summaryrefslogtreecommitdiff
path: root/doc/go_spec.html
diff options
context:
space:
mode:
Diffstat (limited to 'doc/go_spec.html')
-rw-r--r--doc/go_spec.html5272
1 files changed, 0 insertions, 5272 deletions
diff --git a/doc/go_spec.html b/doc/go_spec.html
deleted file mode 100644
index 489ad4db3..000000000
--- a/doc/go_spec.html
+++ /dev/null
@@ -1,5272 +0,0 @@
-<!-- title The Go Programming Language Specification -->
-<!-- subtitle Version of June 17, 2011 -->
-
-<!--
-TODO
-[ ] need language about function/method calls and parameter passing rules
-[ ] last paragraph of #Assignments (constant promotion) should be elsewhere
- and mention assignment to empty interface.
-[ ] need to say something about "scope" of selectors?
-[ ] clarify what a field name is in struct declarations
- (struct{T} vs struct {T T} vs struct {t T})
-[ ] need explicit language about the result type of operations
-[ ] should probably write something about evaluation order of statements even
- though obvious
-[ ] review language on implicit dereferencing
-[ ] clarify what it means for two functions to be "the same" when comparing them
--->
-
-
-<h2 id="Introduction">Introduction</h2>
-
-<p>
-This is a reference manual for the Go programming language. For
-more information and other documents, see <a href="http://golang.org/">http://golang.org</a>.
-</p>
-
-<p>
-Go is a general-purpose language designed with systems programming
-in mind. It is strongly typed and garbage-collected and has explicit
-support for concurrent programming. Programs are constructed from
-<i>packages</i>, whose properties allow efficient management of
-dependencies. The existing implementations use a traditional
-compile/link model to generate executable binaries.
-</p>
-
-<p>
-The grammar is compact and regular, allowing for easy analysis by
-automatic tools such as integrated development environments.
-</p>
-
-<h2 id="Notation">Notation</h2>
-<p>
-The syntax is specified using Extended Backus-Naur Form (EBNF):
-</p>
-
-<pre class="grammar">
-Production = production_name "=" [ Expression ] "." .
-Expression = Alternative { "|" Alternative } .
-Alternative = Term { Term } .
-Term = production_name | token [ "…" token ] | Group | Option | Repetition .
-Group = "(" Expression ")" .
-Option = "[" Expression "]" .
-Repetition = "{" Expression "}" .
-</pre>
-
-<p>
-Productions are expressions constructed from terms and the following
-operators, in increasing precedence:
-</p>
-<pre class="grammar">
-| alternation
-() grouping
-[] option (0 or 1 times)
-{} repetition (0 to n times)
-</pre>
-
-<p>
-Lower-case production names are used to identify lexical tokens.
-Non-terminals are in CamelCase. Lexical symbols are enclosed in
-double quotes <code>""</code> or back quotes <code>``</code>.
-</p>
-
-<p>
-The form <code>a … b</code> represents the set of characters from
-<code>a</code> through <code>b</code> as alternatives. The horizontal
-ellipis … is also used elsewhere in the spec to informally denote various
-enumerations or code snippets that are not further specified. The character …
-(as opposed to the three characters <code>...</code>) is not a token of the Go
-language.
-</p>
-
-<h2 id="Source_code_representation">Source code representation</h2>
-
-<p>
-Source code is Unicode text encoded in
-<a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
-canonicalized, so a single accented code point is distinct from the
-same character constructed from combining an accent and a letter;
-those are treated as two code points. For simplicity, this document
-will use the term <i>character</i> to refer to a Unicode code point.
-</p>
-<p>
-Each code point is distinct; for instance, upper and lower case letters
-are different characters.
-</p>
-<p>
-Implementation restriction: For compatibility with other tools, a
-compiler may disallow the NUL character (U+0000) in the source text.
-</p>
-
-<h3 id="Characters">Characters</h3>
-
-<p>
-The following terms are used to denote specific Unicode character classes:
-</p>
-<pre class="ebnf">
-newline = /* the Unicode code point U+000A */ .
-unicode_char = /* an arbitrary Unicode code point except newline */ .
-unicode_letter = /* a Unicode code point classified as "Letter" */ .
-unicode_digit = /* a Unicode code point classified as "Decimal Digit" */ .
-</pre>
-
-<p>
-In <a href="http://www.unicode.org/versions/Unicode6.0.0/">The Unicode Standard 6.0</a>,
-Section 4.5 "General Category"
-defines a set of character categories. Go treats
-those characters in category Lu, Ll, Lt, Lm, or Lo as Unicode letters,
-and those in category Nd as Unicode digits.
-</p>
-
-<h3 id="Letters_and_digits">Letters and digits</h3>
-
-<p>
-The underscore character <code>_</code> (U+005F) is considered a letter.
-</p>
-<pre class="ebnf">
-letter = unicode_letter | "_" .
-decimal_digit = "0" … "9" .
-octal_digit = "0" … "7" .
-hex_digit = "0" … "9" | "A" … "F" | "a" … "f" .
-</pre>
-
-<h2 id="Lexical_elements">Lexical elements</h2>
-
-<h3 id="Comments">Comments</h3>
-
-<p>
-There are two forms of comments:
-</p>
-
-<ol>
-<li>
-<i>Line comments</i> start with the character sequence <code>//</code>
-and stop at the end of the line. A line comment acts like a newline.
-</li>
-<li>
-<i>General comments</i> start with the character sequence <code>/*</code>
-and continue through the character sequence <code>*/</code>. A general
-comment that spans multiple lines acts like a newline, otherwise it acts
-like a space.
-</li>
-</ol>
-
-<p>
-Comments do not nest.
-</p>
-
-
-<h3 id="Tokens">Tokens</h3>
-
-<p>
-Tokens form the vocabulary of the Go language.
-There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
-and delimiters</i>, and <i>literals</i>. <i>White space</i>, formed from
-spaces (U+0020), horizontal tabs (U+0009),
-carriage returns (U+000D), and newlines (U+000A),
-is ignored except as it separates tokens
-that would otherwise combine into a single token. Also, a newline or end of file
-may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
-While breaking the input into tokens,
-the next token is the longest sequence of characters that form a
-valid token.
-</p>
-
-<h3 id="Semicolons">Semicolons</h3>
-
-<p>
-The formal grammar uses semicolons <code>";"</code> as terminators in
-a number of productions. Go programs may omit most of these semicolons
-using the following two rules:
-</p>
-
-<ol>
-<li>
-<p>
-When the input is broken into tokens, a semicolon is automatically inserted
-into the token stream at the end of a non-blank line if the line's final
-token is
-</p>
-<ul>
- <li>an
- <a href="#Identifiers">identifier</a>
- </li>
-
- <li>an
- <a href="#Integer_literals">integer</a>,
- <a href="#Floating-point_literals">floating-point</a>,
- <a href="#Imaginary_literals">imaginary</a>,
- <a href="#Character_literals">character</a>, or
- <a href="#String_literals">string</a> literal
- </li>
-
- <li>one of the <a href="#Keywords">keywords</a>
- <code>break</code>,
- <code>continue</code>,
- <code>fallthrough</code>, or
- <code>return</code>
- </li>
-
- <li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
- <code>++</code>,
- <code>--</code>,
- <code>)</code>,
- <code>]</code>, or
- <code>}</code>
- </li>
-</ul>
-</li>
-
-<li>
-To allow complex statements to occupy a single line, a semicolon
-may be omitted before a closing <code>")"</code> or <code>"}"</code>.
-</li>
-</ol>
-
-<p>
-To reflect idiomatic use, code examples in this document elide semicolons
-using these rules.
-</p>
-
-
-<h3 id="Identifiers">Identifiers</h3>
-
-<p>
-Identifiers name program entities such as variables and types.
-An identifier is a sequence of one or more letters and digits.
-The first character in an identifier must be a letter.
-</p>
-<pre class="ebnf">
-identifier = letter { letter | unicode_digit } .
-</pre>
-<pre>
-a
-_x9
-ThisVariableIsExported
-αβ
-</pre>
-
-<p>
-Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
-</p>
-
-
-<h3 id="Keywords">Keywords</h3>
-
-<p>
-The following keywords are reserved and may not be used as identifiers.
