know (or care) whether the value is received. This means the goroutine
-won't hang around forever if the <code>ch</code> receive happens before the
-timeout is reached. The <code>timeout</code> channel will eventually be
-deallocated by the garbage collector.
-</p>
-
-<p>
-(In this example we used <code>time.Sleep</code> to demonstrate the mechanics
-of goroutines and channels. In real programs you should use <code>
-<a href="/pkg/time/#After">time.After</a></code>, a function that returns
-a channel and sends on that channel after the specified duration.)
-</p>
-
-<p>
-Let's look at another variation of this pattern. In this example we have a
-program that reads from multiple replicated databases simultaneously. The
-program needs only one of the answers, and it should accept the answer that
-arrives first.
-</p>
-
-<p>
-The function <code>Query</code> takes a slice of database connections and a
-<code>query</code> string. It queries each of the databases in parallel and
-returns the first response it receives:
-</p>
-
-{{code "/doc/progs/timeout2.go" `/func Query/` `/STOP/`}}
-
-<p>
-In this example, the closure does a non-blocking send, which it achieves by
-using the send operation in <code>select</code> statement with a
-<code>default</code> case. If the send cannot go through immediately the
-default case will be selected. Making the send non-blocking guarantees that
-none of the goroutines launched in the loop will hang around. However, if the
-result arrives before the main function has made it to the receive, the send
-could fail since no one is ready.
-</p>
-
-<p>
-This problem is a textbook example of what is known as a
-<a href="https://en.wikipedia.org/wiki/Race_condition">race condition</a>, but
-the fix is trivial. We just make sure to buffer the channel <code>ch</code> (by
-adding the buffer length as the second argument to <a href="/pkg/builtin/#make">make</a>),
-guaranteeing that the first send has a place to put the value. This ensures the
-send will always succeed, and the first value to arrive will be retrieved
-regardless of the order of execution.
-</p>
-
-<p>
-These two examples demonstrate the simplicity with which Go can express complex
-interactions between goroutines.
-</p>
diff --git a/doc/articles/defer_panic_recover.html b/doc/articles/defer_panic_recover.html
deleted file mode 100644
index c964cd368..000000000
--- a/doc/articles/defer_panic_recover.html
+++ /dev/null
@@ -1,197 +0,0 @@
-<!--{
- "Title": "Defer, Panic, and Recover",
- "Template": true
-}-->
-
-<p>
-Go has the usual mechanisms for control flow: if, for, switch, goto. It also
-has the go statement to run code in a separate goroutine. Here I'd like to
-discuss some of the less common ones: defer, panic, and recover.
-</p>
-
-<p>
-A <b>defer statement</b> pushes a function call onto a list. The list of saved
-calls is executed after the surrounding function returns. Defer is commonly
-used to simplify functions that perform various clean-up actions.
-</p>
-
-<p>
-For example, let's look at a function that opens two files and copies the
-contents of one file to the other:
-</p>
-
-{{code "/doc/progs/defer.go" `/func CopyFile/` `/STOP/`}}
-
-<p>
-This works, but there is a bug. If the call to os.Create fails, the
-function will return without closing the source file. This can be easily
-remedied by putting a call to src.Close before the second return statement,
-but if the function were more complex the problem might not be so easily
-noticed and resolved. By introducing defer statements we can ensure that the
-files are always closed:
-</p>
-
-{{code "/doc/progs/defer2.go" `/func CopyFile/` `/STOP/`}}
-
-<p>
-Defer statements allow us to think about closing each file right after opening
-it, guaranteeing that, regardless of the number of return statements in the
-function, the files <i>will</i> be closed.
-</p>
-
-<p>
-The behavior of defer statements is straightforward and predictable. There are
-three simple rules:
-</p>
-
-<p>
-1. <i>A deferred function's arguments are evaluated when the defer statement is
-evaluated.</i>
-</p>
-
-<p>
-In this example, the expression "i" is evaluated when the Println call is
-deferred. The deferred call will print "0" after the function returns.
-</p>
-
-{{code "/doc/progs/defer.go" `/func a/` `/STOP/`}}
-
-<p>
-2. <i>Deferred function calls are executed in Last In First Out order
-</i>after<i> the surrounding function returns.</i>
-</p>
-
-<p>
-This function prints "3210":
-</p>
-
-{{code "/doc/progs/defer.go" `/func b/` `/STOP/`}}
-
-<p>
-3. <i>Deferred functions may read and assign to the returning function's named
-return values.</i>
-</p>
-
-<p>
-In this example, a deferred function increments the return value i <i>after</i>
-the surrounding function returns. Thus, this function returns 2:
-</p>
-
-{{code "/doc/progs/defer.go" `/func c/` `/STOP/`}}
-
-<p>
-This is convenient for modifying the error return value of a function; we will
-see an example of this shortly.
-</p>
-
-<p>
-<b>Panic</b> is a built-in function that stops the ordinary flow of control and
-begins <i>panicking</i>. When the function F calls panic, execution of F stops,
-any deferred functions in F are executed normally, and then F returns to its
-caller. To the caller, F then behaves like a call to panic. The process
-continues up the stack until all functions in the current goroutine have
-returned, at which point the program crashes. Panics can be initiated by
-invoking panic directly. They can also be caused by runtime errors, such as
-out-of-bounds array accesses.
-</p>
-
-<p>
-<b>Recover</b> is a built-in function that regains control of a panicking
-goroutine. Recover is only useful inside deferred functions. During normal
-execution, a call to recover will return nil and have no other effect. If the
-current goroutine is panicking, a call to recover will capture the value given
-to panic and resume normal execution.
-</p>
-
-<p>
-Here's an example program that demonstrates the mechanics of panic and defer:
-</p>
-
-{{code "/doc/progs/defer2.go" `/package main/` `/STOP/`}}
-
-<p>
-The function g takes the int i, and panics if i is greater than 3, or else it
-calls itself with the argument i+1. The function f defers a function that calls
-recover and prints the recovered value (if it is non-nil). Try to picture what
-the output of this program might be before reading on.
-</p>
-
-<p>
-The program will output:
-</p>
-
-<pre>Calling g.
-Printing in g 0
-Printing in g 1
-Printing in g 2
-Printing in g 3
-Panicking!
-Defer in g 3
-Defer in g 2
-Defer in g 1
-Defer in g 0
-Recovered in f 4
-Returned normally from f.</pre>
-
-<p>
-If we remove the deferred function from f the panic is not recovered and
-reaches the top of the goroutine's call stack, terminating the program. This
-modified program will output:
-</p>
-
-<pre>Calling g.
-Printing in g 0
-Printing in g 1
-Printing in g 2
-Printing in g 3
-Panicking!
-Defer in g 3
-Defer in g 2
-Defer in g 1
-Defer in g 0
-panic: 4
-
-panic PC=0x2a9cd8
-[stack trace omitted]</pre>
-
-<p>
-For a real-world example of <b>panic</b> and <b>recover</b>, see the
-<a href="/pkg/encoding/json/">json package</a> from the Go standard library.
-It decodes JSON-encoded data with a set of recursive functions.
-When malformed JSON is encountered, the parser calls panic to unwind the
-stack to the top-level function call, which recovers from the panic and returns
-an appropriate error value (see the 'error' and 'unmarshal' methods of
-the decodeState type in
-<a href="/src/pkg/encoding/json/decode.go">decode.go</a>).
-</p>
-
-<p>
-The convention in the Go libraries is that even when a package uses panic
-internally, its external API still presents explicit error return values.
-</p>
-
-<p>
-Other uses of <b>defer</b> (beyond the file.Close example given earlier)
-include releasing a mutex:
-</p>
-
-<pre>mu.Lock()
-defer mu.Unlock()</pre>
-
-<p>
-printing a footer:
-</p>
-
-<pre>printHeader()
-defer printFooter()</pre>
-
-<p>
-and more.
-</p>
-
-<p>
-In summary, the defer statement (with or without panic and recover) provides an
-unusual and powerful mechanism for control flow. It can be used to model a
-number of features implemented by special-purpose structures in other
-programming languages. Try it out.
-</p>
diff --git a/doc/articles/error_handling.html b/doc/articles/error_handling.html
deleted file mode 100644
index 6ba05ac1d..000000000
--- a/doc/articles/error_handling.html
+++ /dev/null
@@ -1,316 +0,0 @@
-<!--{
- "Title": "Error Handling and Go",
- "Template": true
-}-->
-
-<p>
-If you have written any Go code you have probably encountered the built-in
-<code>error</code> type. Go code uses <code>error</code> values to
-indicate an abnormal state. For example, the <code>os.Open</code> function
-returns a non-nil <code>error</code> value when it fails to open a file.
-</p>
-
-{{code "/doc/progs/error.go" `/func Open/`}}
-
-<p>
-The following code uses <code>os.Open</code> to open a file. If an error
-occurs it calls <code>log.Fatal</code> to print the error message and stop.
-</p>
-
-{{code "/doc/progs/error.go" `/func openFile/` `/STOP/`}}
-
-<p>
-You can get a lot done in Go knowing just this about the <code>error</code>
-type, but in this article we'll take a closer look at <code>error</code> and
-discuss some good practices for error handling in Go.
-</p>
-
-<p>
-<b>The error type</b>
-</p>
-
-<p>
-The <code>error</code> type is an interface type. An <code>error</code>
-variable represents any value that can describe itself as a string. Here is the
-interface's declaration:
-</p>
-
-<pre>type error interface {
- Error() string
-}</pre>
-
-<p>
-The <code>error</code> type, as with all built in types, is
-<a href="/doc/go_spec.html#Predeclared_identifiers">predeclared</a> in the
-<a href="/doc/go_spec.html#Blocks">universe block</a>.
-</p>
-
-<p>
-The most commonly-used <code>error</code> implementation is the
-<a href="/pkg/errors/">errors</a> package's unexported <code>errorString</code> type.
-</p>
-
-{{code "/doc/progs/error.go" `/errorString/` `/STOP/`}}
-
-<p>
-You can construct one of these values with the <code>errors.New</code>
-function. It takes a string that it converts to an <code>errors.errorString</code>
-and returns as an <code>error</code> value.
-</p>
-
-{{code "/doc/progs/error.go" `/New/` `/STOP/`}}
-
-<p>
-Here's how you might use <code>errors.New</code>:
-</p>
-
-{{code "/doc/progs/error.go" `/func Sqrt/` `/STOP/`}}
-
-<p>
-A caller passing a negative argument to <code>Sqrt</code> receives a non-nil
-<code>error</code> value (whose concrete representation is an
-<code>errors.errorString</code> value). The caller can access the error string
-("math: square root of...") by calling the <code>error</code>'s
-<code>Error</code> method, or by just printing it:
-</p>
-
-{{code "/doc/progs/error.go" `/func printErr/` `/STOP/`}}
-
-<p>
-The <a href="/pkg/fmt/">fmt</a> package formats an <code>error</code> value
-by calling its <code>Error() string</code> method.
-</p>
-
-<p>
-It is the error implementation's responsibility to summarize the context.
-The error returned by <code>os.Open</code> formats as "open /etc/passwd:
-permission denied," not just "permission denied." The error returned by our
-<code>Sqrt</code> is missing information about the invalid argument.
-</p>
-
-<p>
-To add that information, a useful function is the <code>fmt</code> package's
-<code>Errorf</code>. It formats a string according to <code>Printf</code>'s
-rules and returns it as an <code>error</code> created by
-<code>errors.New</code>.
-</p>
-
-{{code "/doc/progs/error.go" `/fmtError/` `/STOP/`}}
-
-<p>
-In many cases <code>fmt.Errorf</code> is good enough, but since
-<code>error</code> is an interface, you can use arbitrary data structures as
-error values, to allow callers to inspect the details of the error.
-</p>
-
-<p>
-For instance, our hypothetical callers might want to recover the invalid
-argument passed to <code>Sqrt</code>. We can enable that by defining a new
-error implementation instead of using <code>errors.errorString</code>:
-</p>
-
-{{code "/doc/progs/error.go" `/type NegativeSqrtError/` `/STOP/`}}
-
-<p>
-A sophisticated caller can then use a
-<a href="/doc/go_spec.html#Type_assertions">type assertion</a> to check for a
-<code>NegativeSqrtError</code> and handle it specially, while callers that just
-pass the error to <code>fmt.Println</code> or <code>log.Fatal</code> will see
-no change in behavior.
-</p>
-
-<p>
-As another example, the <a href="/pkg/encoding/json/">json</a> package specifies a
-<code>SyntaxError</code> type that the <code>json.Decode</code> function
-returns when it encounters a syntax error parsing a JSON blob.
-</p>
-
-{{code "/doc/progs/error.go" `/type SyntaxError/` `/STOP/`}}
-
-<p>
-The <code>Offset</code> field isn't even shown in the default formatting of the
-error, but callers can use it to add file and line information to their error
-messages:
-</p>
-
-{{code "/doc/progs/error.go" `/func decodeError/` `/STOP/`}}
-
-<p>
-(This is a slightly simplified version of some
-<a href="http://golang.org/s/camjsondecode">actual code</a>
-from the <a href="http://camlistore.org">Camlistore</a> project.)
-</p>
-
-<p>
-The <code>error</code> interface requires only a <code>Error</code> method;
-specific error implementations might have additional methods. For instance, the
-<a href="/pkg/net/">net</a> package returns errors of type
-<code>error</code>, following the usual convention, but some of the error
-implementations have additional methods defined by the <code>net.Error</code>
-interface:
-</p>
-
-<pre>package net
-
-type Error interface {
- error
- Timeout() bool // Is the error a timeout?
- Temporary() bool // Is the error temporary?
-}</pre>
-
-<p>
-Client code can test for a <code>net.Error</code> with a type assertion and
-then distinguish transient network errors from permanent ones. For instance, a
-web crawler might sleep and retry when it encounters a temporary error and give
-up otherwise.
-</p>
-
-{{code "/doc/progs/error.go" `/func netError/` `/STOP/`}}
-
-<p>
-<b>Simplifying repetitive error handling</b>
-</p>
-
-<p>
-In Go, error handling is important. The language's design and conventions
-encourage you to explicitly check for errors where they occur (as distinct from
-the convention in other languages of throwing exceptions and sometimes catching
-them). In some cases this makes Go code verbose, but fortunately there are some
-techniques you can use to minimize repetitive error handling.
-</p>
-
-<p>
-Consider an <a href="http://code.google.com/appengine/docs/go/">App Engine</a>
-application with an HTTP handler that retrieves a record from the datastore and
-formats it with a template.
-</p>
-
-{{code "/doc/progs/error2.go" `/func init/` `/STOP/`}}
-
-<p>
-This function handles errors returned by the <code>datastore.Get</code>
-function and <code>viewTemplate</code>'s <code>Execute</code> method. In both
-cases, it presents a simple error message to the user with the HTTP status code
-500 ("Internal Server Error"). This looks like a manageable amount of code, but
-add some more HTTP handlers and you quickly end up with many copies of
-identical error handling code.
-</p>
-
-<p>
-To reduce the repetition we can define our own HTTP <code>appHandler</code>
-type that includes an <code>error</code> return value:
-</p>
-
-{{code "/doc/progs/error3.go" `/type appHandler/`}}
-
-<p>
-Then we can change our <code>viewRecord</code> function to return errors:
-</p>
-
-{{code "/doc/progs/error3.go" `/func viewRecord/` `/STOP/`}}
-
-<p>
-This is simpler than the original version, but the <a
-href="/pkg/net/http/">http</a> package doesn't understand functions that return
-<code>error</code>.
-To fix this we can implement the <code>http.Handler</code> interface's
-<code>ServeHTTP</code> method on <code>appHandler</code>:
-</p>
-
-{{code "/doc/progs/error3.go" `/ServeHTTP/` `/STOP/`}}
-
-<p>
-The <code>ServeHTTP</code> method calls the <code>appHandler</code> function
-and displays the returned error (if any) to the user. Notice that the method's
-receiver, <code>fn</code>, is a function. (Go can do that!) The method invokes
-the function by calling the receiver in the expression <code>fn(w, r)</code>.
-</p>
-
-<p>
-Now when registering <code>viewRecord</code> with the http package we use the
-<code>Handle</code> function (instead of <code>HandleFunc</code>) as
-<code>appHandler</code> is an <code>http.Handler</code> (not an
-<code>http.HandlerFunc</code>).
-</p>
-
-{{code "/doc/progs/error3.go" `/func init/` `/STOP/`}}
-
-<p>
-With this basic error handling infrastructure in place, we can make it more
-user friendly. Rather than just displaying the error string, it would be better
-to give the user a simple error message with an appropriate HTTP status code,
-while logging the full error to the App Engine developer console for debugging
-purposes.
-</p>
-
-<p>
-To do this we create an <code>appError</code> struct containing an
-<code>error</code> and some other fields:
-</p>
-
-{{code "/doc/progs/error4.go" `/type appError/` `/STOP/`}}
-
-<p>
-Next we modify the appHandler type to return <code>*appError</code> values:
-</p>
-
-{{code "/doc/progs/error4.go" `/type appHandler/`}}
-
-<p>
-(It's usually a mistake to pass back the concrete type of an error rather than
-<code>error</code>,
-for reasons discussed in <a href="/doc/go_faq.html#nil_error">the Go FAQ</a>,
-but it's the right thing to do here because <code>ServeHTTP</code> is the only
-place that sees the value and uses its contents.)