-</p>
-<pre class="grammar">
-break default func interface select
-case defer go map struct
-chan else goto package switch
-const fallthrough if range type
-continue for import return var
-</pre>
-
-<h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
-
-<p>
-The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
-</p>
-<pre class="grammar">
-+ &amp; += &amp;= &amp;&amp; == != ( )
-- | -= |= || &lt; &lt;= [ ]
-* ^ *= ^= &lt;- &gt; &gt;= { }
-/ &lt;&lt; /= &lt;&lt;= ++ = := , ;
-% &gt;&gt; %= &gt;&gt;= -- ! ... . :
- &amp;^ &amp;^=
-</pre>
-
-<h3 id="Integer_literals">Integer literals</h3>
-
-<p>
-An integer literal is a sequence of digits representing an
-<a href="#Constants">integer constant</a>.
-An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
-<code>0X</code> for hexadecimal. In hexadecimal literals, letters
-<code>a-f</code> and <code>A-F</code> represent values 10 through 15.
-</p>
-<pre class="ebnf">
-int_lit = decimal_lit | octal_lit | hex_lit .
-decimal_lit = ( "1" … "9" ) { decimal_digit } .
-octal_lit = "0" { octal_digit } .
-hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } .
-</pre>
-
-<pre>
-42
-0600
-0xBadFace
-170141183460469231731687303715884105727
-</pre>
-
-<h3 id="Floating-point_literals">Floating-point literals</h3>
-<p>
-A floating-point literal is a decimal representation of a
-<a href="#Constants">floating-point constant</a>.
-It has an integer part, a decimal point, a fractional part,
-and an exponent part. The integer and fractional part comprise
-decimal digits; the exponent part is an <code>e</code> or <code>E</code>
-followed by an optionally signed decimal exponent. One of the
-integer part or the fractional part may be elided; one of the decimal
-point or the exponent may be elided.
-</p>
-<pre class="ebnf">
-float_lit = decimals "." [ decimals ] [ exponent ] |
- decimals exponent |
- "." decimals [ exponent ] .
-decimals = decimal_digit { decimal_digit } .
-exponent = ( "e" | "E" ) [ "+" | "-" ] decimals .
-</pre>
-
-<pre>
-0.
-72.40
-072.40 // == 72.40
-2.71828
-1.e+0
-6.67428e-11
-1E6
-.25
-.12345E+5
-</pre>
-
-<h3 id="Imaginary_literals">Imaginary literals</h3>
-<p>
-An imaginary literal is a decimal representation of the imaginary part of a
-<a href="#Constants">complex constant</a>.
-It consists of a
-<a href="#Floating-point_literals">floating-point literal</a>
-or decimal integer followed
-by the lower-case letter <code>i</code>.
-</p>
-<pre class="ebnf">
-imaginary_lit = (decimals | float_lit) "i" .
-</pre>
-
-<pre>
-0i
-011i // == 11i
-0.i
-2.71828i
-1.e+0i
-6.67428e-11i
-1E6i
-.25i
-.12345E+5i
-</pre>
-
-
-<h3 id="Character_literals">Character literals</h3>
-
-<p>
-A character literal represents an <a href="#Constants">integer constant</a>,
-typically a Unicode code point, as one or more characters enclosed in single
-quotes. Within the quotes, any character may appear except single
-quote and newline. A single quoted character represents itself,
-while multi-character sequences beginning with a backslash encode
-values in various formats.
-</p>
-<p>
-The simplest form represents the single character within the quotes;
-since Go source text is Unicode characters encoded in UTF-8, multiple
-UTF-8-encoded bytes may represent a single integer value. For
-instance, the literal <code>'a'</code> holds a single byte representing
-a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
-<code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
-a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
-</p>
-<p>
-Several backslash escapes allow arbitrary values to be represented
-as ASCII text. There are four ways to represent the integer value
-as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
-digits; <code>\u</code> followed by exactly four hexadecimal digits;
-<code>\U</code> followed by exactly eight hexadecimal digits, and a
-plain backslash <code>\</code> followed by exactly three octal digits.
-In each case the value of the literal is the value represented by
-the digits in the corresponding base.
-</p>
-<p>
-Although these representations all result in an integer, they have
-different valid ranges. Octal escapes must represent a value between
-0 and 255 inclusive. Hexadecimal escapes satisfy this condition
-by construction. The escapes <code>\u</code> and <code>\U</code>
-represent Unicode code points so within them some values are illegal,
-in particular those above <code>0x10FFFF</code> and surrogate halves.
-</p>
-<p>
-After a backslash, certain single-character escapes represent special values:
-</p>
-<pre class="grammar">
-\a U+0007 alert or bell
-\b U+0008 backspace
-\f U+000C form feed
-\n U+000A line feed or newline
-\r U+000D carriage return
-\t U+0009 horizontal tab
-\v U+000b vertical tab
-\\ U+005c backslash
-\' U+0027 single quote (valid escape only within character literals)
-\" U+0022 double quote (valid escape only within string literals)
-</pre>
-<p>
-All other sequences starting with a backslash are illegal inside character literals.
-</p>
-<pre class="ebnf">
-char_lit = "'" ( unicode_value | byte_value ) "'" .
-unicode_value = unicode_char | little_u_value | big_u_value | escaped_char .
-byte_value = octal_byte_value | hex_byte_value .
-octal_byte_value = `\` octal_digit octal_digit octal_digit .
-hex_byte_value = `\` "x" hex_digit hex_digit .
-little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit .
-big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit
- hex_digit hex_digit hex_digit hex_digit .
-escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
-</pre>
-
-<pre>
-'a'
-'ä'
-'本'
-'\t'
-'\000'
-'\007'
-'\377'
-'\x07'
-'\xff'
-'\u12e4'
-'\U00101234'
-</pre>
-
-
-<h3 id="String_literals">String literals</h3>
-
-<p>
-A string literal represents a <a href="#Constants">string constant</a>
-obtained from concatenating a sequence of characters. There are two forms:
-raw string literals and interpreted string literals.
-</p>
-<p>
-Raw string literals are character sequences between back quotes
-<code>``</code>. Within the quotes, any character is legal except
-back quote. The value of a raw string literal is the
-string composed of the uninterpreted characters between the quotes;
-in particular, backslashes have no special meaning and the string may
-span multiple lines.
-</p>
-<p>
-Interpreted string literals are character sequences between double
-quotes <code>&quot;&quot;</code>. The text between the quotes,
-which may not span multiple lines, forms the
-value of the literal, with backslash escapes interpreted as they
-are in character literals (except that <code>\'</code> is illegal and
-<code>\"</code> is legal). The three-digit octal (<code>\</code><i>nnn</i>)
-and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
-<i>bytes</i> of the resulting string; all other escapes represent
-the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
-Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
-a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
-<code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
-the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
-U+00FF.
-</p>
-
-<pre class="ebnf">
-string_lit = raw_string_lit | interpreted_string_lit .
-raw_string_lit = "`" { unicode_char | newline } "`" .
-interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
-</pre>
-
-<pre>
-`abc` // same as "abc"
-`\n
-\n` // same as "\\n\n\\n"
-"\n"
-""
-"Hello, world!\n"
-"日本語"
-"\u65e5本\U00008a9e"
-"\xff\u00FF"
-</pre>
-
-<p>
-These examples all represent the same string:
-</p>
-
-<pre>
-"日本語" // UTF-8 input text
-`日本語` // UTF-8 input text as a raw literal
-"\u65e5\u672c\u8a9e" // The explicit Unicode code points
-"\U000065e5\U0000672c\U00008a9e" // The explicit Unicode code points
-"\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // The explicit UTF-8 bytes
-</pre>
-
-<p>
-If the source code represents a character as two code points, such as
-a combining form involving an accent and a letter, the result will be
-an error if placed in a character literal (it is not a single code
-point), and will appear as two code points if placed in a string
-literal.
-</p>
-
-
-<h2 id="Constants">Constants</h2>
-
-<p>There are <i>boolean constants</i>, <i>integer constants</i>,
-<i>floating-point constants</i>, <i>complex constants</i>,
-and <i>string constants</i>. Integer, floating-point,
-and complex constants are
-collectively called <i>numeric constants</i>.
-</p>
-
-<p>
-A constant value is represented by an
-<a href="#Integer_literals">integer</a>,
-<a href="#Floating-point_literals">floating-point</a>,
-<a href="#Imaginary_literals">imaginary</a>,
-<a href="#Character_literals">character</a>, or
-<a href="#String_literals">string</a> literal,
-an identifier denoting a constant,
-a <a href="#Constant_expressions">constant expression</a>,
-a <a href="#Conversions">conversion</a> with a result that is a constant, or
-the result value of some built-in functions such as
-<code>unsafe.Sizeof</code> applied to any value,
-<code>cap</code> or <code>len</code> applied to
-<a href="#Length_and_capacity">some expressions</a>,
-<code>real</code> and <code>imag</code> applied to a complex constant
-and <code>complex</code> applied to numeric constants.
-The boolean truth values are represented by the predeclared constants
-<code>true</code> and <code>false</code>. The predeclared identifier
-<a href="#Iota">iota</a> denotes an integer constant.
-</p>
-
-<p>
-In general, complex constants are a form of
-<a href="#Constant_expressions">constant expression</a>
-and are discussed in that section.
-</p>
-
-<p>
-Numeric constants represent values of arbitrary precision and do not overflow.
-</p>
-
-<p>
-Constants may be <a href="#Types">typed</a> or untyped.
-Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
-and certain <a href="#Constant_expressions">constant expressions</a>
-containing only untyped constant operands are untyped.
-</p>
-
-<p>
-A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
-or <a href="#Conversions">conversion</a>, or implicitly when used in a
-<a href="#Variable_declarations">variable declaration</a> or an
-<a href="#Assignments">assignment</a> or as an
-operand in an <a href="#Expressions">expression</a>.
-It is an error if the constant value
-cannot be represented as a value of the respective type.
-For instance, <code>3.0</code> can be given any integer or any
-floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
-can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
-not <code>int32</code> or <code>string</code>.
-</p>
-
-<p>
-There are no constants denoting the IEEE-754 infinity and not-a-number values,
-but the <a href="/pkg/math/"><code>math</code> package</a>'s
-<a href="/pkg/math/#Inf">Inf</a>,
-<a href="/pkg/math/#NaN">NaN</a>,
-<a href="/pkg/math/#IsInf">IsInf</a>, and
-<a href="/pkg/math/#IsNaN">IsNaN</a>
-functions return and test for those values at run time.
-</p>
-
-<p>
-Implementation restriction: A compiler may implement numeric constants by choosing
-an internal representation with at least twice as many bits as any machine type;
-for floating-point values, both the mantissa and exponent must be twice as large.
-</p>
-
-
-<h2 id="Types">Types</h2>
-
-<p>
-A type determines the set of values and operations specific to values of that
-type. A type may be specified by a (possibly qualified) <i>type name</i>
-(§<a href="#Qualified_identifiers">Qualified identifier</a>, §<a href="#Type_declarations">Type declarations</a>) or a <i>type literal</i>,
-which composes a new type from previously declared types.
-</p>
-
-<pre class="ebnf">
-Type = TypeName | TypeLit | "(" Type ")" .
-TypeName = QualifiedIdent .
-TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
- SliceType | MapType | ChannelType .
-</pre>
-
-<p>
-Named instances of the boolean, numeric, and string types are
-<a href="#Predeclared_identifiers">predeclared</a>.
-<i>Composite types</i>&mdash;array, struct, pointer, function,
-interface, slice, map, and channel types&mdash;may be constructed using
-type literals.
-</p>
-
-<p>
-The <i>static type</i> (or just <i>type</i>) of a variable is the
-type defined by its declaration. Variables of interface type
-also have a distinct <i>dynamic type</i>, which
-is the actual type of the value stored in the variable at run-time.
-The dynamic type may vary during execution but is always
-<a href="#Assignability">assignable</a>
-to the static type of the interface variable. For non-interface
-types, the dynamic type is always the static type.
-</p>
-
-<p>
-Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
-is a predeclared type or a type literal, the corresponding underlying
-type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
-is the underlying type of the type to which <code>T</code> refers in its
-<a href="#Type_declarations">type declaration</a>.
-</p>
-
-<pre>
- type T1 string
- type T2 T1
- type T3 []T1
- type T4 T3
-</pre>
-
-<p>
-The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
-is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
-and <code>T4</code> is <code>[]T1</code>.
-</p>
-
-<h3 id="Method_sets">Method sets</h3>
-<p>
-A type may have a <i>method set</i> associated with it
-(§<a href="#Interface_types">Interface types</a>, §<a href="#Method_declarations">Method declarations</a>).
-The method set of an <a href="#Interface_types">interface type</a> is its interface.
-The method set of any other named type <code>T</code>
-consists of all methods with receiver type <code>T</code>.
-The method set of the corresponding pointer type <code>*T</code>
-is the set of all methods with receiver <code>*T</code> or <code>T</code>
-(that is, it also contains the method set of <code>T</code>).
-Any other type has an empty method set.
-In a method set, each method must have a unique name.
-</p>
-
-
-<h3 id="Boolean_types">Boolean types</h3>
-
-A <i>boolean type</i> represents the set of Boolean truth values
-denoted by the predeclared constants <code>true</code>
-and <code>false</code>. The predeclared boolean type is <code>bool</code>.
-
-
-<h3 id="Numeric_types">Numeric types</h3>
-
-<p>
-A <i>numeric type</i> represents sets of integer or floating-point values.
-The predeclared architecture-independent numeric types are:
-</p>
-
-<pre class="grammar">
-uint8 the set of all unsigned 8-bit integers (0 to 255)
-uint16 the set of all unsigned 16-bit integers (0 to 65535)
-uint32 the set of all unsigned 32-bit integers (0 to 4294967295)
-uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615)
-
-int8 the set of all signed 8-bit integers (-128 to 127)
-int16 the set of all signed 16-bit integers (-32768 to 32767)
-int32 the set of all signed 32-bit integers (-2147483648 to 2147483647)
-int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
-
-float32 the set of all IEEE-754 32-bit floating-point numbers
-float64 the set of all IEEE-754 64-bit floating-point numbers
-
-complex64 the set of all complex numbers with float32 real and imaginary parts
-complex128 the set of all complex numbers with float64 real and imaginary parts
-
-byte familiar alias for uint8
-</pre>
-
-<p>
-The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
-<a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
-</p>
-
-<p>
-There is also a set of predeclared numeric types with implementation-specific sizes:
-</p>
-
-<pre class="grammar">
-uint either 32 or 64 bits
-int same size as uint
-uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value
-</pre>
-
-<p>
-To avoid portability issues all numeric types are distinct except
-<code>byte</code>, which is an alias for <code>uint8</code>.
-Conversions
-are required when different numeric types are mixed in an expression
-or assignment. For instance, <code>int32</code> and <code>int</code>
-are not the same type even though they may have the same size on a
-particular architecture.
-
-
-<h3 id="String_types">String types</h3>
-
-<p>
-A <i>string type</i> represents the set of string values.
-Strings behave like arrays of bytes but are immutable: once created,
-it is impossible to change the contents of a string.
-The predeclared string type is <code>string</code>.
-
-<p>
-The elements of strings have type <code>byte</code> and may be
-accessed using the usual <a href="#Indexes">indexing operations</a>. It is
-illegal to take the address of such an element; if
-<code>s[i]</code> is the <i>i</i>th byte of a
-string, <code>&amp;s[i]</code> is invalid. The length of string
-<code>s</code> can be discovered using the built-in function
-<code>len</code>. The length is a compile-time constant if <code>s</code>
-is a string literal.
-</p>
-
-
-<h3 id="Array_types">Array types</h3>
-
-<p>
-An array is a numbered sequence of elements of a single
-type, called the element type.
-The number of elements is called the length and is never
-negative.
-</p>
-
-<pre class="ebnf">
-ArrayType = "[" ArrayLength "]" ElementType .
-ArrayLength = Expression .
-ElementType = Type .
-</pre>
-
-<p>
-The length is part of the array's type and must be a
-<a href="#Constant_expressions">constant expression</a> that evaluates to a non-negative
-integer value. The length of array <code>a</code> can be discovered
-using the built-in function <a href="#Length_and_capacity"><code>len(a)</code></a>.
-The elements can be indexed by integer
-indices 0 through the <code>len(a)-1</code> (§<a href="#Indexes">Indexes</a>).
-Array types are always one-dimensional but may be composed to form
-multi-dimensional types.
-</p>
-
-<pre>
-[32]byte
-[2*N] struct { x, y int32 }
-[1000]*float64
-[3][5]int
-[2][2][2]float64 // same as [2]([2]([2]float64))
-</pre>
-
-<h3 id="Slice_types">Slice types</h3>
-
-<p>
-A slice is a reference to a contiguous segment of an array and
-contains a numbered sequence of elements from that array. A slice
-type denotes the set of all slices of arrays of its element type.
-The value of an uninitialized slice is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-SliceType = "[" "]" ElementType .