-</p>
-
-<p>
-And make <code>appHandler</code>'s <code>ServeHTTP</code> method display the
-<code>appError</code>'s <code>Message</code> to the user with the correct HTTP
-status <code>Code</code> and log the full <code>Error</code> to the developer
-console:
-</p>
-
-{{code "/doc/progs/error4.go" `/ServeHTTP/` `/STOP/`}}
-
-<p>
-Finally, we update <code>viewRecord</code> to the new function signature and
-have it return more context when it encounters an error:
-</p>
-
-{{code "/doc/progs/error4.go" `/func viewRecord/` `/STOP/`}}
-
-<p>
-This version of <code>viewRecord</code> is the same length as the original, but
-now each of those lines has specific meaning and we are providing a friendlier
-user experience.
-</p>
-
-<p>
-It doesn't end there; we can further improve the error handling in our
-application. Some ideas:
-</p>
-
-<ul>
-<li>give the error handler a pretty HTML template,
-<li>make debugging easier by writing the stack trace to the HTTP response when
-the user is an administrator,
-<li>write a constructor function for <code>appError</code> that stores the
-stack trace for easier debugging,
-<li>recover from panics inside the <code>appHandler</code>, logging the error
-to the console as "Critical," while telling the user "a serious error
-has occurred." This is a nice touch to avoid exposing the user to inscrutable
-error messages caused by programming errors.
-See the <a href="defer_panic_recover.html">Defer, Panic, and Recover</a>
-article for more details.
-</ul>
-
-<p>
-<b>Conclusion</b>
-</p>
-
-<p>
-Proper error handling is an essential requirement of good software. By
-employing the techniques described in this post you should be able to write
-more reliable and succinct Go code.
-</p>
diff --git a/doc/articles/gobs_of_data.html b/doc/articles/gobs_of_data.html
deleted file mode 100644
index 6b836b2c3..000000000
--- a/doc/articles/gobs_of_data.html
+++ /dev/null
@@ -1,315 +0,0 @@
-<!--{
-"Title": "Gobs of data",
-"Template": true
-}-->
-
-<p>
-To transmit a data structure across a network or to store it in a file, it must
-be encoded and then decoded again. There are many encodings available, of
-course: <a href="http://www.json.org/">JSON</a>,
-<a href="http://www.w3.org/XML/">XML</a>, Google's
-<a href="http://code.google.com/p/protobuf">protocol buffers</a>, and more.
-And now there's another, provided by Go's <a href="/pkg/encoding/gob/">gob</a>
-package.
-</p>
-
-<p>
-Why define a new encoding? It's a lot of work and redundant at that. Why not
-just use one of the existing formats? Well, for one thing, we do! Go has
-<a href="/pkg/">packages</a> supporting all the encodings just mentioned (the
-<a href="http://code.google.com/p/goprotobuf">protocol buffer package</a> is in
-a separate repository but it's one of the most frequently downloaded). And for
-many purposes, including communicating with tools and systems written in other
-languages, they're the right choice.
-</p>
-
-<p>
-But for a Go-specific environment, such as communicating between two servers
-written in Go, there's an opportunity to build something much easier to use and
-possibly more efficient.
-</p>
-
-<p>
-Gobs work with the language in a way that an externally-defined,
-language-independent encoding cannot. At the same time, there are lessons to be
-learned from the existing systems.
-</p>
-
-<p>
-<b>Goals</b>
-</p>
-
-<p>
-The gob package was designed with a number of goals in mind.
-</p>
-
-<p>
-First, and most obvious, it had to be very easy to use. First, because Go has
-reflection, there is no need for a separate interface definition language or
-"protocol compiler". The data structure itself is all the package should need
-to figure out how to encode and decode it. On the other hand, this approach
-means that gobs will never work as well with other languages, but that's OK:
-gobs are unashamedly Go-centric.
-</p>
-
-<p>
-Efficiency is also important. Textual representations, exemplified by XML and
-JSON, are too slow to put at the center of an efficient communications network.
-A binary encoding is necessary.
-</p>
-
-<p>
-Gob streams must be self-describing. Each gob stream, read from the beginning,
-contains sufficient information that the entire stream can be parsed by an
-agent that knows nothing a priori about its contents. This property means that
-you will always be able to decode a gob stream stored in a file, even long
-after you've forgotten what data it represents.
-</p>
-
-<p>
-There were also some things to learn from our experiences with Google protocol
-buffers.
-</p>
-
-<p>
-<b>Protocol buffer misfeatures</b>
-</p>
-
-<p>
-Protocol buffers had a major effect on the design of gobs, but have three
-features that were deliberately avoided. (Leaving aside the property that
-protocol buffers aren't self-describing: if you don't know the data definition
-used to encode a protocol buffer, you might not be able to parse it.)
-</p>
-
-<p>
-First, protocol buffers only work on the data type we call a struct in Go. You
-can't encode an integer or array at the top level, only a struct with fields
-inside it. That seems a pointless restriction, at least in Go. If all you want
-to send is an array of integers, why should you have to put it into a
-struct first?
-</p>
-
-<p>
-Next, a protocol buffer definition may specify that fields <code>T.x</code> and
-<code>T.y</code> are required to be present whenever a value of type
-<code>T</code> is encoded or decoded. Although such required fields may seem
-like a good idea, they are costly to implement because the codec must maintain a
-separate data structure while encoding and decoding, to be able to report when
-required fields are missing. They're also a maintenance problem. Over time, one
-may want to modify the data definition to remove a required field, but that may
-cause existing clients of the data to crash. It's better not to have them in the
-encoding at all. (Protocol buffers also have optional fields. But if we don't
-have required fields, all fields are optional and that's that. There will be
-more to say about optional fields a little later.)
-</p>
-
-<p>
-The third protocol buffer misfeature is default values. If a protocol buffer
-omits the value for a "defaulted" field, then the decoded structure behaves as
-if the field were set to that value. This idea works nicely when you have
-getter and setter methods to control access to the field, but is harder to
-handle cleanly when the container is just a plain idiomatic struct. Required
-fields are also tricky to implement: where does one define the default values,
-what types do they have (is text UTF-8? uninterpreted bytes? how many bits in a
-float?) and despite the apparent simplicity, there were a number of
-complications in their design and implementation for protocol buffers. We
-decided to leave them out of gobs and fall back to Go's trivial but effective
-defaulting rule: unless you set something otherwise, it has the "zero value"
-for that type - and it doesn't need to be transmitted.
-</p>
-
-<p>
-So gobs end up looking like a sort of generalized, simplified protocol buffer.
-How do they work?
-</p>
-
-<p>
-<b>Values</b>
-</p>
-
-<p>
-The encoded gob data isn't about <code>int8</code>s and <code>uint16</code>s.
-Instead, somewhat analogous to constants in Go, its integer values are abstract,
-sizeless numbers, either signed or unsigned. When you encode an
-<code>int8</code>, its value is transmitted as an unsized, variable-length
-integer. When you encode an <code>int64</code>, its value is also transmitted as
-an unsized, variable-length integer. (Signed and unsigned are treated
-distinctly, but the same unsized-ness applies to unsigned values too.) If both
-have the value 7, the bits sent on the wire will be identical. When the receiver
-decodes that value, it puts it into the receiver's variable, which may be of
-arbitrary integer type. Thus an encoder may send a 7 that came from an
-<code>int8</code>, but the receiver may store it in an <code>int64</code>. This
-is fine: the value is an integer and as a long as it fits, everything works. (If
-it doesn't fit, an error results.) This decoupling from the size of the variable
-gives some flexibility to the encoding: we can expand the type of the integer
-variable as the software evolves, but still be able to decode old data.
-</p>
-
-<p>
-This flexibility also applies to pointers. Before transmission, all pointers are
-flattened. Values of type <code>int8</code>, <code>*int8</code>,
-<code>**int8</code>, <code>****int8</code>, etc. are all transmitted as an
-integer value, which may then be stored in <code>int</code> of any size, or
-<code>*int</code>, or <code>******int</code>, etc. Again, this allows for
-flexibility.
-</p>
-
-<p>
-Flexibility also happens because, when decoding a struct, only those fields
-that are sent by the encoder are stored in the destination. Given the value
-</p>
-
-{{code "/doc/progs/gobs1.go" `/type T/` `/STOP/`}}
-
-<p>
-the encoding of <code>t</code> sends only the 7 and 8. Because it's zero, the
-value of <code>Y</code> isn't even sent; there's no need to send a zero value.
-</p>
-
-<p>
-The receiver could instead decode the value into this structure:
-</p>
-
-{{code "/doc/progs/gobs1.go" `/type U/` `/STOP/`}}
-
-<p>
-and acquire a value of <code>u</code> with only <code>X</code> set (to the
-address of an <code>int8</code> variable set to 7); the <code>Z</code> field is
-ignored - where would you put it? When decoding structs, fields are matched by
-name and compatible type, and only fields that exist in both are affected. This
-simple approach finesses the "optional field" problem: as the type
-<code>T</code> evolves by adding fields, out of date receivers will still
-function with the part of the type they recognize. Thus gobs provide the
-important result of optional fields - extensibility - without any additional
-mechanism or notation.
-</p>
-
-<p>
-From integers we can build all the other types: bytes, strings, arrays, slices,
-maps, even floats. Floating-point values are represented by their IEEE 754
-floating-point bit pattern, stored as an integer, which works fine as long as
-you know their type, which we always do. By the way, that integer is sent in
-byte-reversed order because common values of floating-point numbers, such as
-small integers, have a lot of zeros at the low end that we can avoid
-transmitting.
-</p>
-
-<p>
-One nice feature of gobs that Go makes possible is that they allow you to define
-your own encoding by having your type satisfy the
-<a href="/pkg/encoding/gob/#GobEncoder">GobEncoder</a> and
-<a href="/pkg/encoding/gob/#GobDecoder">GobDecoder</a> interfaces, in a manner
-analogous to the <a href="/pkg/encoding/json/">JSON</a> package's
-<a href="/pkg/encoding/json/#Marshaler">Marshaler</a> and
-<a href="/pkg/encoding/json/#Unmarshaler">Unmarshaler</a> and also to the
-<a href="/pkg/fmt/#Stringer">Stringer</a> interface from
-<a href="/pkg/fmt/">package fmt</a>. This facility makes it possible to
-represent special features, enforce constraints, or hide secrets when you
-transmit data. See the <a href="/pkg/encoding/gob/">documentation</a> for
-details.
-</p>
-
-<p>
-<b>Types on the wire</b>
-</p>
-
-<p>
-The first time you send a given type, the gob package includes in the data
-stream a description of that type. In fact, what happens is that the encoder is
-used to encode, in the standard gob encoding format, an internal struct that
-describes the type and gives it a unique number. (Basic types, plus the layout
-of the type description structure, are predefined by the software for
-bootstrapping.) After the type is described, it can be referenced by its type
-number.
-</p>
-
-<p>
-Thus when we send our first type <code>T</code>, the gob encoder sends a
-description of <code>T</code> and tags it with a type number, say 127. All
-values, including the first, are then prefixed by that number, so a stream of
-<code>T</code> values looks like:
-</p>
-
-<pre>
-("define type id" 127, definition of type T)(127, T value)(127, T value), ...
-</pre>
-
-<p>
-These type numbers make it possible to describe recursive types and send values
-of those types. Thus gobs can encode types such as trees:
-</p>
-
-{{code "/doc/progs/gobs1.go" `/type Node/` `/STOP/`}}
-
-<p>
-(It's an exercise for the reader to discover how the zero-defaulting rule makes
-this work, even though gobs don't represent pointers.)
-</p>
-
-<p>
-With the type information, a gob stream is fully self-describing except for the
-set of bootstrap types, which is a well-defined starting point.
-</p>
-
-<p>
-<b>Compiling a machine</b>
-</p>
-
-<p>
-The first time you encode a value of a given type, the gob package builds a
-little interpreted machine specific to that data type. It uses reflection on
-the type to construct that machine, but once the machine is built it does not
-depend on reflection. The machine uses package unsafe and some trickery to
-convert the data into the encoded bytes at high speed. It could use reflection
-and avoid unsafe, but would be significantly slower. (A similar high-speed
-approach is taken by the protocol buffer support for Go, whose design was
-influenced by the implementation of gobs.) Subsequent values of the same type
-use the already-compiled machine, so they can be encoded right away.
-</p>
-
-<p>
-Decoding is similar but harder. When you decode a value, the gob package holds
-a byte slice representing a value of a given encoder-defined type to decode,
-plus a Go value into which to decode it. The gob package builds a machine for
-that pair: the gob type sent on the wire crossed with the Go type provided for
-decoding. Once that decoding machine is built, though, it's again a
-reflectionless engine that uses unsafe methods to get maximum speed.
-</p>
-
-<p>
-<b>Use</b>
-</p>
-
-<p>
-There's a lot going on under the hood, but the result is an efficient,
-easy-to-use encoding system for transmitting data. Here's a complete example
-showing differing encoded and decoded types. Note how easy it is to send and
-receive values; all you need to do is present values and variables to the
-<a href="/pkg/encoding/gob/">gob package</a> and it does all the work.
-</p>
-
-{{code "/doc/progs/gobs2.go" `/package main/` `$`}}
-
-<p>
-You can compile and run this example code in the
-<a href="http://play.golang.org/p/_-OJV-rwMq">Go Playground</a>.
-</p>
-
-<p>
-The <a href="/pkg/net/rpc/">rpc package</a> builds on gobs to turn this
-encode/decode automation into transport for method calls across the network.
-That's a subject for another article.
-</p>
-
-<p>
-<b>Details</b>
-</p>
-
-<p>
-The <a href="/pkg/encoding/gob/">gob package documentation</a>, especially the
-file <a href="/src/pkg/encoding/gob/doc.go">doc.go</a>, expands on many of the
-details described here and includes a full worked example showing how the
-encoding represents data. If you are interested in the innards of the gob
-implementation, that's a good place to start.
-</p>
diff --git a/doc/articles/godoc_documenting_go_code.html b/doc/articles/godoc_documenting_go_code.html
deleted file mode 100644
index 3f4e3228c..000000000
--- a/doc/articles/godoc_documenting_go_code.html
+++ /dev/null
@@ -1,147 +0,0 @@
-<!--{
-"Title": "Godoc: documenting Go code",
-"Template": true
-}-->
-
-<p>
-The Go project takes documentation seriously. Documentation is a huge part of
-making software accessible and maintainable. Of course it must be well-written
-and accurate, but it also must be easy to write and to maintain. Ideally, it
-should be coupled to the code itself so the documentation evolves along with the
-code. The easier it is for programmers to produce good documentation, the better
-for everyone.
-</p>
-
-<p>
-To that end, we have developed the <a href="/cmd/godoc/">godoc</a> documentation
-tool. This article describes godoc's approach to documentation, and explains how
-you can use our conventions and tools to write good documentation for your own
-projects.
-</p>
-
-<p>
-Godoc parses Go source code - including comments - and produces documentation as
-HTML or plain text. The end result is documentation tightly coupled with the
-code it documents. For example, through godoc's web interface you can navigate
-from a function's <a href="/pkg/strings/#HasPrefix">documentation</a> to its
-<a href="/src/pkg/strings/strings.go?#L312">implementation</a> with one click.
-</p>
-
-<p>
-Godoc is conceptually related to Python's
-<a href="http://www.python.org/dev/peps/pep-0257/">Docstring</a> and Java's
-<a href="http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html">Javadoc</a>,
-but its design is simpler. The comments read by godoc are not language
-constructs (as with Docstring) nor must they have their own machine-readable
-syntax (as with Javadoc). Godoc comments are just good comments, the sort you
-would want to read even if godoc didn't exist.
-</p>
-
-<p>
-The convention is simple: to document a type, variable, constant, function, or
-even a package, write a regular comment directly preceding its declaration, with
-no intervening blank line. Godoc will then present that comment as text
-alongside the item it documents. For example, this is the documentation for the
-<code>fmt</code> package's <a href="/pkg/fmt/#Fprint"><code>Fprint</code></a>
-function:
-</p>
-
-{{code "/src/pkg/fmt/print.go" `/Fprint formats using the default/` `/func Fprint/`}}
-
-<p>
-Notice this comment is a complete sentence that begins with the name of the
-element it describes. This important convention allows us to generate
-documentation in a variety of formats, from plain text to HTML to UNIX man
-pages, and makes it read better when tools truncate it for brevity, such as when
-they extract the first line or sentence.
-</p>
-
-<p>
-Comments on package declarations should provide general package documentation.
-These comments can be short, like the <a href="/pkg/sort/"><code>sort</code></a>
-package's brief description:
-</p>
-
-{{code "/src/pkg/sort/sort.go" `/Package sort provides/` `/package sort/`}}
-
-<p>
-They can also be detailed like the <a href="/pkg/encoding/gob/"><code>gob</code></a>
-package's overview. That package uses another convention for packages
-that need large amounts of introductory documentation: the package comment is
-placed in its own file, <a href="/src/pkg/encoding/gob/doc.go">doc.go</a>, which
-contains only those comments and a package clause.
-</p>
-
-<p>
-When writing package comments of any size, keep in mind that their first
-sentence will appear in godoc's <a href="/pkg/">package list</a>.
-</p>
-
-<p>
-Comments that are not adjacent to a top-level declaration are omitted from
-godoc's output, with one notable exception. Top-level comments that begin with
-the word <code>"BUG(who)"</code> are recognized as known bugs, and included in
-the "Bugs" section of the package documentation. The "who" part should be the
-user name of someone who could provide more information. For example, this is a
-known issue from the <a href="/pkg/sync/atomic/#pkg-note-BUG"><code>sync/atomic</code></a> package:
-</p>
-
-<pre>
-// BUG(rsc): On x86-32, the 64-bit functions use instructions
-// unavailable before the Pentium MMX. On both ARM and x86-32, it is the
-// caller's responsibility to arrange for 64-bit alignment of 64-bit
-// words accessed atomically.
-</pre>
-
-<p>
-Godoc treats executable commands in the same way. It looks for a comment on
-package main, which is sometimes put in a separate file called <code>doc.go</code>.
-For example, see the
-<a href="/cmd/godoc/">godoc documentation</a> and its corresponding
-<a href="/src/cmd/godoc/doc.go">doc.go</a> file.
-</p>
-
-<p>
-There are a few formatting rules that Godoc uses when converting comments to
-HTML:
-</p>
-
-<ul>
-<li>
-Subsequent lines of text are considered part of the same paragraph; you must
-leave a blank line to separate paragraphs.
-</li>
-<li>
-Pre-formatted text must be indented relative to the surrounding comment text
-(see gob's <a href="/src/pkg/encoding/gob/doc.go">doc.go</a> for an example).
-</li>
-<li>
-URLs will be converted to HTML links; no special markup is necessary.
-</li>
-</ul>
-
-<p>
-Note that none of these rules requires you to do anything out of the ordinary.
-</p>
-
-<p>
-In fact, the best thing about godoc's minimal approach is how easy it is to use.
-As a result, a lot of Go code, including all of the standard library, already
-follows the conventions.
-</p>
-
-<p>
-Your own code can present good documentation just by having comments as
-described above. Any Go packages installed inside <code>$GOROOT/src/pkg</code>
-and any <code>GOPATH</code> work spaces will already be accessible via godoc's
-command-line and HTTP interfaces, and you can specify additional paths for
-indexing via the <code>-path</code> flag or just by running <code>"godoc ."</code>
-in the source directory. See the <a href="/cmd/godoc/">godoc documentation</a>
-for more details.
-</p>
-
-<p>
-Godoc recognizes example functions written according to the
-<a href="/pkg/testing/#pkg-overview"><code>testing</code></a> package's naming
-conventions and presents them appropriately.
-</p>
diff --git a/doc/articles/gos_declaration_syntax.html b/doc/articles/gos_declaration_syntax.html
deleted file mode 100644
index 455cced1d..000000000
--- a/doc/articles/gos_declaration_syntax.html
+++ /dev/null
@@ -1,348 +0,0 @@
-<!--{
-"Title": "Go's Declaration Syntax"
-}-->
-
-<p>
-Newcomers to Go wonder why the declaration syntax is different from the
-tradition established in the C family. In this post we'll compare the
-two approaches and explain why Go's declarations look as they do.
-</p>
-
-<p>
-<b>C syntax</b>
-</p>
-
-<p>
-First, let's talk about C syntax. C took an unusual and clever approach
-to declaration syntax. Instead of describing the types with special
-syntax, one writes an expression involving the item being declared, and
-states what type that expression will have. Thus
-</p>
-
-<pre>
-int x;
-</pre>
-
-<p>
-declares x to be an int: the expression 'x' will have type int. In
-general, to figure out how to write the type of a new variable, write an
-expression involving that variable that evaluates to a basic type, then
-put the basic type on the left and the expression on the right.
-</p>
-
-<p>
-Thus, the declarations
-</p>
-
-<pre>
-int *p;
-int a[3];
-</pre>
-
-<p>
-state that p is a pointer to int because '*p' has type int, and that a
-is an array of ints because a[3] (ignoring the particular index value,
-which is punned to be the size of the array) has type int.
-</p>
-
-<p>
-What about functions? Originally, C's function declarations wrote the
-types of the arguments outside the parens, like this:
-</p>
-
-<pre>
-int main(argc, argv)
- int argc;
- char *argv[];
-{ /* ... */ }
-</pre>
-
-<p>
-Again, we see that main is a function because the expression main(argc,
-argv) returns an int. In modern notation we'd write
-</p>
-
-<pre>
-int main(int argc, char *argv[]) { /* ... */ }
-</pre>
-
-<p>
-but the basic structure is the same.
-</p>
-
-<p>
-This is a clever syntactic idea that works well for simple types but can
-get confusing fast. The famous example is declaring a function pointer.
-Follow the rules and you get this:
-</p>
-
-<pre>
-int (*fp)(int a, int b);
-</pre>
-
-<p>
-Here, fp is a pointer to a function because if you write the expression
-(*fp)(a, b) you'll call a function that returns int. What if one of fp's
-arguments is itself a function?
-</p>
-
-<pre>
-int (*fp)(int (*ff)(int x, int y), int b)
-</pre>
-
-<p>
-That's starting to get hard to read.
-</p>
-
-<p>
-Of course, we can leave out the name of the parameters when we declare a
-function, so main can be declared
-</p>
-
-<pre>
-int main(int, char *[])
-</pre>
-
-<p>
-Recall that argv is declared like this,
-</p>
-
-<pre>
-char *argv[]
-</pre>
-
-<p>
-so you drop the name from the <em>middle</em> of its declaration to construct
-its type. It's not obvious, though, that you declare something of type
-char *[] by putting its name in the middle.
-</p>
-
-<p>
-And look what happens to fp's declaration if you don't name the
-parameters:
-</p>
-
-<pre>
-int (*fp)(int (*)(int, int), int)
-</pre>
-
-<p>
-Not only is it not obvious where to put the name inside
-</p>
-
-<pre>
-int (*)(int, int)
-</pre>
-
-<p>
-it's not exactly clear that it's a function pointer declaration at all.
-And what if the return type is a function pointer?
-</p>
-
-<pre>
-int (*(*fp)(int (*)(int, int), int))(int, int)
-</pre>
-
-<p>
-It's hard even to see that this declaration is about fp.
-</p>
-
-<p>
-You can construct more elaborate examples but these should illustrate
-some of the difficulties that C's declaration syntax can introduce.
-</p>
-
-<p>
-There's one more point that needs to be made, though. Because type and
-declaration syntax are the same, it can be difficult to parse
-expressions with types in the middle. This is why, for instance, C casts
-always parenthesize the type, as in
-</p>
-
-<pre>
-(int)M_PI
-</pre>
-
-<p>
-<b>Go syntax</b>
-</p>
-
-<p>
-Languages outside the C family usually use a distinct type syntax in
-declarations. Although it's a separate point, the name usually comes
-first, often followed by a colon. Thus our examples above become
-something like (in a fictional but illustrative language)
-</p>
-
-<pre>
-x: int
-p: pointer to int
-a: array[3] of int
-</pre>
-
-<p>
-These declarations are clear, if verbose - you just read them left to
-right. Go takes its cue from here, but in the interests of brevity it
-drops the colon and removes some of the keywords:
-</p>
-
-<pre>
-x int
-p *int
-a [3]int
-</pre>
-
-<p>
-There is no direct correspondence between the look of [3]int and how to
-use a in an expression. (We'll come back to pointers in the next
-section.) You gain clarity at the cost of a separate syntax.
-</p>
-
-<p>
-Now consider functions. Let's transcribe the declaration for main, even
-though the main function in Go takes no arguments:
-</p>
-
-<pre>
-func main(argc int, argv *[]byte) int
-</pre>
-
-<p>
-Superficially that's not much different from C, but it reads well from
-left to right:
-</p>
-
-<p>
-<em>function main takes an int and a pointer to a slice of bytes and returns an int.</em>
-</p>
-
-<p>
-Drop the parameter names and it's just as clear - they're always first
-so there's no confusion.
-</p>
-
-<pre>
-func main(int, *[]byte) int
-</pre>
-
-<p>
-One value of this left-to-right style is how well it works as the types
-become more complex. Here's a declaration of a function variable
-(analogous to a function pointer in C):
-</p>
-
-<pre>
-f func(func(int,int) int, int) int
-</pre>
-
-<p>
-Or if f returns a function:
-</p>
-
-<pre>
-f func(func(int,int) int, int) func(int, int) int
-</pre>
-
-<p>
-It still reads clearly, from left to right, and it's always obvious
-which name is being declared - the name comes first.
-</p>
-
-<p>
-The distinction between type and expression syntax makes it easy to
-write and invoke closures in Go:
-</p>
-
-<pre>
-sum := func(a, b int) int { return a+b } (3, 4)
-</pre>
-
-<p>
-<b>Pointers</b>
-</p>
-
-<p>
-Pointers are the exception that proves the rule. Notice that in arrays
-and slices, for instance, Go's type syntax puts the brackets on the left
-of the type but the expression syntax puts them on the right of the
-expression:
-</p>
-
-<pre>
-var a []int
-x = a[1]
-</pre>
-
-<p>
-For familiarity, Go's pointers use the * notation from C, but we could
-not bring ourselves to make a similar reversal for pointer types. Thus
-pointers work like this
-</p>
-
-<pre>
-var p *int
-x = *p
-</pre>
-
-<p>
-We couldn't say
-</p>
-
-<pre>
-var p *int
-x = p*
-</pre>
-
-<p>
-because that postfix * would conflate with multiplication. We could have
-used the Pascal ^, for example:
-</p>
-
-<pre>
-var p ^int
-x = p^
-</pre>
-
-<p>
-and perhaps we should have (and chosen another operator for xor),
-because the prefix asterisk on both types and expressions complicates
-things in a number of ways. For instance, although one can write
-</p>
-
-<pre>
-[]int("hi")
-</pre>
-
-<p>
-as a conversion, one must parenthesize the type if it starts with a *:
-</p>
-
-<pre>
-(*int)(nil)
-</pre>
-
-<p>
-Had we been willing to give up * as pointer syntax, those parentheses
-would be unnecessary.
-</p>
-
-<p>
-So Go's pointer syntax is tied to the familiar C form, but those ties
-mean that we cannot break completely from using parentheses to
-disambiguate types and expressions in the grammar.
-</p>
-
-<p>
-Overall, though, we believe Go's type syntax is easier to understand
-than C's, especially when things get complicated.
-</p>
-
-<p>
-<b>Notes</b>
-</p>
-
-<p>
-Go's declarations read left to right. It's been pointed out that C's
-read in a spiral! See <a href="http://c-faq.com/decl/spiral.anderson.html">
-The "Clockwise/Spiral Rule"</a> by David Anderson.
-</p>
diff --git a/doc/articles/image-20.png b/doc/articles/image-20.png
deleted file mode 100644
index 063e43064..000000000
--- a/doc/articles/image-20.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2a.png b/doc/articles/image-2a.png
deleted file mode 100644
index 3f1c0afff..000000000
--- a/doc/articles/image-2a.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2b.png b/doc/articles/image-2b.png
deleted file mode 100644
index 32b247011..000000000
--- a/doc/articles/image-2b.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2c.png b/doc/articles/image-2c.png
deleted file mode 100644
index f9abce5b5..000000000
--- a/doc/articles/image-2c.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2d.png b/doc/articles/image-2d.png
deleted file mode 100644
index ed0a9f92c..000000000
--- a/doc/articles/image-2d.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2e.png b/doc/articles/image-2e.png
deleted file mode 100644
index 483b208e3..000000000
--- a/doc/articles/image-2e.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-2f.png b/doc/articles/image-2f.png
deleted file mode 100644
index 3dce02d5f..000000000
--- a/doc/articles/image-2f.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-package-01.png b/doc/articles/image-package-01.png
deleted file mode 100644
index aad9b1243..000000000
--- a/doc/articles/image-package-01.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-package-02.png b/doc/articles/image-package-02.png
deleted file mode 100644
index 3dd4692f3..000000000
--- a/doc/articles/image-package-02.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-package-03.png b/doc/articles/image-package-03.png
deleted file mode 100644
index 5bc0bf732..000000000
--- a/doc/articles/image-package-03.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-package-04.png b/doc/articles/image-package-04.png
deleted file mode 100644
index 393dc1207..000000000
--- a/doc/articles/image-package-04.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image-package-05.png b/doc/articles/image-package-05.png
deleted file mode 100644
index 54c47b67b..000000000
--- a/doc/articles/image-package-05.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/image_draw.html b/doc/articles/image_draw.html
deleted file mode 100644
index 71658cf92..000000000
--- a/doc/articles/image_draw.html
+++ /dev/null
@@ -1,222 +0,0 @@
-<!--{
- "Title": "The Go image/draw package",
- "Template": true
-}-->
-
-<p>
-<a href="/pkg/image/draw/">Package image/draw</a> defines
-only one operation: drawing a source image onto a destination
-image, through an optional mask image. This one operation is
-surprisingly versatile and can perform a number of common image
-manipulation tasks elegantly and efficiently.
-</p>
-
-<p>
-Composition is performed pixel by pixel in the style of the Plan 9
-graphics library and the X Render extension. The model is based on
-the classic "Compositing Digital Images" paper by Porter and Duff,
-with an additional mask parameter: <code>dst = (src IN mask) OP dst</code>.
-For a fully opaque mask, this reduces to the original Porter-Duff
-formula: <code>dst = src OP dst</code>. In Go, a nil mask image is equivalent
-to an infinitely sized, fully opaque mask image.
-</p>
-
-<p>
-The Porter-Duff paper presented
-<a href="http://www.w3.org/TR/SVGCompositing/examples/compop-porterduff-examples.png">12 different composition operators</a>,
-but with an explicit mask, only 2 of these are needed in practice:
-source-over-destination and source. In Go, these operators are
-represented by the <code>Over</code> and <code>Src</code> constants. The <code>Over</code> operator
-performs the natural layering of a source image over a destination
-image: the change to the destination image is smaller where the
-source (after masking) is more transparent (that is, has lower
-alpha). The <code>Src</code> operator merely copies the source (after masking)
-with no regard for the destination image's original content. For
-fully opaque source and mask images, the two operators produce the
-same output, but the <code>Src</code> operator is usually faster.
-</p>
-
-<p><b>Geometric Alignment</b></p>
-
-<p>
-Composition requires associating destination pixels with source and
-mask pixels. Obviously, this requires destination, source and mask
-images, and a composition operator, but it also requires specifying
-what rectangle of each image to use. Not every drawing should write
-to the entire destination: when updating an animating image, it is
-more efficient to only draw the parts of the image that have
-changed. Not every drawing should read from the entire source: when
-using a sprite that combines many small images into one large one,
-only a part of the image is needed. Not every drawing should read
-from the entire mask: a mask image that collects a font's glyphs is
-similar to a sprite. Thus, drawing also needs to know three
-rectangles, one for each image. Since each rectangle has the same
-width and height, it suffices to pass a destination rectangle `r`
-and two points <code>sp</code> and <code>mp</code>: the source rectangle is equal to <code>r</code>
-translated so that <code>r.Min</code> in the destination image aligns with
-<code>sp</code> in the source image, and similarly for <code>mp</code>. The effective
-rectangle is also clipped to each image's bounds in their
-respective co-ordinate space.
-</p>
-
-<p>
-<img src="image-20.png">
-</p>
-
-<p>
-The <a href="/pkg/image/draw/#DrawMask"><code>DrawMask</code></a>
-function takes seven arguments, but an explicit mask and mask-point
-are usually unnecessary, so the
-<a href="/pkg/image/draw/#Draw"><code>Draw</code></a> function takes five:
-</p>
-
-<pre>
-// Draw calls DrawMask with a nil mask.
-func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op)
-func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point,
- mask image.Image, mp image.Point, op Op)
-</pre>
-
-<p>
-The destination image must be mutable, so the image/draw package
-defines a <a href="/pkg/image/draw/#Image"><code>draw.Image</code></a>
-interface which has a <code>Set</code> method.
-</p>
-
-{{code "../src/pkg/image/draw/draw.go" `/type Image/` `/}/`}}
-
-<p><b>Filling a Rectangle</b></p>
-
-<p>
-To fill a rectangle with a solid color, use an <code>image.Uniform</code>
-source. The <code>Uniform</code> type re-interprets a <code>Color</code> as a
-practically infinite-sized <code>Image</code> of that color. For those
-familiar with the design of Plan 9's draw library, there is no need
-for an explicit "repeat bit" in Go's slice-based image types; the
-concept is subsumed by <code>Uniform</code>.
-</p>
-
-{{code "/doc/progs/image_draw.go" `/ZERO/` `/STOP/`}}
-
-<p>
-To initialize a new image to all-blue:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/BLUE/` `/STOP/`}}
-
-<p>
-To reset an image to transparent (or black, if the destination
-image's color model cannot represent transparency), use
-<code>image.Transparent</code>, which is an <code>image.Uniform</code>:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/RESET/` `/STOP/`}}
-
-<p>
-<img src="image-2a.png">
-</p>
-
-
-<p><b>Copying an Image</b></p>
-
-<p>
-To copy from a rectangle <code>sr</code> in the source image to a rectangle
-starting at a point <code>dp</code> in the destination, convert the source
-rectangle into the destination image's co-ordinate space:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/RECT/` `/STOP/`}}
-
-<p>
-Alternatively:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/RECT2/` `/STOP/`}}
-
-<p>
-To copy the entire source image, use <code>sr = src.Bounds()</code>.