-</pre>
-
-<p>
-Like arrays, slices are indexable and have a length. The length of a
-slice <code>s</code> can be discovered by the built-in function
-<a href="#Length_and_capacity"><code>len(s)</code></a>; unlike with arrays it may change during
-execution. The elements can be addressed by integer indices 0
-through <code>len(s)-1</code> (§<a href="#Indexes">Indexes</a>). The slice index of a
-given element may be less than the index of the same element in the
-underlying array.
-</p>
-<p>
-A slice, once initialized, is always associated with an underlying
-array that holds its elements. A slice therefore shares storage
-with its array and with other slices of the same array; by contrast,
-distinct arrays always represent distinct storage.
-</p>
-<p>
-The array underlying a slice may extend past the end of the slice.
-The <i>capacity</i> is a measure of that extent: it is the sum of
-the length of the slice and the length of the array beyond the slice;
-a slice of length up to that capacity can be created by `slicing' a new
-one from the original slice (§<a href="#Slices">Slices</a>).
-The capacity of a slice <code>a</code> can be discovered using the
-built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
-</p>
-
-<p>
-A new, initialized slice value for a given element type <code>T</code> is
-made using the built-in function
-<a href="#Making_slices_maps_and_channels"><code>make</code></a>,
-which takes a slice type
-and parameters specifying the length and optionally the capacity:
-</p>
-
-<pre>
-make([]T, length)
-make([]T, length, capacity)
-</pre>
-
-<p>
-A call to <code>make</code> allocates a new, hidden array to which the returned
-slice value refers. That is, executing
-</p>
-
-<pre>
-make([]T, length, capacity)
-</pre>
-
-<p>
-produces the same slice as allocating an array and slicing it, so these two examples
-result in the same slice:
-</p>
-
-<pre>
-make([]int, 50, 100)
-new([100]int)[0:50]
-</pre>
-
-<p>
-Like arrays, slices are always one-dimensional but may be composed to construct
-higher-dimensional objects.
-With arrays of arrays, the inner arrays are, by construction, always the same length;
-however with slices of slices (or arrays of slices), the lengths may vary dynamically.
-Moreover, the inner slices must be allocated individually (with <code>make</code>).
-</p>
-
-<h3 id="Struct_types">Struct types</h3>
-
-<p>
-A struct is a sequence of named elements, called fields, each of which has a
-name and a type. Field names may be specified explicitly (IdentifierList) or
-implicitly (AnonymousField).
-Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
-be unique.
-</p>
-
-<pre class="ebnf">
-StructType = "struct" "{" { FieldDecl ";" } "}" .
-FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] .
-AnonymousField = [ "*" ] TypeName .
-Tag = string_lit .
-</pre>
-
-<pre>
-// An empty struct.
-struct {}
-
-// A struct with 6 fields.
-struct {
- x, y int
- u float32
- _ float32 // padding
- A *[]int
- F func()
-}
-</pre>
-
-<p>
-A field declared with a type but no explicit field name is an <i>anonymous field</i>
-(colloquially called an embedded field).
-Such a field type must be specified as
-a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
-and <code>T</code> itself may not be
-a pointer type. The unqualified type name acts as the field name.
-</p>
-
-<pre>
-// A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
-struct {
- T1 // field name is T1
- *T2 // field name is T2
- P.T3 // field name is T3
- *P.T4 // field name is T4
- x, y int // field names are x and y
-}
-</pre>
-
-<p>
-The following declaration is illegal because field names must be unique
-in a struct type:
-</p>
-
-<pre>
-struct {
- T // conflicts with anonymous field *T and *P.T
- *T // conflicts with anonymous field T and *P.T
- *P.T // conflicts with anonymous field T and *T
-}
-</pre>
-
-<p>
-Fields and methods (§<a href="#Method_declarations">Method declarations</a>) of an anonymous field are
-promoted to be ordinary fields and methods of the struct (§<a href="#Selectors">Selectors</a>).
-The following rules apply for a struct type named <code>S</code> and
-a type named <code>T</code>:
-</p>
-<ul>
- <li>If <code>S</code> contains an anonymous field <code>T</code>, the
- <a href="#Method_sets">method set</a> of <code>S</code> includes the
- method set of <code>T</code>.
- </li>
-
- <li>If <code>S</code> contains an anonymous field <code>*T</code>, the
- method set of <code>S</code> includes the method set of <code>*T</code>
- (which itself includes the method set of <code>T</code>).
- </li>
-
- <li>If <code>S</code> contains an anonymous field <code>T</code> or
- <code>*T</code>, the method set of <code>*S</code> includes the
- method set of <code>*T</code> (which itself includes the method
- set of <code>T</code>).
- </li>
-</ul>
-<p>
-A field declaration may be followed by an optional string literal <i>tag</i>,
-which becomes an attribute for all the fields in the corresponding
-field declaration. The tags are made
-visible through a <a href="#Package_unsafe">reflection interface</a>
-but are otherwise ignored.
-</p>
-
-<pre>
-// A struct corresponding to the TimeStamp protocol buffer.
-// The tag strings define the protocol buffer field numbers.
-struct {
- microsec uint64 "field 1"
- serverIP6 uint64 "field 2"
- process string "field 3"
-}
-</pre>
-
-<h3 id="Pointer_types">Pointer types</h3>
-
-<p>
-A pointer type denotes the set of all pointers to variables of a given
-type, called the <i>base type</i> of the pointer.
-The value of an uninitialized pointer is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-PointerType = "*" BaseType .
-BaseType = Type .
-</pre>
-
-<pre>
-*int
-*map[string] *chan int
-</pre>
-
-<h3 id="Function_types">Function types</h3>
-
-<p>
-A function type denotes the set of all functions with the same parameter
-and result types. The value of an uninitialized variable of function type
-is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-FunctionType = "func" Signature .
-Signature = Parameters [ Result ] .
-Result = Parameters | Type .
-Parameters = "(" [ ParameterList [ "," ] ] ")" .
-ParameterList = ParameterDecl { "," ParameterDecl } .
-ParameterDecl = [ IdentifierList ] [ "..." ] Type .
-</pre>
-
-<p>
-Within a list of parameters or results, the names (IdentifierList)
-must either all be present or all be absent. If present, each name
-stands for one item (parameter or result) of the specified type; if absent, each
-type stands for one item of that type. Parameter and result
-lists are always parenthesized except that if there is exactly
-one unnamed result it may be written as an unparenthesized type.
-</p>
-
-<p>
-The final parameter in a function signature may have
-a type prefixed with <code>...</code>.
-A function with such a parameter is called <i>variadic</i> and
-may be invoked with zero or more arguments for that parameter.
-</p>
-
-<pre>
-func()
-func(x int)
-func() int
-func(prefix string, values ...int)
-func(a, b int, z float32) bool
-func(a, b int, z float32) (bool)
-func(a, b int, z float64, opt ...interface{}) (success bool)
-func(int, int, float64) (float64, *[]int)
-func(n int) func(p *T)
-</pre>
-
-
-<h3 id="Interface_types">Interface types</h3>
-
-<p>
-An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
-A variable of interface type can store a value of any type with a method set
-that is any superset of the interface. Such a type is said to
-<i>implement the interface</i>.
-The value of an uninitialized variable of interface type is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-InterfaceType = "interface" "{" { MethodSpec ";" } "}" .
-MethodSpec = MethodName Signature | InterfaceTypeName .
-MethodName = identifier .
-InterfaceTypeName = TypeName .
-</pre>
-
-<p>
-As with all method sets, in an interface type, each method must have a unique name.
-</p>
-
-<pre>
-// A simple File interface
-interface {
- Read(b Buffer) bool
- Write(b Buffer) bool
- Close()
-}
-</pre>
-
-<p>
-More than one type may implement an interface.
-For instance, if two types <code>S1</code> and <code>S2</code>
-have the method set
-</p>
-
-<pre>
-func (p T) Read(b Buffer) bool { return … }
-func (p T) Write(b Buffer) bool { return … }
-func (p T) Close() { … }
-</pre>
-
-<p>
-(where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
-then the <code>File</code> interface is implemented by both <code>S1</code> and
-<code>S2</code>, regardless of what other methods
-<code>S1</code> and <code>S2</code> may have or share.
-</p>
-
-<p>
-A type implements any interface comprising any subset of its methods
-and may therefore implement several distinct interfaces. For
-instance, all types implement the <i>empty interface</i>:
-</p>
-
-<pre>
-interface{}
-</pre>
-
-<p>
-Similarly, consider this interface specification,
-which appears within a <a href="#Type_declarations">type declaration</a>
-to define an interface called <code>Lock</code>:
-</p>
-
-<pre>
-type Lock interface {
- Lock()
- Unlock()
-}
-</pre>
-
-<p>
-If <code>S1</code> and <code>S2</code> also implement
-</p>
-
-<pre>
-func (p T) Lock() { … }
-func (p T) Unlock() { … }
-</pre>
-
-<p>
-they implement the <code>Lock</code> interface as well
-as the <code>File</code> interface.