-</p>
-
-<p>
-<img src="image-2b.png">
-</p>
-
-<p><b>Scrolling an Image</b></p>
-
-<p>
-Scrolling an image is just copying an image to itself, with
-different destination and source rectangles. Overlapping
-destination and source images are perfectly valid, just as Go's
-built-in copy function can handle overlapping destination and
-source slices. To scroll an image m by 20 pixels:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/SCROLL/` `/STOP/`}}
-
-<p><img src="image-2c.png"></p>
-
-<p><b>Converting an Image to RGBA</b></p>
-
-<p>
-The result of decoding an image format might not be an
-<code>image.RGBA</code>: decoding a GIF results in an <code>image.Paletted</code>,
-decoding a JPEG results in a <code>ycbcr.YCbCr</code>, and the result of
-decoding a PNG depends on the image data. To convert any image to
-an <code>image.RGBA</code>:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/CONV/` `/STOP/`}}
-
-<p>
-<img src="image-2d.png">
-</p>
-
-<p><b>Drawing Through a Mask</b></p>
-
-<p>
-To draw an image through a circular mask with center <code>p</code> and radius
-<code>r</code>:
-</p>
-
-{{code "/doc/progs/image_draw.go" `/CIRCLESTRUCT/` `/STOP/`}}
-{{code "/doc/progs/image_draw.go" `/CIRCLE2/` `/STOP/`}}
-
-<p>
-<img src="image-2e.png">
-</p>
-
-<p><b>Drawing Font Glyphs</b></p>
-
-<p>
-To draw a font glyph in blue starting from a point <code>p</code>, draw with
-an <code>image.Uniform</code> source and an <code>image.Alpha mask</code>. For
-simplicity, we aren't performing any sub-pixel positioning or
-rendering, or correcting for a font's height above a baseline.
-</p>
-
-{{code "/doc/progs/image_draw.go" `/GLYPH/` `/STOP/`}}
-
-<p>
-<img src="image-2f.png">
-</p>
-
-<p><b>Performance</b></p>
-
-<p>
-The image/draw package implementation demonstrates how to provide
-an image manipulation function that is both general purpose, yet
-efficient for common cases. The <code>DrawMask</code> function takes arguments
-of interface types, but immediately makes type assertions that its
-arguments are of specific struct types, corresponding to common
-operations like drawing one <code>image.RGBA</code> image onto another, or
-drawing an <code>image.Alpha</code> mask (such as a font glyph) onto an
-<code>image.RGBA</code> image. If a type assertion succeeds, that type
-information is used to run a specialized implementation of the
-general algorithm. If the assertions fail, the fallback code path
-uses the generic <code>At</code> and <code>Set</code> methods. The fast-paths are purely
-a performance optimization; the resultant destination image is the
-same either way. In practice, only a small number of special cases
-are necessary to support typical applications.
-</p>
-
-
diff --git a/doc/articles/image_package.html b/doc/articles/image_package.html
deleted file mode 100644
index 39a93ccda..000000000
--- a/doc/articles/image_package.html
+++ /dev/null
@@ -1,312 +0,0 @@
-<!--{
- "Title": "The Go image package",
- "Template": true
-}-->
-
-<p>
-The <a href="/pkg/image/">image</a> and
-<a href="/pkg/image/color/">image/color</a> packages define a number of types:
-<code>color.Color</code> and <code>color.Model</code> describe colors,
-<code>image.Point</code> and <code>image.Rectangle</code> describe basic 2-D
-geometry, and <code>image.Image</code> brings the two concepts together to
-represent a rectangular grid of colors. A
-<a href="/doc/articles/image_draw.html">separate article</a> covers image
-composition with the <a href="/pkg/image/draw/">image/draw</a> package.
-</p>
-
-<p>
-<b>Colors and Color Models</b>
-</p>
-
-<p>
-<a href="/pkg/image/color/#Color">Color</a> is an interface that defines the minimal
-method set of any type that can be considered a color: one that can be converted
-to red, green, blue and alpha values. The conversion may be lossy, such as
-converting from CMYK or YCbCr color spaces.
-</p>
-
-{{code "/src/pkg/image/color/color.go" `/type Color interface/` `/^}/`}}
-
-<p>
-There are three important subtleties about the return values. First, the red,
-green and blue are alpha-premultiplied: a fully saturated red that is also 25%
-transparent is represented by RGBA returning a 75% r. Second, the channels have
-a 16-bit effective range: 100% red is represented by RGBA returning an r of
-65535, not 255, so that converting from CMYK or YCbCr is not as lossy. Third,
-the type returned is <code>uint32</code>, even though the maximum value is 65535, to
-guarantee that multiplying two values together won't overflow. Such
-multiplications occur when blending two colors according to an alpha mask from a
-third color, in the style of
-<a href="https://en.wikipedia.org/wiki/Alpha_compositing">Porter and Duff's</a>
-classic algebra:
-</p>
-
-<pre>
-dstr, dstg, dstb, dsta := dst.RGBA()
-srcr, srcg, srcb, srca := src.RGBA()
-_, _, _, m := mask.RGBA()
-const M = 1&lt;&lt;16 - 1
-// The resultant red value is a blend of dstr and srcr, and ranges in [0, M].
-// The calculation for green, blue and alpha is similar.
-dstr = (dstr*(M-m) + srcr*m) / M
-</pre>
-
-<p>
-The last line of that code snippet would have been more complicated if we worked
-with non-alpha-premultiplied colors, which is why <code>Color</code> uses
-alpha-premultiplied values.
-</p>
-
-<p>
-The image/color package also defines a number of concrete types that implement
-the <code>Color</code> interface. For example,
-<a href="/pkg/image/color/#RGBA"><code>RGBA</code></a> is a struct that represents
-the classic "8 bits per channel" color.
-</p>
-
-{{code "/src/pkg/image/color/color.go" `/type RGBA struct/` `/^}/`}}
-
-<p>
-Note that the <code>R</code> field of an <code>RGBA</code> is an 8-bit
-alpha-premultiplied color in the range [0, 255]. <code>RGBA</code> satisfies the
-<code>Color</code> interface by multiplying that value by 0x101 to generate a
-16-bit alpha-premultiplied color in the range [0, 65535]. Similarly, the
-<a href="/pkg/image/color/#NRGBA"><code>NRGBA</code></a> struct type represents
-an 8-bit non-alpha-premultiplied color, as used by the PNG image format. When
-manipulating an <code>NRGBA</code>'s fields directly, the values are
-non-alpha-premultiplied, but when calling the <code>RGBA</code> method, the
-return values are alpha-premultiplied.
-</p>
-
-<p>
-A <a href="/pkg/image/color/#Model"><code>Model</code></a> is simply
-something that can convert <code>Color</code>s to other <code>Color</code>s, possibly lossily. For
-example, the <code>GrayModel</code> can convert any <code>Color</code> to a
-desaturated <a href="/pkg/image/color/#Gray"><code>Gray</code></a>. A
-<code>Palette</code> can convert any <code>Color</code> to one from a
-limited palette.
-</p>
-
-{{code "/src/pkg/image/color/color.go" `/type Model interface/` `/^}/`}}
-
-{{code "/src/pkg/image/color/color.go" `/type Palette \[\]Color/`}}
-
-<p>
-<b>Points and Rectangles</b>
-</p>
-
-<p>
-A <a href="/pkg/image/#Point"><code>Point</code></a> is an (x, y) co-ordinate
-on the integer grid, with axes increasing right and down. It is neither a pixel
-nor a grid square. A <code>Point</code> has no intrinsic width, height or
-color, but the visualizations below use a small colored square.
-</p>
-
-{{code "/src/pkg/image/geom.go" `/type Point struct/` `/^}/`}}
-
-<p>
-<img src="image-package-01.png" width="400" height="300">
-</p>
-
-{{code "/doc/progs/image_package1.go" `/p := image.Point/`}}
-
-<p>
-A <a href="/pkg/image/#Rectangle"><code>Rectangle</code></a> is an axis-aligned
-rectangle on the integer grid, defined by its top-left and bottom-right
-<code>Point</code>. A <code>Rectangle</code> also has no intrinsic color, but
-the visualizations below outline rectangles with a thin colored line, and call
-out their <code>Min</code> and <code>Max</code> <code>Point</code>s.
-</p>
-
-{{code "/src/pkg/image/geom.go" `/type Rectangle struct/` `/^}/`}}
-
-<p>
-For convenience, <code>image.Rect(x0, y0, x1, y1)</code> is equivalent to
-<code>image.Rectangle{image.Point{x0, y0}, image.Point{x1, y1}}</code>, but is
-much easier to type.
-</p>
-
-<p>
-A <code>Rectangle</code> is inclusive at the top-left and exclusive at the
-bottom-right. For a <code>Point p</code> and a <code>Rectangle r</code>,
-<code>p.In(r)</code> if and only if
-<code>r.Min.X &lt;= p.X &amp;&amp; p.X &lt; r.Max.X</code>, and similarly for <code>Y</code>. This is analogous to how
-a slice <code>s[i0:i1]</code> is inclusive at the low end and exclusive at the
-high end. (Unlike arrays and slices, a <code>Rectangle</code> often has a
-non-zero origin.)
-</p>
-
-<p>
-<img src="image-package-02.png" width="400" height="300">
-</p>
-
-{{code "/doc/progs/image_package2.go" `/r := image.Rect/` `/fmt.Println/`}}
-
-<p>
-Adding a <code>Point</code> to a <code>Rectangle</code> translates the
-<code>Rectangle</code>. Points and Rectangles are not restricted to be in the
-bottom-right quadrant.
-</p>
-
-<p>
-<img src="image-package-03.png" width="400" height="300">
-</p>
-
-{{code "/doc/progs/image_package3.go" `/r := image.Rect/` `/fmt.Println/`}}
-
-<p>
-Intersecting two Rectangles yields another Rectangle, which may be empty.
-</p>
-
-<p>
-<img src="image-package-04.png" width="400" height="300">
-</p>
-
-{{code "/doc/progs/image_package4.go" `/r := image.Rect/` `/fmt.Printf/`}}
-
-<p>
-Points and Rectangles are passed and returned by value. A function that takes a
-<code>Rectangle</code> argument will be as efficient as a function that takes
-two <code>Point</code> arguments, or four <code>int</code> arguments.
-</p>
-
-<p>
-<b>Images</b>
-</p>
-
-<p>
-An <a href="/pkg/image/#Image">Image</a> maps every grid square in a
-<code>Rectangle</code> to a <code>Color</code> from a <code>Model</code>.
-"The pixel at (x, y)" refers to the color of the grid square defined by the
-points (x, y), (x+1, y), (x+1, y+1) and (x, y+1).
-</p>
-
-{{code "/src/pkg/image/image.go" `/type Image interface/` `/^}/`}}
-
-<p>
-A common mistake is assuming that an <code>Image</code>'s bounds start at (0,
-0). For example, an animated GIF contains a sequence of Images, and each
-<code>Image</code> after the first typically only holds pixel data for the area
-that changed, and that area doesn't necessarily start at (0, 0). The correct
-way to iterate over an <code>Image</code> m's pixels looks like:
-</p>
-
-<pre>
-b := m.Bounds()
-for y := b.Min.Y; y &lt; b.Max.Y; y++ {
- for x := b.Min.X; x &lt; b.Max.X; x++ {
- doStuffWith(m.At(x, y))
- }
-}
-</pre>
-
-<p>
-<code>Image</code> implementations do not have to be based on an in-memory
-slice of pixel data. For example, a
-<a href="/pkg/image/#Uniform"><code>Uniform</code></a> is an
-<code>Image</code> of enormous bounds and uniform color, whose in-memory
-representation is simply that color.
-</p>
-
-{{code "/src/pkg/image/names.go" `/type Uniform struct/` `/^}/`}}
-
-<p>
-Typically, though, programs will want an image based on a slice. Struct types
-like <a href="/pkg/image/#RGBA"><code>RGBA</code></a> and
-<a href="/pkg/image/#Gray"><code>Gray</code></a> (which other packages refer
-to as <code>image.RGBA</code> and <code>image.Gray</code>) hold slices of pixel
-data and implement the <code>Image</code> interface.
-</p>
-
-{{code "/src/pkg/image/image.go" `/type RGBA struct/` `/^}/`}}
-
-<p>
-These types also provide a <code>Set(x, y int, c color.Color)</code> method
-that allows modifying the image one pixel at a time.
-</p>
-
-{{code "/doc/progs/image_package5.go" `/m := image.New/` `/m.Set/`}}
-
-<p>
-If you're reading or writing a lot of pixel data, it can be more efficient, but
-more complicated, to access these struct type's <code>Pix</code> field directly.
-</p>
-
-<p>
-The slice-based <code>Image</code> implementations also provide a
-<code>SubImage</code> method, which returns an <code>Image</code> backed by the
-same array. Modifying the pixels of a sub-image will affect the pixels of the
-original image, analogous to how modifying the contents of a sub-slice
-<code>s[i0:i1]</code> will affect the contents of the original slice
-<code>s</code>.
-</p>
-
-<img src="image-package-05.png" width="400" height="300">
-
-{{code "/doc/progs/image_package6.go" `/m0 := image.New/` `/fmt.Println\(m0.Stride/`}}
-
-<p>
-For low-level code that works on an image's <code>Pix</code> field, be aware
-that ranging over <code>Pix</code> can affect pixels outside an image's bounds.
-In the example above, the pixels covered by <code>m1.Pix</code> are shaded in
-blue. Higher-level code, such as the <code>At</code> and <code>Set</code>
-methods or the <a href="/pkg/image/draw/">image/draw package</a>, will clip
-their operations to the image's bounds.
-</p>
-
-<p>
-<b>Image Formats</b>
-</p>
-
-<p>
-The standard package library supports a number of common image formats, such as
-GIF, JPEG and PNG. If you know the format of a source image file, you can
-decode from an <a href="/pkg/io/#Reader"><code>io.Reader</code></a> directly.
-</p>
-
-<pre>
-import (
- "image/jpeg"
- "image/png"
- "io"
-)
-
-// convertJPEGToPNG converts from JPEG to PNG.
-func convertJPEGToPNG(w io.Writer, r io.Reader) error {
- img, err := jpeg.Decode(r)
- if err != nil {
- return err
- }
- return png.Encode(w, img)
-}
-</pre>
-
-<p>
-If you have image data of unknown format, the
-<a href="/pkg/image/#Decode"><code>image.Decode</code></a> function can detect
-the format. The set of recognized formats is constructed at run time and is not
-limited to those in the standard package library. An image format package
-typically registers its format in an init function, and the main package will
-"underscore import" such a package solely for the side effect of format
-registration.
-</p>
-
-<pre>
-import (
- "image"
- "image/png"
- "io"
-
- _ "code.google.com/p/vp8-go/webp"
- _ "image/jpeg"
-)
-
-// convertToPNG converts from any recognized format to PNG.
-func convertToPNG(w io.Writer, r io.Reader) error {
- img, _, err := image.Decode(r)
- if err != nil {
- return err
- }
- return png.Encode(w, img)
-}
-</pre>
diff --git a/doc/articles/index.html b/doc/articles/index.html
index 5f70734ec..9ddd66973 100644
--- a/doc/articles/index.html
+++ b/doc/articles/index.html
@@ -3,5 +3,6 @@
}-->
<p>
-See the <a href="/doc/#articles">Documents page</a> for a complete list of Go articles.
+See the <a href="/doc/#articles">Documents page</a> and the
+<a href="/blog/index">Blog index</a> for a complete list of Go articles.
</p>
diff --git a/doc/articles/json_and_go.html b/doc/articles/json_and_go.html
deleted file mode 100644
index 8c4ef33a4..000000000
--- a/doc/articles/json_and_go.html
+++ /dev/null
@@ -1,357 +0,0 @@
-<!--{
-"Title": "JSON and Go",
-"Template": true
-}-->
-
-<p>
-JSON (JavaScript Object Notation) is a simple data interchange format.
-Syntactically it resembles the objects and lists of JavaScript. It is most
-commonly used for communication between web back-ends and JavaScript programs
-running in the browser, but it is used in many other places, too. Its home page,
-<a href="http://json.org">json.org</a>, provides a wonderfully clear and concise
-definition of the standard.
-</p>
-
-<p>
-With the <a href="/pkg/encoding/json/">json package</a> it's a snap to read and
-write JSON data from your Go programs.
-</p>
-
-<p>
-<b>Encoding</b>
-</p>
-
-<p>
-To encode JSON data we use the
-<a href="/pkg/encoding/json/#Marshal"><code>Marshal</code></a> function.
-</p>
-
-<pre>
-func Marshal(v interface{}) ([]byte, error)
-</pre>
-
-<p>
-Given the Go data structure, <code>Message</code>,
-</p>
-
-{{code "/doc/progs/json1.go" `/type Message/` `/STOP/`}}
-
-<p>
-and an instance of <code>Message</code>
-</p>
-
-{{code "/doc/progs/json1.go" `/m :=/`}}
-
-<p>
-we can marshal a JSON-encoded version of <code>m</code> using <code>json.Marshal</code>:
-</p>
-
-{{code "/doc/progs/json1.go" `/b, err :=/`}}
-
-<p>
-If all is well, <code>err</code> will be <code>nil</code> and <code>b</code>
-will be a <code>[]byte</code> containing this JSON data:
-</p>
-
-<pre>
-b == []byte(`{"Name":"Alice","Body":"Hello","Time":1294706395881547000}`)
-</pre>
-
-<p>
-Only data structures that can be represented as valid JSON will be encoded:
-</p>
-
-<ul>
-<li>
-JSON objects only support strings as keys; to encode a Go map type it must be
-of the form <code>map[string]T</code> (where <code>T</code> is any Go type
-supported by the json package).
-</li>
-<li>
-Channel, complex, and function types cannot be encoded.
-</li>
-<li>
-Cyclic data structures are not supported; they will cause <code>Marshal</code>
-to go into an infinite loop.
-</li>
-<li>
-Pointers will be encoded as the values they point to (or 'null' if the pointer
-is <code>nil</code>).
-</li>
-</ul>
-
-<p>
-The json package only accesses the exported fields of struct types (those that
-begin with an uppercase letter). Therefore only the exported fields of a struct
-will be present in the JSON output.
-</p>
-
-<p>
-<b>Decoding</b>
-</p>
-
-<p>
-To decode JSON data we use the
-<a href="/pkg/encoding/json/#Unmarshal"><code>Unmarshal</code></a> function.
-</p>
-
-<pre>
-func Unmarshal(data []byte, v interface{}) error
-</pre>
-
-<p>
-We must first create a place where the decoded data will be stored
-</p>
-
-{{code "/doc/progs/json1.go" `/var m Message/`}}
-
-<p>
-and call <code>json.Unmarshal</code>, passing it a <code>[]byte</code> of JSON
-data and a pointer to <code>m</code>
-</p>
-
-{{code "/doc/progs/json1.go" `/err := json.Unmarshal/`}}
-
-<p>
-If <code>b</code> contains valid JSON that fits in <code>m</code>, after the
-call <code>err</code> will be <code>nil</code> and the data from <code>b</code>
-will have been stored in the struct <code>m</code>, as if by an assignment
-like:
-</p>
-
-{{code "/doc/progs/json1.go" `/m = Message/` `/STOP/`}}
-
-<p>
-How does <code>Unmarshal</code> identify the fields in which to store the
-decoded data? For a given JSON key <code>"Foo"</code>, <code>Unmarshal</code>
-will look through the destination struct's fields to find (in order of
-preference):
-</p>
-
-<ul>
-<li>
-An exported field with a tag of <code>`json:"Foo"`</code> (see the
-<a href="/ref/spec#Struct_types">Go spec</a> for more on struct tags),
-</li>
-<li>
-An exported field named <code>"Foo"</code>, or
-</li>
-<li>
-An exported field named <code>"FOO"</code> or <code>"FoO"</code> or some other
-case-insensitive match of <code>"Foo"</code>.
-</li>
-</ul>
-
-<p>
-What happens when the structure of the JSON data doesn't exactly match the Go
-type?
-</p>
-
-{{code "/doc/progs/json1.go" `/"Food":"Pickle"/` `/STOP/`}}
-
-<p>
-<code>Unmarshal</code> will decode only the fields that it can find in the
-destination type. In this case, only the <code>Name</code> field of m will be
-populated, and the <code>Food</code> field will be ignored. This behavior is
-particularly useful when you wish to pick only a few specific fields out of a
-large JSON blob. It also means that any unexported fields in the destination
-struct will be unaffected by <code>Unmarshal</code>.
-</p>
-
-<p>
-But what if you don't know the structure of your JSON data beforehand?
-</p>
-
-<p>
-<b>Generic JSON with <code>interface{}</code></b>
-</p>
-
-<p>
-The <code>interface{}</code> (empty interface) type describes an interface with
-zero methods. Every Go type implements at least zero methods and therefore
-satisfies the empty interface.
-</p>
-
-<p>
-The empty interface serves as a general container type:
-</p>
-
-{{code "/doc/progs/json2.go" `/var i interface{}/` `/STOP/`}}
-
-<p>
-A type assertion accesses the underlying concrete type:
-</p>
-
-{{code "/doc/progs/json2.go" `/r := i/` `/STOP/`}}
-
-<p>
-Or, if the underlying type is unknown, a type switch determines the type:
-</p>
-
-{{code "/doc/progs/json2.go" `/switch v/` `/STOP/`}}
-
-<p>
-The json package uses <code>map[string]interface{}</code> and
-<code>[]interface{}</code> values to store arbitrary JSON objects and arrays;
-it will happily unmarshal any valid JSON blob into a plain
-<code>interface{}</code> value. The default concrete Go types are:
-</p>
-
-<ul>
-<li>
-<code>bool</code> for JSON booleans,
-</li>
-<li>
-<code>float64</code> for JSON numbers,
-</li>
-<li>
-<code>string</code> for JSON strings, and
-</li>
-<li>
-<code>nil</code> for JSON null.
-</li>
-</ul>
-
-<p>
-<b>Decoding arbitrary data</b>
-</p>
-
-<p>
-Consider this JSON data, stored in the variable <code>b</code>:
-</p>
-
-{{code "/doc/progs/json3.go" `/b :=/`}}
-
-<p>
-Without knowing this data's structure, we can decode it into an
-<code>interface{}</code> value with <code>Unmarshal</code>:
-</p>
-
-{{code "/doc/progs/json3.go" `/var f interface/` `/STOP/`}}
-
-<p>
-At this point the Go value in <code>f</code> would be a map whose keys are
-strings and whose values are themselves stored as empty interface values:
-</p>
-
-{{code "/doc/progs/json3.go" `/f = map/` `/STOP/`}}
-
-<p>
-To access this data we can use a type assertion to access <code>f</code>'s
-underlying <code>map[string]interface{}</code>:
-</p>
-
-{{code "/doc/progs/json3.go" `/m := f/`}}
-
-<p>
-We can then iterate through the map with a range statement and use a type switch
-to access its values as their concrete types:
-</p>
-
-{{code "/doc/progs/json3.go" `/for k, v/` `/STOP/`}}
-
-<p>
-In this way you can work with unknown JSON data while still enjoying the
-benefits of type safety.
-</p>
-
-<p>
-<b>Reference Types</b>
-</p>
-
-<p>
-Let's define a Go type to contain the data from the previous example:
-</p>
-
-{{code "/doc/progs/json4.go" `/type FamilyMember/` `/STOP/`}}
-
-{{code "/doc/progs/json4.go" `/var m FamilyMember/` `/STOP/`}}
-
-<p>
-Unmarshaling that data into a <code>FamilyMember</code> value works as
-expected, but if we look closely we can see a remarkable thing has happened.
-With the var statement we allocated a <code>FamilyMember</code> struct, and
-then provided a pointer to that value to <code>Unmarshal</code>, but at that
-time the <code>Parents</code> field was a <code>nil</code> slice value. To
-populate the <code>Parents</code> field, <code>Unmarshal</code> allocated a new
-slice behind the scenes. This is typical of how <code>Unmarshal</code> works
-with the supported reference types (pointers, slices, and maps).
-</p>
-
-<p>
-Consider unmarshaling into this data structure:
-</p>
-
-<pre>
-type Foo struct {
- Bar *Bar
-}
-</pre>
-
-<p>
-If there were a <code>Bar</code> field in the JSON object,
-<code>Unmarshal</code> would allocate a new <code>Bar</code> and populate it.
-If not, <code>Bar</code> would be left as a <code>nil</code> pointer.
-</p>
-
-<p>
-From this a useful pattern arises: if you have an application that receives a
-few distinct message types, you might define "receiver" structure like
-</p>
-
-<pre>
-type IncomingMessage struct {
- Cmd *Command
- Msg *Message
-}
-</pre>
-
-<p>
-and the sending party can populate the <code>Cmd</code> field and/or the
-<code>Msg</code> field of the top-level JSON object, depending on the type of
-message they want to communicate. <code>Unmarshal</code>, when decoding the
-JSON into an <code>IncomingMessage</code> struct, will only allocate the data
-structures present in the JSON data. To know which messages to process, the
-programmer need simply test that either <code>Cmd</code> or <code>Msg</code> is
-not <code>nil</code>.
-</p>
-
-<p>
-<b>Streaming Encoders and Decoders</b>
-</p>
-
-<p>
-The json package provides <code>Decoder</code> and <code>Encoder</code> types
-to support the common operation of reading and writing streams of JSON data.
-The <code>NewDecoder</code> and <code>NewEncoder</code> functions wrap the
-<a href="/pkg/io/#Reader"><code>io.Reader</code></a> and
-<a href="/pkg/io/#Writer"><code>io.Writer</code></a> interface types.
-</p>
-
-<pre>
-func NewDecoder(r io.Reader) *Decoder
-func NewEncoder(w io.Writer) *Encoder
-</pre>
-
-<p>
-Here's an example program that reads a series of JSON objects from standard
-input, removes all but the <code>Name</code> field from each object, and then
-writes the objects to standard output:
-</p>
-
-{{code "/doc/progs/json5.go" `/package main/` `$`}}
-
-<p>
-Due to the ubiquity of Readers and Writers, these <code>Encoder</code> and
-<code>Decoder</code> types can be used in a broad range of scenarios, such as
-reading and writing to HTTP connections, WebSockets, or files.
-</p>
-
-<p>
-<b>References</b>
-</p>
-
-<p>
-For more information see the <a href="/pkg/encoding/json/">json package documentation</a>. For an example usage of
-json see the source files of the <a href="/pkg/net/rpc/jsonrpc/">jsonrpc package</a>.
-</p>
diff --git a/doc/articles/json_rpc_tale_of_interfaces.html b/doc/articles/json_rpc_tale_of_interfaces.html
deleted file mode 100644
index 0db366f33..000000000
--- a/doc/articles/json_rpc_tale_of_interfaces.html
+++ /dev/null
@@ -1,78 +0,0 @@
-<!--{
-"Title": "JSON-RPC: a tale of interfaces"
-}-->
-
-<p>
-Here we present an example where Go's
-<a href="/doc/effective_go.html#interfaces_and_types">interfaces</a> made it
-easy to refactor some existing code to make it more flexible and extensible.
-Originally, the standard library's <a href="/pkg/net/rpc/">RPC package</a> used
-a custom wire format called <a href="/pkg/encoding/gob/">gob</a>. For a
-particular application, we wanted to use <a href="/pkg/encoding/json/">JSON</a>
-as an alternate wire format.
-</p>
-
-<p>
-We first defined a pair of interfaces to describe the functionality of the
-existing wire format, one for the client, and one for the server (depicted
-below).
-</p>
-
-<pre>
-type ServerCodec interface {
- ReadRequestHeader(*Request) error
- ReadRequestBody(interface{}) error
- WriteResponse(*Response, interface{}) error
- Close() error
-}
-</pre>
-
-<p>
-On the server side, we then changed two internal function signatures to accept
-the <code>ServerCodec</code> interface instead of our existing
-<code>gob.Encoder</code>. Here's one of them:
-</p>
-
-<pre>
-func sendResponse(sending *sync.Mutex, req *Request,
- reply interface{}, enc *gob.Encoder, errmsg string)
-</pre>
-
-<p>
-became
-</p>
-
-<pre>
-func sendResponse(sending *sync.Mutex, req *Request,
- reply interface{}, enc ServerCodec, errmsg string)
-</pre>
-
-<p>
-We then wrote a trivial <code>gobServerCodec</code> wrapper to reproduce the
-original functionality. From there it is simple to build a
-<code>jsonServerCodec</code>.
-</p>
-
-<p>
-After some similar changes to the client side, this was the full extent of the
-work we needed to do on the RPC package. This whole exercise took about 20
-minutes! After tidying up and testing the new code, the
-<a href="http://code.google.com/p/go/source/diff?spec=svn9daf796ebf1cae97b2fcf760a4ab682f1f063f29&amp;r=9daf796ebf1cae97b2fcf760a4ab682f1f063f29&amp;format=side&amp;path=/src/pkg/rpc/server.go">final changeset</a>
-was submitted.
-</p>
-
-<p>
-In an inheritance-oriented language like Java or C++, the obvious path would be
-to generalize the RPC class, and create JsonRPC and GobRPC subclasses. However,
-this approach becomes tricky if you want to make a further generalization
-orthogonal to that hierarchy. (For example, if you were to implement an
-alternate RPC standard). In our Go package, we took a route that is both
-conceptually simpler and requires less code be written or changed.
-</p>
-
-<p>
-A vital quality for any codebase is maintainability. As needs change, it is
-essential to adapt your code easily and cleanly, lest it become unwieldy to work
-with. We believe Go's lightweight, composition-oriented type system provides a
-means of structuring code that scales.
-</p>
diff --git a/doc/articles/laws_of_reflection.html b/doc/articles/laws_of_reflection.html
deleted file mode 100644
index 81f6697ce..000000000
--- a/doc/articles/laws_of_reflection.html
+++ /dev/null
@@ -1,649 +0,0 @@
-<!--{
- "Title": "The Laws of Reflection",
- "Template": true
-}-->
-
-<p>
-Reflection in computing is the
-ability of a program to examine its own structure, particularly
-through types; it's a form of metaprogramming. It's also a great
-source of confusion.
-</p>
-
-<p>
-In this article we attempt to clarify things by explaining how
-reflection works in Go. Each language's reflection model is
-different (and many languages don't support it at all), but
-this article is about Go, so for the rest of this article the word
-"reflection" should be taken to mean "reflection in Go".
-</p>
-
-<p><b>Types and interfaces</b></p>
-
-<p>
-Because reflection builds on the type system, let's start with a
-refresher about types in Go.
-</p>
-
-<p>
-Go is statically typed. Every variable has a static type, that is,
-exactly one type known and fixed at compile time: <code>int</code>,
-<code>float32</code>, <code>*MyType</code>, <code>[]byte</code>,
-and so on. If we declare
-</p>
-
-{{code "/doc/progs/interface.go" `/type MyInt/` `/STOP/`}}
-
-<p>
-then <code>i</code> has type <code>int</code> and <code>j</code>
-has type <code>MyInt</code>. The variables <code>i</code> and
-<code>j</code> have distinct static types and, although they have
-the same underlying type, they cannot be assigned to one another
-without a conversion.
-</p>
-
-<p>
-One important category of type is interface types, which represent
-fixed sets of methods. An interface variable can store any concrete
-(non-interface) value as long as that value implements the
-interface's methods. A well-known pair of examples is
-<code>io.Reader</code> and <code>io.Writer</code>, the types
-<code>Reader</code> and <code>Writer</code> from the
-<a href="/pkg/io/">io package</a>:
-</p>
-
-{{code "/doc/progs/interface.go" `/// Reader/` `/STOP/`}}
-
-<p>
-Any type that implements a <code>Read</code> (or
-<code>Write</code>) method with this signature is said to implement
-<code>io.Reader</code> (or <code>io.Writer</code>). For the
-purposes of this discussion, that means that a variable of type
-<code>io.Reader</code> can hold any value whose type has a
-<code>Read</code> method:
-</p>
-
-{{code "/doc/progs/interface.go" `/func readers/` `/STOP/`}}
-
-<p>
-It's important to be clear that whatever concrete value
-<code>r</code> may hold, <code>r</code>'s type is always
-<code>io.Reader</code>: Go is statically typed and the static type
-of <code>r</code> is <code>io.Reader</code>.</p>
-
-<p>
-An extremely important example of an interface type is the empty
-interface:
-</p>
-
-<pre>
-interface{}
-</pre>
-
-<p>
-It represents the empty set of methods and is satisfied by any
-value at all, since any value has zero or more methods.
-</p>
-
-<p>
-Some people say that Go's interfaces are dynamically typed, but
-that is misleading. They are statically typed: a variable of
-interface type always has the same static type, and even though at
-run time the value stored in the interface variable may change
-type, that value will always satisfy the interface.
-</p>
-
-<p>
-We need to be precise about all this because reflection and
-interfaces are closely related.
-</p>
-
-<p><b>The representation of an interface</b></p>
-
-<p>
-Russ Cox has written a
-<a href="http://research.swtch.com/2009/12/go-data-structures-interfaces.html">detailed blog post</a>
-about the representation of interface values in Go. It's not necessary to
-repeat the full story here, but a simplified summary is in order.
-</p>
-
-<p>
-A variable of interface type stores a pair: the concrete value
-assigned to the variable, and that value's type descriptor.
-To be more precise, the value is the underlying concrete data item
-that implements the interface and the type describes the full type
-of that item. For instance, after
-</p>
-
-{{code "/doc/progs/interface.go" `/func typeAssertions/` `/STOP/`}}
-
-<p>
-<code>r</code> contains, schematically, the (value, type) pair,
-(<code>tty</code>, <code>*os.File</code>). Notice that the type
-<code>*os.File</code> implements methods other than
-<code>Read</code>; even though the interface value provides access
-only to the <code>Read</code> method, the value inside carries all
-the type information about that value. That's why we can do things
-like this:
-</p>
-
-{{code "/doc/progs/interface.go" `/var w io.Writer/` `/STOP/`}}
-
-<p>
-The expression in this assignment is a type assertion; what it
-asserts is that the item inside <code>r</code> also implements
-<code>io.Writer</code>, and so we can assign it to <code>w</code>.
-After the assignment, <code>w</code> will contain the pair
-(<code>tty</code>, <code>*os.File</code>). That's the same pair as
-was held in <code>r</code>. The static type of the interface
-determines what methods may be invoked with an interface variable,
-even though the concrete value inside may have a larger set of
-methods.
-</p>
-
-<p>
-Continuing, we can do this:
-</p>
-
-{{code "/doc/progs/interface.go" `/var empty interface{}/` `/STOP/`}}
-
-<p>
-and our empty interface value <code>e</code> will again contain
-that same pair, (<code>tty</code>, <code>*os.File</code>). That's
-handy: an empty interface can hold any value and contains all the
-information we could ever need about that value.