-</p>
-<p>
-An interface may contain an interface type name <code>T</code>
-in place of a method specification.
-The effect is equivalent to enumerating the methods of <code>T</code> explicitly
-in the interface.
-</p>
-
-<pre>
-type ReadWrite interface {
- Read(b Buffer) bool
- Write(b Buffer) bool
-}
-
-type File interface {
- ReadWrite // same as enumerating the methods in ReadWrite
- Lock // same as enumerating the methods in Lock
- Close()
-}
-</pre>
-
-<h3 id="Map_types">Map types</h3>
-
-<p>
-A map is an unordered group of elements of one type, called the
-element type, indexed by a set of unique <i>keys</i> of another type,
-called the key type.
-The value of an uninitialized map is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-MapType = "map" "[" KeyType "]" ElementType .
-KeyType = Type .
-</pre>
-
-<p>
-The comparison operators <code>==</code> and <code>!=</code>
-(§<a href="#Comparison_operators">Comparison operators</a>) must be fully defined
-for operands of the key type; thus the key type must not be a struct, array or slice.
-If the key type is an interface type, these
-comparison operators must be defined for the dynamic key values;
-failure will cause a <a href="#Run_time_panics">run-time panic</a>.
-
-</p>
-
-<pre>
-map [string] int
-map [*T] struct { x, y float64 }
-map [string] interface {}
-</pre>
-
-<p>
-The number of map elements is called its length.
-For a map <code>m</code>, it can be discovered using the
-built-in function <a href="#Length_and_capacity"><code>len(m)</code></a>
-and may change during execution. Elements may be added and removed
-during execution using special forms of <a href="#Assignments">assignment</a>;
-and they may be accessed with <a href="#Indexes">index</a> expressions.
-</p>
-<p>
-A new, empty map value is made using the built-in
-function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
-which takes the map type and an optional capacity hint as arguments:
-</p>
-
-<pre>
-make(map[string] int)
-make(map[string] int, 100)
-</pre>
-
-<p>
-The initial capacity does not bound its size:
-maps grow to accommodate the number of items
-stored in them, with the exception of <code>nil</code> maps.
-A <code>nil</code> map is equivalent to an empty map except that no elements
-may be added.
-
-<h3 id="Channel_types">Channel types</h3>
-
-<p>
-A channel provides a mechanism for two concurrently executing functions
-to synchronize execution and communicate by passing a value of a
-specified element type.
-The value of an uninitialized channel is <code>nil</code>.
-</p>
-
-<pre class="ebnf">
-ChannelType = ( "chan" [ "&lt;-" ] | "&lt;-" "chan" ) ElementType .
-</pre>
-
-<p>
-The <code>&lt;-</code> operator specifies the channel <i>direction</i>,
-<i>send</i> or <i>receive</i>. If no direction is given, the channel is
-<i>bi-directional</i>.
-A channel may be constrained only to send or only to receive by
-<a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
-</p>
-
-<pre>
-chan T // can be used to send and receive values of type T
-chan&lt;- float64 // can only be used to send float64s
-&lt;-chan int // can only be used to receive ints
-</pre>
-
-<p>
-The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
-possible:
-</p>
-
-<pre>
-chan&lt;- chan int // same as chan&lt;- (chan int)
-chan&lt;- &lt;-chan int // same as chan&lt;- (&lt;-chan int)
-&lt;-chan &lt;-chan int // same as &lt;-chan (&lt;-chan int)
-chan (&lt;-chan int)
-</pre>
-
-<p>
-A new, initialized channel
-value can be made using the built-in function
-<a href="#Making_slices_maps_and_channels"><code>make</code></a>,
-which takes the channel type and an optional capacity as arguments:
-</p>
-
-<pre>
-make(chan int, 100)
-</pre>
-
-<p>
-The capacity, in number of elements, sets the size of the buffer in the channel. If the
-capacity is greater than zero, the channel is asynchronous: communication operations
-succeed without blocking if the buffer is not full (sends) or not empty (receives),
-and elements are received in the order they are sent.
-If the capacity is zero or absent, the communication succeeds only when both a sender and
-receiver are ready.
-A <code>nil</code> channel is never ready for communication.
-</p>
-
-<p>
-A channel may be closed with the built-in function
-<a href="#Close"><code>close</code></a>; the
-multi-valued assignment form of the
-<a href="#Receive_operator">receive operator</a>
-tests whether a channel has been closed.
-</p>
-
-<h2 id="Properties_of_types_and_values">Properties of types and values</h2>
-
-<h3 id="Type_identity">Type identity</h3>
-
-<p>
-Two types are either <i>identical</i> or <i>different</i>.
-</p>
-
-<p>
-Two named types are identical if their type names originate in the same
-type <a href="#Declarations_and_scope">declaration</a>.
-A named and an unnamed type are always different. Two unnamed types are identical
-if the corresponding type literals are identical, that is, if they have the same
-literal structure and corresponding components have identical types. In detail:
-</p>
-
-<ul>
- <li>Two array types are identical if they have identical element types and
- the same array length.</li>
-
- <li>Two slice types are identical if they have identical element types.</li>
-
- <li>Two struct types are identical if they have the same sequence of fields,
- and if corresponding fields have the same names, and identical types,
- and identical tags.
- Two anonymous fields are considered to have the same name. Lower-case field
- names from different packages are always different.</li>
-
- <li>Two pointer types are identical if they have identical base types.</li>
-
- <li>Two function types are identical if they have the same number of parameters
- and result values, corresponding parameter and result types are
- identical, and either both functions are variadic or neither is.
- Parameter and result names are not required to match.</li>
-
- <li>Two interface types are identical if they have the same set of methods
- with the same names and identical function types. Lower-case method names from
- different packages are always different. The order of the methods is irrelevant.</li>
-
- <li>Two map types are identical if they have identical key and value types.</li>
-
- <li>Two channel types are identical if they have identical value types and
- the same direction.</li>
-</ul>
-
-<p>
-Given the declarations
-</p>
-
-<pre>
-type (
- T0 []string
- T1 []string
- T2 struct { a, b int }
- T3 struct { a, c int }
- T4 func(int, float64) *T0
- T5 func(x int, y float64) *[]string
-)
-</pre>
-
-<p>
-these types are identical:
-</p>
-
-<pre>
-T0 and T0
-[]int and []int
-struct { a, b *T5 } and struct { a, b *T5 }
-func(x int, y float64) *[]string and func(int, float64) (result *[]string)
-</pre>
-
-<p>
-<code>T0</code> and <code>T1</code> are different because they are named types
-with distinct declarations; <code>func(int, float64) *T0</code> and
-<code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
-is different from <code>[]string</code>.
-</p>
-
-
-<h3 id="Assignability">Assignability</h3>
-
-<p>
-A value <code>x</code> is <i>assignable</i> to a variable of type <code>T</code>
-("<code>x</code> is assignable to <code>T</code>") in any of these cases:
-</p>
-
-<ul>
-<li>
-<code>x</code>'s type is identical to <code>T</code>.
-</li>
-<li>
-<code>x</code>'s type <code>V</code> and <code>T</code> have identical
-<a href="#Types">underlying types</a> and at least one of <code>V</code>
-or <code>T</code> is not a named type.
-</li>
-<li>
-<code>T</code> is an interface type and
-<code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
-</li>
-<li>
-<code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
-<code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
-and at least one of <code>V</code> or <code>T</code> is not a named type.
-</li>
-<li>
-<code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
-is a pointer, function, slice, map, channel, or interface type.
-</li>
-<li>
-<code>x</code> is an untyped <a href="#Constants">constant</a> representable
-by a value of type <code>T</code>.
-</li>
-</ul>
-
-<p>
-If <code>T</code> is a struct type with non-<a href="#Exported_identifiers">exported</a>
-fields, the assignment must be in the same package in which <code>T</code> is declared,
-or <code>x</code> must be the receiver of a method call.
-In other words, a struct value can be assigned to a struct variable only if
-every field of the struct may be legally assigned individually by the program,
-or if the assignment is initializing the receiver of a method of the struct type.
-</p>
-
-<p>
-Any value may be assigned to the <a href="#Blank_identifier">blank identifier</a>.
-</p>
-
-
-<h2 id="Blocks">Blocks</h2>
-
-<p>
-A <i>block</i> is a sequence of declarations and statements within matching
-brace brackets.
-</p>
-
-<pre class="ebnf">
-Block = "{" { Statement ";" } "}" .
-</pre>
-
-<p>
-In addition to explicit blocks in the source code, there are implicit blocks:
-</p>
-
-<ol>
- <li>The <i>universe block</i> encompasses all Go source text.</li>
-
- <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
- Go source text for that package.</li>
-
- <li>Each file has a <i>file block</i> containing all Go source text
- in that file.</li>
-
- <li>Each <code>if</code>, <code>for</code>, and <code>switch</code>
- statement is considered to be in its own implicit block.</li>
-
- <li>Each clause in a <code>switch</code> or <code>select</code> statement
- acts as an implicit block.</li>
-</ol>
-
-<p>
-Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
-</p>
-
-
-<h2 id="Declarations_and_scope">Declarations and scope</h2>
-
-<p>
-A declaration binds a non-<a href="#Blank_identifier">blank</a>
-identifier to a constant, type, variable, function, or package.
-Every identifier in a program must be declared.
-No identifier may be declared twice in the same block, and
-no identifier may be declared in both the file and package block.
-</p>
-
-<pre class="ebnf">
-Declaration = ConstDecl | TypeDecl | VarDecl .
-TopLevelDecl = Declaration | FunctionDecl | MethodDecl .
-</pre>
-
-<p>
-The <i>scope</i> of a declared identifier is the extent of source text in which
-the identifier denotes the specified constant, type, variable, function, or package.
-</p>
-
-<p>
-Go is lexically scoped using blocks:
-</p>
-
-<ol>
- <li>The scope of a predeclared identifier is the universe block.</li>
-
- <li>The scope of an identifier denoting a constant, type, variable,
- or function (but not method) declared at top level (outside any
- function) is the package block.</li>
-
- <li>The scope of an imported package identifier is the file block
- of the file containing the import declaration.</li>
-
- <li>The scope of an identifier denoting a function parameter or
- result variable is the function body.</li>
-
- <li>The scope of a constant or variable identifier declared
- inside a function begins at the end of the ConstSpec or VarSpec
- (ShortVarDecl for short variable declarations)
- and ends at the end of the innermost containing block.</li>
-
- <li>The scope of a type identifier declared inside a function
- begins at the identifier in the TypeSpec
- and ends at the end of the innermost containing block.</li>
-</ol>
-
-<p>
-An identifier declared in a block may be redeclared in an inner block.
-While the identifier of the inner declaration is in scope, it denotes
-the entity declared by the inner declaration.
-</p>
-
-<p>
-The <a href="#Package_clause">package clause</a> is not a declaration; the package name
-does not appear in any scope. Its purpose is to identify the files belonging
-to the same <a href="#Packages">package</a> and to specify the default package name for import
-declarations.
-</p>
-
-
-<h3 id="Label_scopes">Label scopes</h3>
-
-<p>
-Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
-used in the <code>break</code>, <code>continue</code>, and <code>goto</code>
-statements (§<a href="#Break_statements">Break statements</a>, §<a href="#Continue_statements">Continue statements</a>, §<a href="#Goto_statements">Goto statements</a>).
-It is illegal to define a label that is never used.
-In contrast to other identifiers, labels are not block scoped and do
-not conflict with identifiers that are not labels. The scope of a label
-is the body of the function in which it is declared and excludes
-the body of any nested function.
-</p>
-
-
-<h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
-
-<p>
-The following identifiers are implicitly declared in the universe block:
-</p>
-<pre class="grammar">
-Basic types:
- bool byte complex64 complex128 float32 float64
- int8 int16 int32 int64 string uint8 uint16 uint32 uint64
-
-Architecture-specific convenience types:
- int uint uintptr
-
-Constants:
- true false iota
-
-Zero value:
- nil
-
-Functions:
- append cap close complex copy imag len
- make new panic print println real recover
-</pre>
-
-
-<h3 id="Exported_identifiers">Exported identifiers</h3>
-
-<p>
-An identifier may be <i>exported</i> to permit access to it from another package
-using a <a href="#Qualified_identifiers">qualified identifier</a>. An identifier
-is exported if both:
-</p>
-<ol>
- <li>the first character of the identifier's name is a Unicode upper case letter (Unicode class "Lu"); and</li>
- <li>the identifier is declared in the <a href="#Blocks">package block</a> or denotes a field or method of a type
- declared in that block.</li>
-</ol>
-<p>
-All other identifiers are not exported.
-</p>
-
-
-<h3 id="Blank_identifier">Blank identifier</h3>
-
-<p>
-The <i>blank identifier</i>, represented by the underscore character <code>_</code>, may be used in a declaration like
-any other identifier but the declaration does not introduce a new binding.
-</p>
-
-
-<h3 id="Constant_declarations">Constant declarations</h3>
-
-<p>
-A constant declaration binds a list of identifiers (the names of
-the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
-The number of identifiers must be equal
-to the number of expressions, and the <i>n</i>th identifier on
-the left is bound to the value of the <i>n</i>th expression on the
-right.
-</p>
-
-<pre class="ebnf">
-ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
-ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
-
-IdentifierList = identifier { "," identifier } .
-ExpressionList = Expression { "," Expression } .
-</pre>
-
-<p>
-If the type is present, all constants take the type specified, and
-the expressions must be <a href="#Assignability">assignable</a> to that type.
-If the type is omitted, the constants take the
-individual types of the corresponding expressions.
-If the expression values are untyped <a href="#Constants">constants</a>,
-the declared constants remain untyped and the constant identifiers
-denote the constant values. For instance, if the expression is a
-floating-point literal, the constant identifier denotes a floating-point
-constant, even if the literal's fractional part is zero.
-</p>
-
-<pre>
-const Pi float64 = 3.14159265358979323846
-const zero = 0.0 // untyped floating-point constant
-const (
- size int64 = 1024
- eof = -1 // untyped integer constant
-)
-const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants
-const u, v float32 = 0, 3 // u = 0.0, v = 3.0
-</pre>
-
-<p>
-Within a parenthesized <code>const</code> declaration list the
-expression list may be omitted from any but the first declaration.
-Such an empty list is equivalent to the textual substitution of the
-first preceding non-empty expression list and its type if any.
-Omitting the list of expressions is therefore equivalent to
-repeating the previous list. The number of identifiers must be equal
-to the number of expressions in the previous list.
-Together with the <a href="#Iota"><code>iota</code> constant generator</a>
-this mechanism permits light-weight declaration of sequential values:
-</p>
-
-<pre>
-const (
- Sunday = iota
- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Partyday
- numberOfDays // this constant is not exported
-)
-</pre>
-
-
-<h3 id="Iota">Iota</h3>
-
-<p>
-Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
-<code>iota</code> represents successive untyped integer <a href="#Constants">
-constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
-appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
-It can be used to construct a set of related constants:
-</p>
-
-<pre>
-const ( // iota is reset to 0
- c0 = iota // c0 == 0
- c1 = iota // c1 == 1
- c2 = iota // c2 == 2
-)
-
-const (
- a = 1 &lt;&lt; iota // a == 1 (iota has been reset)
- b = 1 &lt;&lt; iota // b == 2
- c = 1 &lt;&lt; iota // c == 4
-)
-
-const (
- u = iota * 42 // u == 0 (untyped integer constant)
- v float64 = iota * 42 // v == 42.0 (float64 constant)
- w = iota * 42 // w == 84 (untyped integer constant)
-)
-
-const x = iota // x == 0 (iota has been reset)
-const y = iota // y == 0 (iota has been reset)
-</pre>
-
-<p>
-Within an ExpressionList, the value of each <code>iota</code> is the same because
-it is only incremented after each ConstSpec:
-</p>
-
-<pre>
-const (
- bit0, mask0 = 1 &lt;&lt; iota, 1 &lt;&lt; iota - 1 // bit0 == 1, mask0 == 0
- bit1, mask1 // bit1 == 2, mask1 == 1
- _, _ // skips iota == 2
- bit3, mask3 // bit3 == 8, mask3 == 7
-)
-</pre>
-
-<p>
-This last example exploits the implicit repetition of the
-last non-empty expression list.
-</p>
-
-
-<h3 id="Type_declarations">Type declarations</h3>
-
-<p>
-A type declaration binds an identifier, the <i>type name</i>, to a new type
-that has the same <a href="#Types">underlying type</a> as
-an existing type. The new type is <a href="#Type_identity">different</a> from
-the existing type.