-</p>
-
-<p>
-(We don't need a type assertion here because it's known statically
-that <code>w</code> satisfies the empty interface. In the example
-where we moved a value from a <code>Reader</code> to a
-<code>Writer</code>, we needed to be explicit and use a type
-assertion because <code>Writer</code>'s methods are not a
-subset of <code>Reader</code>'s.)
-</p>
-
-<p>
-One important detail is that the pair inside an interface always
-has the form (value, concrete type) and cannot have the form
-(value, interface type). Interfaces do not hold interface
-values.
-</p>
-
-<p>
-Now we're ready to reflect.
-</p>
-
-<p><b>The first law of reflection</b></p>
-
-<p><b>1. Reflection goes from interface value to reflection object.</b></p>
-
-<p>
-At the basic level, reflection is just a mechanism to examine the
-type and value pair stored inside an interface variable. To get
-started, there are two types we need to know about in
-<a href="/pkg/reflect/">package reflect</a>:
-<a href="/pkg/reflect/#Type">Type</a> and
-<a href="/pkg/reflect/#Value">Value</a>. Those two types
-give access to the contents of an interface variable, and two
-simple functions, called <code>reflect.TypeOf</code> and
-<code>reflect.ValueOf</code>, retrieve <code>reflect.Type</code>
-and <code>reflect.Value</code> pieces out of an interface value.
-(Also, from the <code>reflect.Value</code> it's easy to get
-to the <code>reflect.Type</code>, but let's keep the
-<code>Value</code> and <code>Type</code> concepts separate for
-now.)
-</p>
-
-<p>
-Let's start with <code>TypeOf</code>:
-</p>
-
-{{code "/doc/progs/interface2.go" `/package main/` `/STOP main/`}}
-
-<p>
-This program prints
-</p>
-
-<pre>
-type: float64
-</pre>
-
-<p>
-You might be wondering where the interface is here, since the program looks
-like it's passing the <code>float64</code> variable <code>x</code>, not an
-interface value, to <code>reflect.TypeOf</code>. But it's there; as
-<a href="/pkg/reflect/#TypeOf">godoc reports</a>, the signature of
-<code>reflect.TypeOf</code> includes an empty interface:
-</p>
-
-<pre>
-// TypeOf returns the reflection Type of the value in the interface{}.
-func TypeOf(i interface{}) Type
-</pre>
-
-<p>
-When we call <code>reflect.TypeOf(x)</code>, <code>x</code> is
-first stored in an empty interface, which is then passed as the
-argument; <code>reflect.TypeOf</code> unpacks that empty interface
-to recover the type information.
-</p>
-
-<p>
-The <code>reflect.ValueOf</code> function, of course, recovers the
-value (from here on we'll elide the boilerplate and focus just on
-the executable code):
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f9/` `/STOP/`}}
-
-<p>
-prints
-</p>
-
-<pre>
-value: &lt;float64 Value&gt;
-</pre>
-
-<p>
-Both <code>reflect.Type</code> and <code>reflect.Value</code> have
-lots of methods to let us examine and manipulate them. One
-important example is that <code>Value</code> has a
-<code>Type</code> method that returns the <code>Type</code> of a
-<code>reflect.Value</code>. Another is that both <code>Type</code>
-and <code>Value</code> have a <code>Kind</code> method that returns
-a constant indicating what sort of item is stored:
-<code>Uint</code>, <code>Float64</code>, <code>Slice</code>, and so
-on. Also methods on <code>Value</code> with names like
-<code>Int</code> and <code>Float</code> let us grab values (as
-<code>int64</code> and <code>float64</code>) stored inside:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f1/` `/STOP/`}}
-
-<p>
-prints
-</p>
-
-<pre>
-type: float64
-kind is float64: true
-value: 3.4
-</pre>
-
-<p>
-There are also methods like <code>SetInt</code> and
-<code>SetFloat</code> but to use them we need to understand
-settability, the subject of the third law of reflection, discussed
-below.
-</p>
-
-<p>
-The reflection library has a couple of properties worth singling
-out. First, to keep the API simple, the "getter" and "setter"
-methods of <code>Value</code> operate on the largest type that can
-hold the value: <code>int64</code> for all the signed integers, for
-instance. That is, the <code>Int</code> method of
-<code>Value</code> returns an <code>int64</code> and the
-<code>SetInt</code> value takes an <code>int64</code>; it may be
-necessary to convert to the actual type involved:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f2/` `/STOP/`}}
-
-<p>
-The second property is that the <code>Kind</code> of a reflection
-object describes the underlying type, not the static type. If a
-reflection object contains a value of a user-defined integer type,
-as in
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f3/` `/STOP/`}}
-
-<p>
-the <code>Kind</code> of <code>v</code> is still
-<code>reflect.Int</code>, even though the static type of
-<code>x</code> is <code>MyInt</code>, not <code>int</code>. In
-other words, the <code>Kind</code> cannot discriminate an int from
-a <code>MyInt</code> even though the <code>Type</code> can.
-</p>
-
-<p><b>The second law of reflection</b></p>
-
-<p><b>2. Reflection goes from reflection object to interface
-value.</b></p>
-
-<p>
-Like physical reflection, reflection in Go generates its own
-inverse.
-</p>
-
-<p>
-Given a <code>reflect.Value</code> we can recover an interface
-value using the <code>Interface</code> method; in effect the method
-packs the type and value information back into an interface
-representation and returns the result:
-</p>
-
-<pre>
-// Interface returns v's value as an interface{}.
-func (v Value) Interface() interface{}
-</pre>
-
-<p>
-As a consequence we can say
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f3b/` `/STOP/`}}
-
-<p>
-to print the <code>float64</code> value represented by the
-reflection object <code>v</code>.
-</p>
-
-<p>
-We can do even better, though. The arguments to
-<code>fmt.Println</code>, <code>fmt.Printf</code> and so on are all
-passed as empty interface values, which are then unpacked by the
-<code>fmt</code> package internally just as we have been doing in
-the previous examples. Therefore all it takes to print the contents
-of a <code>reflect.Value</code> correctly is to pass the result of
-the <code>Interface</code> method to the formatted print
-routine:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f3c/` `/STOP/`}}
-
-<p>
-(Why not <code>fmt.Println(v)</code>? Because <code>v</code> is a
-<code>reflect.Value</code>; we want the concrete value it holds.)
-Since our value is a <code>float64</code>, we can even use a
-floating-point format if we want:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f3d/` `/STOP/`}}
-
-<p>
-and get in this case
-</p>
-
-<pre>
-3.4e+00
-</pre>
-
-<p>
-Again, there's no need to type-assert the result of
-<code>v.Interface()</code> to <code>float64</code>; the empty
-interface value has the concrete value's type information inside
-and <code>Printf</code> will recover it.
-</p>
-
-<p>
-In short, the <code>Interface</code> method is the inverse of the
-<code>ValueOf</code> function, except that its result is always of
-static type <code>interface{}</code>.
-</p>
-
-<p>
-Reiterating: Reflection goes from interface values to reflection
-objects and back again.
-</p>
-
-<p><b>The third law of reflection</b></p>
-
-<p><b>3. To modify a reflection object, the value must be settable.</b></p>
-
-<p>
-The third law is the most subtle and confusing, but it's easy
-enough to understand if we start from first principles.
-</p>
-
-<p>
-Here is some code that does not work, but is worth studying.
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f4/` `/STOP/`}}
-
-<p>
-If you run this code, it will panic with the cryptic message
-</p>
-
-<pre>
-panic: reflect.Value.SetFloat using unaddressable value
-</pre>
-
-<p>
-The problem is not that the value <code>7.1</code> is not
-addressable; it's that <code>v</code> is not settable. Settability
-is a property of a reflection <code>Value</code>, and not all
-reflection <code>Values</code> have it.
-</p>
-
-<p>
-The <code>CanSet</code> method of <code>Value</code> reports the
-settability of a <code>Value</code>; in our case,
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f5/` `/STOP/`}}
-
-<p>
-prints
-</p>
-
-<pre>
-settability of v: false
-</pre>
-
-<p>
-It is an error to call a <code>Set</code> method on an non-settable
-<code>Value</code>. But what is settability?
-</p>
-
-<p>
-Settability is a bit like addressability, but stricter. It's the
-property that a reflection object can modify the actual storage
-that was used to create the reflection object. Settability is
-determined by whether the reflection object holds the original
-item. When we say
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f6/` `/STOP/`}}
-
-<p>
-we pass a <em>copy</em> of <code>x</code> to
-<code>reflect.ValueOf</code>, so the interface value created as the
-argument to <code>reflect.ValueOf</code> is a <em>copy</em> of
-<code>x</code>, not <code>x</code> itself. Thus, if the
-statement
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f6b/` `/STOP/`}}
-
-<p>
-were allowed to succeed, it would not update <code>x</code>, even
-though <code>v</code> looks like it was created from
-<code>x</code>. Instead, it would update the copy of <code>x</code>
-stored inside the reflection value and <code>x</code> itself would
-be unaffected. That would be confusing and useless, so it is
-illegal, and settability is the property used to avoid this
-issue.
-</p>
-
-<p>
-If this seems bizarre, it's not. It's actually a familiar situation
-in unusual garb. Think of passing <code>x</code> to a
-function:
-</p>
-
-<pre>
-f(x)
-</pre>
-
-<p>
-We would not expect <code>f</code> to be able to modify
-<code>x</code> because we passed a copy of <code>x</code>'s value,
-not <code>x</code> itself. If we want <code>f</code> to modify
-<code>x</code> directly we must pass our function the address of
-<code>x</code> (that is, a pointer to <code>x</code>):</p>
-
-<p>
-<code>f(&amp;x)</code>
-</p>
-
-<p>
-This is straightforward and familiar, and reflection works the same
-way. If we want to modify <code>x</code> by reflection, we must
-give the reflection library a pointer to the value we want to
-modify.
-</p>
-
-<p>
-Let's do that. First we initialize <code>x</code> as usual
-and then create a reflection value that points to it, called
-<code>p</code>.
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f7/` `/STOP/`}}
-
-<p>
-The output so far is
-</p>
-
-<pre>
-type of p: *float64
-settability of p: false
-</pre>
-
-<p>
-The reflection object <code>p</code> isn't settable, but it's not
-<code>p</code> we want to set, it's (in effect) <code>*p</code>. To
-get to what <code>p</code> points to, we call the <code>Elem</code>
-method of <code>Value</code>, which indirects through the pointer,
-and save the result in a reflection <code>Value</code> called
-<code>v</code>:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f7b/` `/STOP/`}}
-
-<p>
-Now <code>v</code> is a settable reflection object, as the output
-demonstrates,
-</p>
-
-<pre>
-settability of v: true
-</pre>
-
-<p>
-and since it represents <code>x</code>, we are finally able to use
-<code>v.SetFloat</code> to modify the value of
-<code>x</code>:
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f7c/` `/STOP/`}}
-
-<p>
-The output, as expected, is
-</p>
-
-<pre>
-7.1
-7.1
-</pre>
-
-<p>
-Reflection can be hard to understand but it's doing exactly what
-the language does, albeit through reflection <code>Types</code> and
-<code>Values</code> that can disguise what's going on. Just keep in
-mind that reflection Values need the address of something in order
-to modify what they represent.
-</p>
-
-<p><b>Structs</b></p>
-
-<p>
-In our previous example <code>v</code> wasn't a pointer itself, it
-was just derived from one. A common way for this situation to arise
-is when using reflection to modify the fields of a structure. As
-long as we have the address of the structure, we can modify its
-fields.
-</p>
-
-<p>
-Here's a simple example that analyzes a struct value, <code>t</code>. We create
-the reflection object with the address of the struct because we'll want to
-modify it later. Then we set <code>typeOfT</code> to its type and iterate over
-the fields using straightforward method calls
-(see <a href="/pkg/reflect/">package reflect</a> for details).
-Note that we extract the names of the fields from the struct type, but the
-fields themselves are regular <code>reflect.Value</code> objects.
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f8/` `/STOP/`}}
-
-<p>
-The output of this program is
-</p>
-
-<pre>
-0: A int = 23
-1: B string = skidoo
-</pre>
-
-<p>
-There's one more point about settability introduced in
-passing here: the field names of <code>T</code> are upper case
-(exported) because only exported fields of a struct are
-settable.
-</p>
-
-<p>
-Because <code>s</code> contains a settable reflection object, we
-can modify the fields of the structure.
-</p>
-
-{{code "/doc/progs/interface2.go" `/START f8b/` `/STOP/`}}
-
-<p>
-And here's the result:
-</p>
-
-<pre>
-t is now {77 Sunset Strip}
-</pre>
-
-<p>
-If we modified the program so that <code>s</code> was created from
-<code>t</code>, not <code>&amp;t</code>, the calls to
-<code>SetInt</code> and <code>SetString</code> would fail as the
-fields of <code>t</code> would not be settable.
-</p>
-
-<p><b>Conclusion</b></p>
-
-<p>
-Here again are the laws of reflection:
-</p>
-
-<ol>
-<li>Reflection goes from interface value to reflection
-object.</li>
-<li>Reflection goes from reflection object to interface
-value.</li>
-<li>To modify a reflection object, the value must be settable.</li>
-</ol>
-
-<p>
-Once you understand these laws reflection in Go becomes much easier
-to use, although it remains subtle. It's a powerful tool that
-should be used with care and avoided unless strictly
-necessary.
-</p>
-
-<p>
-There's plenty more to reflection that we haven't covered &mdash;
-sending and receiving on channels, allocating memory, using slices
-and maps, calling methods and functions &mdash; but this post is
-long enough. We'll cover some of those topics in a later
-article.
-</p>
diff --git a/doc/articles/race_detector.html b/doc/articles/race_detector.html
deleted file mode 100644
index 2d36f616e..000000000
--- a/doc/articles/race_detector.html
+++ /dev/null
@@ -1,383 +0,0 @@
-<!--{
- "Title": "Data Race Detector",
- "Template": true
-}-->
-
-<h2 id="Introduction">Introduction</h2>
-
-<p>
-Data races are among the most common and hardest to debug types of bugs in concurrent systems.
-A data race occurs when two goroutines access the same variable concurrently and at least one of the accesses is a write.
-See the <a href="/ref/mem/">The Go Memory Model</a> for details.
-</p>
-
-<p>
-Here is an example of a data race that can lead to crashes and memory corruption:
-</p>
-
-<pre>
-func main() {
- c := make(chan bool)
- m := make(map[string]string)
- go func() {
- m["1"] = "a" // First conflicting access.
- c &lt;- true
- }()
- m["2"] = "b" // Second conflicting access.
- &lt;-c
- for k, v := range m {
- fmt.Println(k, v)
- }
-}
-</pre>
-
-<h2 id="Usage">Usage</h2>
-
-<p>
-To help diagnose such bugs, Go includes a built-in data race detector.
-To use it, add the <code>-race</code> flag to the go command:
-</p>
-
-<pre>
-$ go test -race mypkg // to test the package
-$ go run -race mysrc.go // to run the source file
-$ go build -race mycmd // to build the command
-$ go install -race mypkg // to install the package
-</pre>
-
-<h2 id="Report_Format">Report Format</h2>
-
-<p>
-When the race detector finds a data race in the program, it prints a report.
-The report contains stack traces for conflicting accesses, as well as stacks where the involved goroutines were created.
-Here is an example:
-</p>
-
-<pre>
-WARNING: DATA RACE
-Read by goroutine 185:
- net.(*pollServer).AddFD()
- src/pkg/net/fd_unix.go:89 +0x398
- net.(*pollServer).WaitWrite()
- src/pkg/net/fd_unix.go:247 +0x45
- net.(*netFD).Write()
- src/pkg/net/fd_unix.go:540 +0x4d4
- net.(*conn).Write()
- src/pkg/net/net.go:129 +0x101
- net.func·060()
- src/pkg/net/timeout_test.go:603 +0xaf
-
-Previous write by goroutine 184:
- net.setWriteDeadline()
- src/pkg/net/sockopt_posix.go:135 +0xdf
- net.setDeadline()
- src/pkg/net/sockopt_posix.go:144 +0x9c
- net.(*conn).SetDeadline()
- src/pkg/net/net.go:161 +0xe3
- net.func·061()
- src/pkg/net/timeout_test.go:616 +0x3ed
-
-Goroutine 185 (running) created at:
- net.func·061()
- src/pkg/net/timeout_test.go:609 +0x288
-
-Goroutine 184 (running) created at:
- net.TestProlongTimeout()
- src/pkg/net/timeout_test.go:618 +0x298
- testing.tRunner()
- src/pkg/testing/testing.go:301 +0xe8
-</pre>
-
-<h2 id="Options">Options</h2>
-
-<p>
-The <code>GORACE</code> environment variable sets race detector options.
-The format is:
-</p>
-
-<pre>
-GORACE="option1=val1 option2=val2"
-</pre>
-
-<p>
-The options are:
-</p>
-
-<ul>
-<li>
-<code>log_path</code> (default <code>stderr</code>): The race detector writes
-its report to a file named <code>log_path.<em>pid</em></code>.
-The special names <code>stdout</code>
-and <code>stderr</code> cause reports to be written to standard output and
-standard error, respectively.
-</li>
-
-<li>
-<code>exitcode</code> (default <code>66</code>): The exit status to use when
-exiting after a detected race.
-</li>
-
-<li>
-<code>strip_path_prefix</code> (default <code>""</code>): Strip this prefix
-from all reported file paths, to make reports more concise.