-</p>
-
-<pre class="ebnf">
-TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
-TypeSpec = identifier Type .
-</pre>
-
-<pre>
-type IntArray [16]int
-
-type (
- Point struct { x, y float64 }
- Polar Point
-)
-
-type TreeNode struct {
- left, right *TreeNode
- value *Comparable
-}
-
-type Cipher interface {
- BlockSize() int
- Encrypt(src, dst []byte)
- Decrypt(src, dst []byte)
-}
-</pre>
-
-<p>
-The declared type does not inherit any <a href="#Method_declarations">methods</a>
-bound to the existing type, but the <a href="#Method_sets">method set</a>
-of an interface type or of elements of a composite type remains unchanged:
-</p>
-
-<pre>
-// A Mutex is a data type with two methods, Lock and Unlock.
-type Mutex struct { /* Mutex fields */ }
-func (m *Mutex) Lock() { /* Lock implementation */ }
-func (m *Mutex) Unlock() { /* Unlock implementation */ }
-
-// NewMutex has the same composition as Mutex but its method set is empty.
-type NewMutex Mutex
-
-// The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
-// but the method set of PtrMutex is empty.
-type PtrMutex *Mutex
-
-// The method set of *PrintableMutex contains the methods
-// Lock and Unlock bound to its anonymous field Mutex.
-type PrintableMutex struct {
- Mutex
-}
-
-// MyCipher is an interface type that has the same method set as Cipher.
-type MyCipher Cipher
-</pre>
-
-<p>
-A type declaration may be used to define a different boolean, numeric, or string
-type and attach methods to it:
-</p>
-
-<pre>
-type TimeZone int
-
-const (
- EST TimeZone = -(5 + iota)
- CST
- MST
- PST
-)
-
-func (tz TimeZone) String() string {
- return fmt.Sprintf("GMT+%dh", tz)
-}
-</pre>
-
-
-<h3 id="Variable_declarations">Variable declarations</h3>
-
-<p>
-A variable declaration creates a variable, binds an identifier to it and
-gives it a type and optionally an initial value.
-</p>
-<pre class="ebnf">
-VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
-VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
-</pre>
-
-<pre>
-var i int
-var U, V, W float64
-var k = 0
-var x, y float32 = -1, -2
-var (
- i int
- u, v, s = 2.0, 3.0, "bar"
-)
-var re, im = complexSqrt(-1)
-var _, found = entries[name] // map lookup; only interested in "found"
-</pre>
-
-<p>
-If a list of expressions is given, the variables are initialized
-by assigning the expressions to the variables (§<a href="#Assignments">Assignments</a>)
-in order; all expressions must be consumed and all variables initialized from them.
-Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
-</p>
-
-<p>
-If the type is present, each variable is given that type.
-Otherwise, the types are deduced from the assignment
-of the expression list.
-</p>
-
-<p>
-If the type is absent and the corresponding expression evaluates to an
-untyped <a href="#Constants">constant</a>, the type of the declared variable
-is <code>bool</code>, <code>int</code>, <code>float64</code>, or <code>string</code>
-respectively, depending on whether the value is a boolean, integer,
-floating-point, or string constant:
-</p>
-
-<pre>
-var b = true // t has type bool
-var i = 0 // i has type int
-var f = 3.0 // f has type float64
-var s = "OMDB" // s has type string
-</pre>
-
-<h3 id="Short_variable_declarations">Short variable declarations</h3>
-
-<p>
-A <i>short variable declaration</i> uses the syntax:
-</p>
-
-<pre class="ebnf">
-ShortVarDecl = IdentifierList ":=" ExpressionList .
-</pre>
-
-<p>
-It is a shorthand for a regular variable declaration with
-initializer expressions but no types:
-</p>
-
-<pre class="grammar">
-"var" IdentifierList = ExpressionList .
-</pre>
-
-<pre>
-i, j := 0, 10
-f := func() int { return 7 }
-ch := make(chan int)
-r, w := os.Pipe(fd) // os.Pipe() returns two values
-_, y, _ := coord(p) // coord() returns three values; only interested in y coordinate
-</pre>
-
-<p>
-Unlike regular variable declarations, a short variable declaration may redeclare variables provided they
-were originally declared in the same block with the same type, and at
-least one of the non-<a href="#Blank_identifier">blank</a> variables is new. As a consequence, redeclaration
-can only appear in a multi-variable short declaration.
-Redeclaration does not introduce a new
-variable; it just assigns a new value to the original.
-</p>
-
-<pre>
-field1, offset := nextField(str, 0)
-field2, offset := nextField(str, offset) // redeclares offset
-</pre>
-
-<p>
-Short variable declarations may appear only inside functions.
-In some contexts such as the initializers for <code>if</code>,
-<code>for</code>, or <code>switch</code> statements,
-they can be used to declare local temporary variables (§<a href="#Statements">Statements</a>).
-</p>
-
-<h3 id="Function_declarations">Function declarations</h3>
-
-<p>
-A function declaration binds an identifier to a function (§<a href="#Function_types">Function types</a>).
-</p>
-
-<pre class="ebnf">
-FunctionDecl = "func" identifier Signature [ Body ] .
-Body = Block .
-</pre>
-
-<p>
-A function declaration may omit the body. Such a declaration provides the
-signature for a function implemented outside Go, such as an assembly routine.
-</p>
-
-<pre>
-func min(x int, y int) int {
- if x &lt; y {
- return x
- }
- return y
-}
-
-func flushICache(begin, end uintptr) // implemented externally
-</pre>
-
-<h3 id="Method_declarations">Method declarations</h3>
-
-<p>
-A method is a function with a <i>receiver</i>.
-A method declaration binds an identifier to a method.
-</p>
-<pre class="ebnf">
-MethodDecl = "func" Receiver MethodName Signature [ Body ] .
-Receiver = "(" [ identifier ] [ "*" ] BaseTypeName ")" .
-BaseTypeName = identifier .
-</pre>
-
-<p>
-The receiver type must be of the form <code>T</code> or <code>*T</code> where
-<code>T</code> is a type name. <code>T</code> is called the
-<i>receiver base type</i> or just <i>base type</i>.
-The base type must not be a pointer or interface type and must be
-declared in the same package as the method.
-The method is said to be <i>bound</i> to the base type
-and is visible only within selectors for that type
-(§<a href="#Type_declarations">Type declarations</a>, §<a href="#Selectors">Selectors</a>).
-</p>
-
-<p>
-Given type <code>Point</code>, the declarations
-</p>
-
-<pre>
-func (p *Point) Length() float64 {
- return math.Sqrt(p.x * p.x + p.y * p.y)
-}
-
-func (p *Point) Scale(factor float64) {
- p.x *= factor
- p.y *= factor
-}
-</pre>
-
-<p>
-bind the methods <code>Length</code> and <code>Scale</code>,
-with receiver type <code>*Point</code>,
-to the base type <code>Point</code>.
-</p>
-
-<p>
-If the receiver's value is not referenced inside the body of the method,
-its identifier may be omitted in the declaration. The same applies in
-general to parameters of functions and methods.
-</p>
-
-<p>
-The type of a method is the type of a function with the receiver as first
-argument. For instance, the method <code>Scale</code> has type
-</p>
-
-<pre>
-func(p *Point, factor float64)
-</pre>
-
-<p>
-However, a function declared this way is not a method.
-</p>
-
-
-<h2 id="Expressions">Expressions</h2>
-
-<p>
-An expression specifies the computation of a value by applying
-operators and functions to operands.
-</p>
-
-<h3 id="Operands">Operands</h3>
-
-<p>
-Operands denote the elementary values in an expression.
-</p>
-
-<pre class="ebnf">
-Operand = Literal | QualifiedIdent | MethodExpr | "(" Expression ")" .
-Literal = BasicLit | CompositeLit | FunctionLit .
-BasicLit = int_lit | float_lit | imaginary_lit | char_lit | string_lit .
-</pre>
-
-
-<h3 id="Qualified_identifiers">Qualified identifiers</h3>
-
-<p>
-A qualified identifier is a non-<a href="#Blank_identifier">blank</a> identifier qualified by a package name prefix.
-</p>
-
-<pre class="ebnf">
-QualifiedIdent = [ PackageName "." ] identifier .
-</pre>
-
-<p>
-A qualified identifier accesses an identifier in a separate package.
-The identifier must be <a href="#Exported_identifiers">exported</a> by that
-package, which means that it must begin with a Unicode upper case letter.