-</li>
-
-<li>
-<code>history_size</code> (default <code>1</code>): The per-goroutine memory
-access history is <code>32K * 2**history_size elements</code>.
-Increasing this value can avoid a "failed to restore the stack" error in reports, at the
-cost of increased memory usage.
-</li>
-</ul>
-
-<p>
-Example:
-</p>
-
-<pre>
-$ GORACE="log_path=/tmp/race/report strip_path_prefix=/my/go/sources/" go test -race
-</pre>
-
-<h2 id="Excluding_Tests">Excluding Tests</h2>
-
-<p>
-When you build with <code>-race</code> flag, the <code>go</code> command defines additional
-<a href="/pkg/go/build/#hdr-Build_Constraints">build tag</a> <code>race</code>.
-You can use the tag to exclude some code and tests when running the race detector.
-Some examples:
-</p>
-
-<pre>
-// +build !race
-
-package foo
-
-// The test contains a data race. See issue 123.
-func TestFoo(t *testing.T) {
- // ...
-}
-
-// The test fails under the race detector due to timeouts.
-func TestBar(t *testing.T) {
- // ...
-}
-
-// The test takes too long under the race detector.
-func TestBaz(t *testing.T) {
- // ...
-}
-</pre>
-
-<h2 id="How_To_Use">How To Use</h2>
-
-<p>
-To start, run your tests using the race detector (<code>go test -race</code>).
-The race detector only finds races that happen at runtime, so it can't find
-races in code paths that are not executed.
-If your tests have incomplete coverage,
-you may find more races by running a binary built with <code>-race</code> under a realistic
-workload.
-</p>
-
-<h2 id="Typical_Data_Races">Typical Data Races</h2>
-
-<p>
-Here are some typical data races. All of them can be detected with the race detector.
-</p>
-
-<h3 id="Race_on_loop_counter">Race on loop counter</h3>
-
-<pre>
-func main() {
- var wg sync.WaitGroup
- wg.Add(5)
- for i := 0; i < 5; i++ {
- go func() {
- fmt.Println(i) // Not the 'i' you are looking for.
- wg.Done()
- }()
- }
- wg.Wait()
-}
-</pre>
-
-<p>
-The variable <code>i</code> in the function literal is the same variable used by the loop, so
-the read in the goroutine races with the loop increment.
-(This program typically prints 55555, not 01234.)
-The program can be fixed by making a copy of the variable:
-</p>
-
-<pre>
-func main() {
- var wg sync.WaitGroup
- wg.Add(5)
- for i := 0; i < 5; i++ {
- go func(j int) {
- fmt.Println(j) // Good. Read local copy of the loop counter.
- wg.Done()
- }(i)
- }
- wg.Wait()
-}
-</pre>
-
-<h3 id="Accidentally_shared_variable">Accidentally shared variable</h3>
-
-<pre>
-// ParallelWrite writes data to file1 and file2, returns the errors.
-func ParallelWrite(data []byte) chan error {
- res := make(chan error, 2)
- f1, err := os.Create("file1")
- if err != nil {
- res &lt;- err
- } else {
- go func() {
- // This err is shared with the main goroutine,
- // so the write races with the write below.
- _, err = f1.Write(data)
- res &lt;- err
- f1.Close()
- }()
- }
- f2, err := os.Create("file2") // The second conflicting write to err.
- if err != nil {
- res &lt;- err
- } else {
- go func() {
- _, err = f2.Write(data)
- res &lt;- err
- f2.Close()
- }()
- }
- return res
-}
-</pre>
-
-<p>
-The fix is to introduce new variables in the goroutines (note the use of <code>:=</code>):
-</p>
-
-<pre>
- ...
- _, err := f1.Write(data)
- ...
- _, err := f2.Write(data)
- ...
-</pre>
-
-<h3 id="Unprotected_global_variable">Unprotected global variable</h3>
-
-<p>
-If the following code is called from several goroutines, it leads to races on the <code>service</code> map.
-Concurrent reads and writes of the same map are not safe:
-</p>
-
-<pre>
-var service map[string]net.Addr
-
-func RegisterService(name string, addr net.Addr) {
- service[name] = addr
-}
-
-func LookupService(name string) net.Addr {
- return service[name]
-}
-</pre>
-
-<p>
-To make the code safe, protect the accesses with a mutex:
-</p>
-
-<pre>
-var (
- service map[string]net.Addr
- serviceMu sync.Mutex
-)
-
-func RegisterService(name string, addr net.Addr) {
- serviceMu.Lock()
- defer serviceMu.Unlock()
- service[name] = addr
-}
-
-func LookupService(name string) net.Addr {
- serviceMu.Lock()
- defer serviceMu.Unlock()
- return service[name]
-}
-</pre>
-
-<h3 id="Primitive_unprotected_variable">Primitive unprotected variable</h3>
-
-<p>
-Data races can happen on variables of primitive types as well (<code>bool</code>, <code>int</code>, <code>int64</code>, etc.),
-as in this example:
-</p>
-
-<pre>
-type Watchdog struct{ last int64 }
-
-func (w *Watchdog) KeepAlive() {
- w.last = time.Now().UnixNano() // First conflicting access.
-}
-
-func (w *Watchdog) Start() {
- go func() {
- for {
- time.Sleep(time.Second)
- // Second conflicting access.
- if w.last < time.Now().Add(-10*time.Second).UnixNano() {
- fmt.Println("No keepalives for 10 seconds. Dying.")
- os.Exit(1)
- }
- }
- }()
-}
-</pre>
-
-<p>
-Even such "innocent" data races can lead to hard-to-debug problems caused by
-non-atomicity of the memory accesses,
-interference with compiler optimizations,
-or reordering issues accessing processor memory .
-</p>
-
-<p>
-A typical fix for this race is to use a channel or a mutex.
-To preserve the lock-free behavior, one can also use the
-<a href="/pkg/sync/atomic/"><code>sync/atomic</code></a> package.
-</p>
-
-<pre>
-type Watchdog struct{ last int64 }
-
-func (w *Watchdog) KeepAlive() {
- atomic.StoreInt64(&amp;w.last, time.Now().UnixNano())
-}
-
-func (w *Watchdog) Start() {
- go func() {
- for {
- time.Sleep(time.Second)
- if atomic.LoadInt64(&amp;w.last) < time.Now().Add(-10*time.Second).UnixNano() {
- fmt.Println("No keepalives for 10 seconds. Dying.")
- os.Exit(1)
- }
- }
- }()
-}
-</pre>
-
-<h2 id="Supported_Systems">Supported Systems</h2>
-
-<p>
-The race detector runs on <code>darwin/amd64</code>, <code>linux/amd64</code>, and <code>windows/amd64</code>.
-</p>
-
-<h2 id="Runtime_Overheads">Runtime Overhead</h2>
-
-<p>
-The cost of race detection varies by program, but for a typical program, memory
-usage may increase by 5-10x and execution time by 2-20x.
-</p>
diff --git a/doc/articles/slice-1.png b/doc/articles/slice-1.png
deleted file mode 100644
index ba465cf71..000000000
--- a/doc/articles/slice-1.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/slice-2.png b/doc/articles/slice-2.png
deleted file mode 100644
index a57581e8c..000000000
--- a/doc/articles/slice-2.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/slice-3.png b/doc/articles/slice-3.png
deleted file mode 100644
index 64ece5e87..000000000
--- a/doc/articles/slice-3.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/slice-array.png b/doc/articles/slice-array.png
deleted file mode 100644
index a533702cf..000000000
--- a/doc/articles/slice-array.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/slice-struct.png b/doc/articles/slice-struct.png
deleted file mode 100644
index f9141fc59..000000000
--- a/doc/articles/slice-struct.png
+++ /dev/null
Binary files differ
diff --git a/doc/articles/slices_usage_and_internals.html b/doc/articles/slices_usage_and_internals.html
deleted file mode 100644
index 7eb751b45..000000000
--- a/doc/articles/slices_usage_and_internals.html
+++ /dev/null
@@ -1,438 +0,0 @@
-<!--{
- "Title": "Slices: usage and internals",
- "Template": true
-}-->
-
-<p>
-Go's slice type provides a convenient and efficient means of working with
-sequences of typed data. Slices are analogous to arrays in other languages, but
-have some unusual properties. This article will look at what slices are and how
-they are used.
-</p>
-
-<p>
-<b>Arrays</b>
-</p>
-
-<p>
-The slice type is an abstraction built on top of Go's array type, and so to
-understand slices we must first understand arrays.
-</p>
-
-<p>
-An array type definition specifies a length and an element type. For example,
-the type <code>[4]int</code> represents an array of four integers. An array's
-size is fixed; its length is part of its type (<code>[4]int</code> and
-<code>[5]int</code> are distinct, incompatible types). Arrays can be indexed in
-the usual way, so the expression <code>s[n]</code> accesses the <i>n</i>th
-element:
-</p>
-
-<pre>
-var a [4]int
-a[0] = 1
-i := a[0]
-// i == 1
-</pre>
-
-<p>
-Arrays do not need to be initialized explicitly; the zero value of an array is
-a ready-to-use array whose elements are themselves zeroed:
-</p>
-
-<pre>
-// a[2] == 0, the zero value of the int type
-</pre>
-
-<p>
-The in-memory representation of <code>[4]int</code> is just four integer values laid out sequentially:
-</p>
-
-<p>
-<img src="slice-array.png">
-</p>
-
-<p>
-Go's arrays are values. An array variable denotes the entire array; it is not a
-pointer to the first array element (as would be the case in C). This means
-that when you assign or pass around an array value you will make a copy of its
-contents. (To avoid the copy you could pass a <i>pointer</i> to the array, but
-then that's a pointer to an array, not an array.) One way to think about arrays
-is as a sort of struct but with indexed rather than named fields: a fixed-size
-composite value.
-</p>
-
-<p>
-An array literal can be specified like so:
-</p>
-
-<pre>
-b := [2]string{"Penn", "Teller"}
-</pre>
-
-<p>
-Or, you can have the compiler count the array elements for you:
-</p>
-
-<pre>
-b := [...]string{"Penn", "Teller"}
-</pre>
-
-<p>
-In both cases, the type of <code>b</code> is <code>[2]string</code>.
-</p>
-
-<p>
-<b>Slices</b>
-</p>
-
-<p>
-Arrays have their place, but they're a bit inflexible, so you don't see them
-too often in Go code. Slices, though, are everywhere. They build on arrays to
-provide great power and convenience.
-</p>
-
-<p>
-The type specification for a slice is <code>[]T</code>, where <code>T</code> is
-the type of the elements of the slice. Unlike an array type, a slice type has
-no specified length.
-</p>
-
-<p>
-A slice literal is declared just like an array literal, except you leave out
-the element count:
-</p>
-
-<pre>
-letters := []string{"a", "b", "c", "d"}
-</pre>
-
-<p>
-A slice can be created with the built-in function called <code>make</code>,
-which has the signature,
-</p>
-
-<pre>
-func make([]T, len, cap) []T
-</pre>
-
-<p>
-where T stands for the element type of the slice to be created. The
-<code>make</code> function takes a type, a length, and an optional capacity.
-When called, <code>make</code> allocates an array and returns a slice that
-refers to that array.
-</p>
-
-<pre>
-var s []byte
-s = make([]byte, 5, 5)
-// s == []byte{0, 0, 0, 0, 0}
-</pre>
-
-<p>
-When the capacity argument is omitted, it defaults to the specified length.
-Here's a more succinct version of the same code:
-</p>
-
-<pre>
-s := make([]byte, 5)
-</pre>
-
-<p>
-The length and capacity of a slice can be inspected using the built-in
-<code>len</code> and <code>cap</code> functions.
-</p>
-
-<pre>
-len(s) == 5
-cap(s) == 5
-</pre>
-
-<p>
-The next two sections discuss the relationship between length and capacity.
-</p>
-
-<p>
-The zero value of a slice is <code>nil</code>. The <code>len</code> and
-<code>cap</code> functions will both return 0 for a nil slice.
-</p>
-
-<p>
-A slice can also be formed by "slicing" an existing slice or array. Slicing is
-done by specifying a half-open range with two indices separated by a colon. For
-example, the expression <code>b[1:4]</code> creates a slice including elements
-1 through 3 of <code>b</code> (the indices of the resulting slice will be 0
-through 2).
-</p>
-
-<pre>
-b := []byte{'g', 'o', 'l', 'a', 'n', 'g'}
-// b[1:4] == []byte{'o', 'l', 'a'}, sharing the same storage as b
-</pre>
-
-<p>
-The start and end indices of a slice expression are optional; they default to zero and the slice's length respectively:
-</p>
-
-<pre>
-// b[:2] == []byte{'g', 'o'}
-// b[2:] == []byte{'l', 'a', 'n', 'g'}
-// b[:] == b
-</pre>
-
-<p>
-This is also the syntax to create a slice given an array:
-</p>
-
-<pre>
-x := [3]string{"Лайка", "Белка", "Стрелка"}
-s := x[:] // a slice referencing the storage of x
-</pre>
-
-<p>
-<b>Slice internals</b>
-</p>
-
-<p>
-A slice is a descriptor of an array segment. It consists of a pointer to the
-array, the length of the segment, and its capacity (the maximum length of the
-segment).
-</p>
-
-<p>
-<img src="slice-struct.png">
-</p>
-
-<p>
-Our variable <code>s</code>, created earlier by <code>make([]byte, 5)</code>,
-is structured like this:
-</p>
-
-<p>
-<img src="slice-1.png">
-</p>
-
-<p>
-The length is the number of elements referred to by the slice. The capacity is
-the number of elements in the underlying array (beginning at the element
-referred to by the slice pointer). The distinction between length and capacity
-will be made clear as we walk through the next few examples.
-</p>
-
-<p>
-As we slice <code>s</code>, observe the changes in the slice data structure and
-their relation to the underlying array:
-</p>
-
-<pre>
-s = s[2:4]
-</pre>
-
-<p>
-<img src="slice-2.png">
-</p>
-
-<p>
-Slicing does not copy the slice's data. It creates a new slice value that
-points to the original array. This makes slice operations as efficient as
-manipulating array indices. Therefore, modifying the <i>elements</i> (not the
-slice itself) of a re-slice modifies the elements of the original slice:
-</p>
-
-<pre>
-d := []byte{'r', 'o', 'a', 'd'}
-e := d[2:]
-// e == []byte{'a', 'd'}
-e[1] = 'm'
-// e == []byte{'a', 'm'}
-// d == []byte{'r', 'o', 'a', 'm'}
-</pre>
-
-<p>
-Earlier we sliced <code>s</code> to a length shorter than its capacity. We can
-grow s to its capacity by slicing it again:
-</p>
-
-<pre>
-s = s[:cap(s)]
-</pre>
-
-<p>
-<img src="slice-3.png">
-</p>
-
-<p>
-A slice cannot be grown beyond its capacity. Attempting to do so will cause a
-runtime panic, just as when indexing outside the bounds of a slice or array.
-Similarly, slices cannot be re-sliced below zero to access earlier elements in
-the array.
-</p>
-
-<p>
-<b>Growing slices (the copy and append functions)</b>
-</p>
-
-<p>
-To increase the capacity of a slice one must create a new, larger slice and
-copy the contents of the original slice into it. This technique is how dynamic
-array implementations from other languages work behind the scenes. The next
-example doubles the capacity of <code>s</code> by making a new slice,
-<code>t</code>, copying the contents of <code>s</code> into <code>t</code>, and
-then assigning the slice value <code>t</code> to <code>s</code>:
-</p>
-
-<pre>
-t := make([]byte, len(s), (cap(s)+1)*2) // +1 in case cap(s) == 0
-for i := range s {
- t[i] = s[i]
-}
-s = t
-</pre>
-
-<p>
-The looping piece of this common operation is made easier by the built-in copy
-function. As the name suggests, copy copies data from a source slice to a
-destination slice. It returns the number of elements copied.
-</p>
-
-<pre>
-func copy(dst, src []T) int
-</pre>
-
-<p>
-The <code>copy</code> function supports copying between slices of different
-lengths (it will copy only up to the smaller number of elements). In addition,
-<code>copy</code> can handle source and destination slices that share the same
-underlying array, handling overlapping slices correctly.
-</p>
-
-<p>
-Using <code>copy</code>, we can simplify the code snippet above:
-</p>
-
-<pre>
-t := make([]byte, len(s), (cap(s)+1)*2)
-copy(t, s)
-s = t
-</pre>
-
-<p>
-A common operation is to append data to the end of a slice. This function
-appends byte elements to a slice of bytes, growing the slice if necessary, and
-returns the updated slice value:
-</p>
-
-{{code "/doc/progs/slices.go" `/AppendByte/` `/STOP/`}}
-
-<p>
-One could use <code>AppendByte</code> like this:
-</p>
-
-<pre>
-p := []byte{2, 3, 5}
-p = AppendByte(p, 7, 11, 13)
-// p == []byte{2, 3, 5, 7, 11, 13}
-</pre>
-
-<p>
-Functions like <code>AppendByte</code> are useful because they offer complete
-control over the way the slice is grown. Depending on the characteristics of
-the program, it may be desirable to allocate in smaller or larger chunks, or to
-put a ceiling on the size of a reallocation.
-</p>
-
-<p>
-But most programs don't need complete control, so Go provides a built-in
-<code>append</code> function that's good for most purposes; it has the
-signature
-</p>
-
-<pre>
-func append(s []T, x ...T) []T
-</pre>
-
-<p>
-The <code>append</code> function appends the elements <code>x</code> to the end
-of the slice <code>s</code>, and grows the slice if a greater capacity is
-needed.
-</p>
-
-<pre>
-a := make([]int, 1)
-// a == []int{0}
-a = append(a, 1, 2, 3)
-// a == []int{0, 1, 2, 3}
-</pre>
-
-<p>
-To append one slice to another, use <code>...</code> to expand the second
-argument to a list of arguments.
-</p>
-
-<pre>
-a := []string{"John", "Paul"}
-b := []string{"George", "Ringo", "Pete"}
-a = append(a, b...) // equivalent to "append(a, b[0], b[1], b[2])"
-// a == []string{"John", "Paul", "George", "Ringo", "Pete"}
-</pre>
-
-<p>
-Since the zero value of a slice (<code>nil</code>) acts like a zero-length
-slice, you can declare a slice variable and then append to it in a loop:
-</p>
-
-{{code "/doc/progs/slices.go" `/Filter/` `/STOP/`}}
-
-<p>
-<b>A possible "gotcha"</b>
-</p>
-
-<p>
-As mentioned earlier, re-slicing a slice doesn't make a copy of the underlying
-array. The full array will be kept in memory until it is no longer referenced.
-Occasionally this can cause the program to hold all the data in memory when
-only a small piece of it is needed.
-</p>
-
-<p>
-For example, this <code>FindDigits</code> function loads a file into memory and
-searches it for the first group of consecutive numeric digits, returning them
-as a new slice.
-</p>
-
-{{code "/doc/progs/slices.go" `/digit/` `/STOP/`}}
-
-<p>
-This code behaves as advertised, but the returned <code>[]byte</code> points
-into an array containing the entire file. Since the slice references the
-original array, as long as the slice is kept around the garbage collector can't
-release the array; the few useful bytes of the file keep the entire contents in
-memory.
-</p>
-
-<p>
-To fix this problem one can copy the interesting data to a new slice before
-returning it:
-</p>
-
-{{code "/doc/progs/slices.go" `/CopyDigits/` `/STOP/`}}
-
-<p>
-A more concise version of this function could be constructed by using
-<code>append</code>. This is left as an exercise for the reader.
-</p>
-
-<p>
-<b>Further Reading</b>
-</p>
-
-<p>
-<a href="/doc/effective_go.html">Effective Go</a> contains an
-in-depth treatment of <a href="/doc/effective_go.html#slices">slices</a>
-and <a href="/doc/effective_go.html#arrays">arrays</a>,
-and the Go <a href="/doc/go_spec.html">language specification</a>
-defines <a href="/doc/go_spec.html#Slice_types">slices</a> and their
-<a href="/doc/go_spec.html#Length_and_capacity">associated</a>
-<a href="/doc/go_spec.html#Making_slices_maps_and_channels">helper</a>
-<a href="/doc/go_spec.html#Appending_and_copying_slices">functions</a>.
-</p>
diff --git a/doc/articles/wiki/Makefile b/doc/articles/wiki/Makefile
index 0cb907185..e40b1311e 100644
--- a/doc/articles/wiki/Makefile
+++ b/doc/articles/wiki/Makefile
@@ -4,17 +4,7 @@
all: index.html
-CLEANFILES:=srcextract.bin htmlify.bin get.bin
-
-index.html: wiki.html srcextract.bin htmlify.bin
- PATH=.:$$PATH awk '/^!/{system(substr($$0,2)); next} {print}' < wiki.html | tr -d '\r' > index.html
-
-test: get.bin
- bash ./test.sh
- rm -f get.6 get.bin
-
-%.bin: %.go
- go build -o $@ $^
+CLEANFILES:=get.bin final-test.bin a.out
clean:
rm -f $(CLEANFILES)
diff --git a/doc/articles/wiki/final-noclosure.go b/doc/articles/wiki/final-noclosure.go
index a23cf7a27..d72ca805b 100644
--- a/doc/articles/wiki/final-noclosure.go
+++ b/doc/articles/wiki/final-noclosure.go
@@ -83,17 +83,15 @@ func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {
}
}
-const lenPath = len("/view/")
+var validPath = regexp.MustCompile("^/(edit|save|view)/([a-zA-Z0-9]+)$")
-var titleValidator = regexp.MustCompile("^[a-zA-Z0-9]+$")
-
-func getTitle(w http.ResponseWriter, r *http.Request) (title string, err error) {
- title = r.URL.Path[lenPath:]
- if !titleValidator.MatchString(title) {
+func getTitle(w http.ResponseWriter, r *http.Request) (string, error) {
+ m := validPath.FindStringSubmatch(r.URL.Path)
+ if m == nil {
http.NotFound(w, r)
- err = errors.New("Invalid Page Title")
+ return "", errors.New("Invalid Page Title")
}
- return
+ return m[2], nil // The title is the second subexpression.
}
func main() {
diff --git a/doc/articles/wiki/final-noerror.go b/doc/articles/wiki/final-noerror.go
index e11d268e2..86d8da751 100644
--- a/doc/articles/wiki/final-noerror.go
+++ b/doc/articles/wiki/final-noerror.go
@@ -29,10 +29,8 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func editHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/edit/"):]
p, err := loadPage(title)
if err != nil {
p = &Page{Title: title}
@@ -42,7 +40,7 @@ func editHandler(w http.ResponseWriter, r *http.Request) {
}
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
t, _ := template.ParseFiles("view.html")
t.Execute(w, p)
diff --git a/doc/articles/wiki/final-parsetemplate.go b/doc/articles/wiki/final-parsetemplate.go
index 6234c08f2..5ff8bf60c 100644
--- a/doc/articles/wiki/final-parsetemplate.go
+++ b/doc/articles/wiki/final-parsetemplate.go
@@ -70,18 +70,16 @@ func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {
}
}
-const lenPath = len("/view/")
-
-var titleValidator = regexp.MustCompile("^[a-zA-Z0-9]+$")
+var validPath = regexp.MustCompile("^/(edit|save|view)/([a-zA-Z0-9]+)$")
func makeHandler(fn func(http.ResponseWriter, *http.Request, string)) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
- if !titleValidator.MatchString(title) {
+ m := validPath.FindStringSubmatch(r.URL.Path)
+ if m == nil {
http.NotFound(w, r)
return
}
- fn(w, r, title)
+ fn(w, r, m[2])
}
}
diff --git a/doc/articles/wiki/final-template.go b/doc/articles/wiki/final-template.go
index f295b9d60..719157da9 100644
--- a/doc/articles/wiki/final-template.go
+++ b/doc/articles/wiki/final-template.go
@@ -29,10 +29,8 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func editHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/edit/"):]
p, err := loadPage(title)
if err != nil {
p = &Page{Title: title}
@@ -41,13 +39,13 @@ func editHandler(w http.ResponseWriter, r *http.Request) {
}
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
renderTemplate(w, "view", p)
}
func saveHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/save/"):]
body := r.FormValue("body")
p := &Page{Title: title, Body: []byte(body)}
p.save()
diff --git a/doc/articles/wiki/final.go b/doc/articles/wiki/final.go
index e93cdee47..f15794d66 100644
--- a/doc/articles/wiki/final.go
+++ b/doc/articles/wiki/final.go
@@ -67,18 +67,16 @@ func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {
}
}
-const lenPath = len("/view/")
-
-var titleValidator = regexp.MustCompile("^[a-zA-Z0-9]+$")
+var validPath = regexp.MustCompile("^/(edit|save|view)/([a-zA-Z0-9]+)$")
func makeHandler(fn func(http.ResponseWriter, *http.Request, string)) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
- if !titleValidator.MatchString(title) {
+ m := validPath.FindStringSubmatch(r.URL.Path)
+ if m == nil {
http.NotFound(w, r)
return
}
- fn(w, r, title)
+ fn(w, r, m[2])
}
}
diff --git a/doc/articles/wiki/htmlify.go b/doc/articles/wiki/htmlify.go
deleted file mode 100644
index 2a845a174..000000000
--- a/doc/articles/wiki/htmlify.go
+++ /dev/null
@@ -1,16 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package main
-
-import (
- "io/ioutil"
- "os"
- "text/template"
-)
-
-func main() {
- b, _ := ioutil.ReadAll(os.Stdin)
- template.HTMLEscape(os.Stdout, b)
-}
diff --git a/doc/articles/wiki/index.html b/doc/articles/wiki/index.html
index ea3507f4d..7bf7213e8 100644
--- a/doc/articles/wiki/index.html
+++ b/doc/articles/wiki/index.html
@@ -128,11 +128,10 @@ In addition to saving pages, we will want to load pages, too:
{{code "doc/articles/wiki/part1-noerror.go" `/^func loadPage/` `/^}/`}}
<p>
-The function <code>loadPage</code> constructs the file name from
-the title parameter, reads the file's contents into a new
-variable <code>body</code>, and returns two values: a pointer to a
-<code>Page</code> literal constructed with the proper title and body
-values and <code>nil</code> for the error value.
+The function <code>loadPage</code> constructs the file name from the title
+parameter, reads the file's contents into a new variable <code>body</code>, and
+returns a pointer to a <code>Page</code> literal constructed with the proper
+title and body values.
</p>
<p>
@@ -261,18 +260,15 @@ Let's create a handler, <code>viewHandler</code> that will allow users to
view a wiki page. It will handle URLs prefixed with "/view/".
</p>
-{{code "doc/articles/wiki/part2.go" `/^const lenPath/`}}
-
{{code "doc/articles/wiki/part2.go" `/^func viewHandler/` `/^}/`}}
<p>
First, this function extracts the page title from <code>r.URL.Path</code>,
-the path component of the request URL. The global constant
-<code>lenPath</code> is the length of the leading <code>"/view/"</code>
-component of the request path.
-The <code>Path</code> is re-sliced with <code>[lenPath:]</code> to drop the
-first 6 characters of the string. This is because the path will invariably
-begin with <code>"/view/"</code>, which is not part of the page's title.
+the path component of the request URL.
+The <code>Path</code> is re-sliced with <code>[len("/view/"):]</code> to drop
+the leading <code>"/view/"</code> component of the request path.
+This is because the path will invariably begin with <code>"/view/"</code>,
+which is not part of the page's title.
</p>
<p>
@@ -432,6 +428,11 @@ to its own function:
</p>
{{code "doc/articles/wiki/final-template.go" `/^func renderTemplate/` `/^}/`}}
+
+<p>
+And modify the handlers to use that function:
+</p>
+
{{code "doc/articles/wiki/final-template.go" `/^func viewHandler/` `/^}/`}}
{{code "doc/articles/wiki/final-template.go" `/^func editHandler/` `/^}/`}}
@@ -574,10 +575,11 @@ this, we can write a function to validate the title with a regular expression.
<p>
First, add <code>"regexp"</code> to the <code>import</code> list.
-Then we can create a global variable to store our validation regexp:
+Then we can create a global variable to store our validation
+expression:
</p>
-{{code "doc/articles/wiki/final-noclosure.go" `/^var titleValidator/`}}
+{{code "doc/articles/wiki/final-noclosure.go" `/^var validPath/`}}
<p>
The function <code>regexp.MustCompile</code> will parse and compile the
@@ -588,9 +590,8 @@ an <code>error</code> as a second parameter.
</p>
<p>
-Now, let's write a function, <code>getTitle</code>, that extracts the title
-string from the request URL, and tests it against our
-<code>TitleValidator</code> expression:
+Now, let's write a function that uses the <code>validPath</code>
+expression to validate path and extract the page title:
</p>
{{code "doc/articles/wiki/final-noclosure.go" `/func getTitle/` `/^}/`}}
@@ -617,7 +618,7 @@ Let's put a call to <code>getTitle</code> in each of the handlers:
Catching the error condition in each handler introduces a lot of repeated code.
What if we could wrap each of the handlers in a function that does this
validation and error checking? Go's
-<a href="/ref/spec#Function_declarations">function
+<a href="/ref/spec#Function_literals">function
literals</a> provide a powerful means of abstracting functionality
that can help us here.
</p>
diff --git a/doc/articles/wiki/notemplate.go b/doc/articles/wiki/notemplate.go
index 33006ac95..be214d111 100644
--- a/doc/articles/wiki/notemplate.go
+++ b/doc/articles/wiki/notemplate.go
@@ -29,16 +29,14 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
fmt.Fprintf(w, "<h1>%s</h1><div>%s</div>", p.Title, p.Body)
}
func editHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/edit/"):]
p, err := loadPage(title)
if err != nil {
p = &Page{Title: title}
diff --git a/doc/articles/wiki/part2.go b/doc/articles/wiki/part2.go
index dd4365c82..c0231693e 100644
--- a/doc/articles/wiki/part2.go
+++ b/doc/articles/wiki/part2.go
@@ -29,10 +29,8 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
fmt.Fprintf(w, "<h1>%s</h1><div>%s</div>", p.Title, p.Body)
}
diff --git a/doc/articles/wiki/part3-errorhandling.go b/doc/articles/wiki/part3-errorhandling.go
index 945aa1e39..bb4ecda84 100644
--- a/doc/articles/wiki/part3-errorhandling.go
+++ b/doc/articles/wiki/part3-errorhandling.go
@@ -29,15 +29,13 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {
t, _ := template.ParseFiles(tmpl + ".html")
t.Execute(w, p)
}
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, err := loadPage(title)
if err != nil {
http.Redirect(w, r, "/edit/"+title, http.StatusFound)
@@ -47,7 +45,7 @@ func viewHandler(w http.ResponseWriter, r *http.Request) {
}
func editHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/edit/"):]
p, err := loadPage(title)
if err != nil {
p = &Page{Title: title}
@@ -56,7 +54,7 @@ func editHandler(w http.ResponseWriter, r *http.Request) {
}
func saveHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/save/"):]
body := r.FormValue("body")
p := &Page{Title: title, Body: []byte(body)}
err := p.save()
diff --git a/doc/articles/wiki/part3.go b/doc/articles/wiki/part3.go
index 7fe4351af..174f3abcd 100644
--- a/doc/articles/wiki/part3.go
+++ b/doc/articles/wiki/part3.go
@@ -29,21 +29,19 @@ func loadPage(title string) (*Page, error) {
return &Page{Title: title, Body: body}, nil
}
-const lenPath = len("/view/")
-
func renderTemplate(w http.ResponseWriter, tmpl string, p *Page) {
t, _ := template.ParseFiles(tmpl + ".html")
t.Execute(w, p)
}
func viewHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/view/"):]
p, _ := loadPage(title)
renderTemplate(w, "view", p)
}
func editHandler(w http.ResponseWriter, r *http.Request) {
- title := r.URL.Path[lenPath:]
+ title := r.URL.Path[len("/edit/"):]
p, err := loadPage(title)
if err != nil {
p = &Page{Title: title}
diff --git a/doc/articles/wiki/srcextract.go b/doc/articles/wiki/srcextract.go
deleted file mode 100644
index 813e25283..000000000
--- a/doc/articles/wiki/srcextract.go
+++ /dev/null
@@ -1,76 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package main
-
-import (
- "bytes"
- "flag"
- "go/ast"
- "go/parser"
- "go/printer"
- "go/token"
- "log"
- "os"
- "text/template"
-)
-
-var (
- srcFn = flag.String("src", "", "source filename")
- getName = flag.String("name", "", "func/type name to output")
- html = flag.Bool("html", true, "output HTML")
- showPkg = flag.Bool("pkg", false, "show package in output")
-)
-
-func main() {
- // handle input
- flag.Parse()
- if *srcFn == "" || *getName == "" {
- flag.Usage()
- os.Exit(2)
- }
- // load file
- fs := token.NewFileSet()
- file, err := parser.ParseFile(fs, *srcFn, nil, 0)
- if err != nil {
- log.Fatal(err)
- }
- // create filter
- filter := func(name string) bool {
- return name == *getName
- }
- // filter
- if !ast.FilterFile(file, filter) {
- os.Exit(1)
- }
- // print the AST
- var b bytes.Buffer
- printer.Fprint(&b, fs, file)
- // drop package declaration
- if !*showPkg {
- for {
- c, err := b.ReadByte()
- if c == '\n' || err != nil {
- break
- }
- }
- }
- // drop leading newlines
- for {
- b, err := b.ReadByte()
- if err != nil {
- break
- }
- if b != '\n' {
- os.Stdout.Write([]byte{b})
- break
- }
- }
- // output
- if *html {
- template.HTMLEscape(os.Stdout, b.Bytes())
- } else {
- b.WriteTo(os.Stdout)
- }
-}
diff --git a/doc/articles/wiki/test.bash b/doc/articles/wiki/test.bash
index 02ed1894a..54a632c30 100755
--- a/doc/articles/wiki/test.bash
+++ b/doc/articles/wiki/test.bash
@@ -7,10 +7,17 @@ set -e
wiki_pid=
cleanup() {
kill $wiki_pid
- rm -f test_*.out Test.txt final-test.bin final-test.go
+ rm -f test_*.out Test.txt final-test.bin final-test.go a.out get.bin
}
trap cleanup 0 INT
+# If called with -all, check that all code snippets compile.
+if [ "$1" == "-all" ]; then
+ for fn in *.go; do
+ go build -o a.out $fn
+ done
+fi
+
go build -o get.bin get.go
addr=$(./get.bin -addr)
sed s/:8080/$addr/ < final.go > final-test.go