-</p>
-
-<pre>
-math.Sin
-</pre>
-
-<!--
-<p>
-<span class="alert">TODO: Unify this section with Selectors - it's the same syntax.</span>
-</p>
--->
-
-<h3 id="Composite_literals">Composite literals</h3>
-
-<p>
-Composite literals construct values for structs, arrays, slices, and maps
-and create a new value each time they are evaluated.
-They consist of the type of the value
-followed by a brace-bound list of composite elements. An element may be
-a single expression or a key-value pair.
-</p>
-
-<pre class="ebnf">
-CompositeLit = LiteralType LiteralValue .
-LiteralType = StructType | ArrayType | "[" "..." "]" ElementType |
- SliceType | MapType | TypeName .
-LiteralValue = "{" [ ElementList [ "," ] ] "}" .
-ElementList = Element { "," Element } .
-Element = [ Key ":" ] Value .
-Key = FieldName | ElementIndex .
-FieldName = identifier .
-ElementIndex = Expression .
-Value = Expression | LiteralValue .
-</pre>
-
-<p>
-The LiteralType must be a struct, array, slice, or map type
-(the grammar enforces this constraint except when the type is given
-as a TypeName).
-The types of the expressions must be <a href="#Assignability">assignable</a>
-to the respective field, element, and key types of the LiteralType;
-there is no additional conversion.
-The key is interpreted as a field name for struct literals,
-an index expression for array and slice literals, and a key for map literals.
-For map literals, all elements must have a key. It is an error
-to specify multiple elements with the same field name or
-constant key value.
-</p>
-
-<p>
-For struct literals the following rules apply:
-</p>
-<ul>
- <li>A key must be a field name declared in the LiteralType.
- </li>
- <li>A literal that does not contain any keys must
- list an element for each struct field in the
- order in which the fields are declared.
- </li>
- <li>If any element has a key, every element must have a key.
- </li>
- <li>A literal that contains keys does not need to
- have an element for each struct field. Omitted fields
- get the zero value for that field.
- </li>
- <li>A literal may omit the element list; such a literal evaluates
- to the zero value for its type.
- </li>
- <li>It is an error to specify an element for a non-exported
- field of a struct belonging to a different package.
- </li>
-</ul>
-
-<p>
-Given the declarations
-</p>
-<pre>
-type Point3D struct { x, y, z float64 }
-type Line struct { p, q Point3D }
-</pre>
-
-<p>
-one may write
-</p>
-
-<pre>
-origin := Point3D{} // zero value for Point3D
-line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x
-</pre>
-
-<p>
-For array and slice literals the following rules apply:
-</p>
-<ul>
- <li>Each element has an associated integer index marking
- its position in the array.
- </li>
- <li>An element with a key uses the key as its index; the
- key must be a constant integer expression.
- </li>
- <li>An element without a key uses the previous element's index plus one.
- If the first element has no key, its index is zero.
- </li>
-</ul>
-
-<p>
-Taking the address of a composite literal (§<a href="#Address_operators">Address operators</a>)
-generates a pointer to a unique instance of the literal's value.
-</p>
-<pre>
-var pointer *Point3D = &amp;Point3D{y: 1000}
-</pre>
-
-<p>
-The length of an array literal is the length specified in the LiteralType.
-If fewer elements than the length are provided in the literal, the missing
-elements are set to the zero value for the array element type.
-It is an error to provide elements with index values outside the index range
-of the array. The notation <code>...</code> specifies an array length equal
-to the maximum element index plus one.
-</p>
-
-<pre>
-buffer := [10]string{} // len(buffer) == 10
-intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6
-days := [...]string{"Sat", "Sun"} // len(days) == 2
-</pre>
-
-<p>
-A slice literal describes the entire underlying array literal.
-Thus, the length and capacity of a slice literal are the maximum
-element index plus one. A slice literal has the form
-</p>
-
-<pre>
-[]T{x1, x2, … xn}
-</pre>
-
-<p>
-and is a shortcut for a slice operation applied to an array literal:
-</p>
-
-<pre>
-[n]T{x1, x2, … xn}[0 : n]
-</pre>
-
-<p>
-Within a composite literal of array, slice, or map type <code>T</code>,
-elements that are themselves composite literals may elide the respective
-literal type if it is identical to the element type of <code>T</code>.
-</p>
-
-<pre>
-[...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
-[][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
-</pre>
-
-<p>
-A parsing ambiguity arises when a composite literal using the
-TypeName form of the LiteralType appears between the
-<a href="#Keywords">keyword</a> and the opening brace of the block of an
-"if", "for", or "switch" statement, because the braces surrounding
-the expressions in the literal are confused with those introducing
-the block of statements. To resolve the ambiguity in this rare case,
-the composite literal must appear within
-parentheses.
-</p>
-
-<pre>
-if x == (T{a,b,c}[i]) { … }
-if (x == T{a,b,c}[i]) { … }
-</pre>
-
-<p>
-Examples of valid array, slice, and map literals:
-</p>
-
-<pre>
-// list of prime numbers
-primes := []int{2, 3, 5, 7, 9, 11, 13, 17, 19, 991}
-
-// vowels[ch] is true if ch is a vowel
-vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
-
-// the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
-filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
-
-// frequencies in Hz for equal-tempered scale (A4 = 440Hz)
-noteFrequency := map[string]float32{
- "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
- "G0": 24.50, "A0": 27.50, "B0": 30.87,
-}
-</pre>
-
-
-<h3 id="Function_literals">Function literals</h3>
-
-<p>
-A function literal represents an anonymous function.
-It consists of a specification of the function type and a function body.
-</p>
-
-<pre class="ebnf">
-FunctionLit = FunctionType Body .
-</pre>
-
-<pre>
-func(a, b int, z float64) bool { return a*b &lt; int(z) }
-</pre>
-
-<p>
-A function literal can be assigned to a variable or invoked directly.
-</p>
-
-<pre>
-f := func(x, y int) int { return x + y }
-func(ch chan int) { ch &lt;- ACK } (reply_chan)
-</pre>
-
-<p>
-Function literals are <i>closures</i>: they may refer to variables
-defined in a surrounding function. Those variables are then shared between
-the surrounding function and the function literal, and they survive as long
-as they are accessible.
-</p>
-
-
-<h3 id="Primary_expressions">Primary expressions</h3>
-
-<p>
-Primary expressions are the operands for unary and binary expressions.
-</p>
-
-<pre class="ebnf">
-PrimaryExpr =
- Operand |
- Conversion |
- BuiltinCall |
- PrimaryExpr Selector |
- PrimaryExpr Index |
- PrimaryExpr Slice |
- PrimaryExpr TypeAssertion |
- PrimaryExpr Call .
-
-Selector = "." identifier .
-Index = "[" Expression "]" .
-Slice = "[" [ Expression ] ":" [ Expression ] "]" .
-TypeAssertion = "." "(" Type ")" .
-Call = "(" [ ArgumentList [ "," ] ] ")" .
-ArgumentList = ExpressionList [ "..." ] .
-</pre>
-
-
-<pre>
-x
-2
-(s + ".txt")
-f(3.1415, true)
-Point{1, 2}
-m["foo"]
-s[i : j + 1]
-obj.color
-math.Sin
-f.p[i].x()
-</pre>
-
-
-<h3 id="Selectors">Selectors</h3>
-
-<p>
-A primary expression of the form
-</p>
-
-<pre>
-x.f
-</pre>
-
-<p>
-denotes the field or method <code>f</code> of the value denoted by <code>x</code>
-(or sometimes <code>*x</code>; see below). The identifier <code>f</code>
-is called the (field or method)
-<i>selector</i>; it must not be the <a href="#Blank_identifier">blank identifier</a>.
-The type of the expression is the type of <code>f</code>.
-</p>
-<p>
-A selector <code>f</code> may denote a field or method <code>f</code> of
-a type <code>T</code>, or it may refer
-to a field or method <code>f</code> of a nested anonymous field of
-<code>T</code>.
-The number of anonymous fields traversed
-to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
-The depth of a field or method <code>f</code>
-declared in <code>T</code> is zero.
-The depth of a field or method <code>f</code> declared in
-an anonymous field <code>A</code> in <code>T</code> is the
-depth of <code>f</code> in <code>A</code> plus one.
-</p>
-<p>
-The following rules apply to selectors:
-</p>
-<ol>
-<li>
-For a value <code>x</code> of type <code>T</code> or <code>*T</code>
-where <code>T</code> is not an interface type,
-<code>x.f</code> denotes the field or method at the shallowest depth
-in <code>T</code> where there
-is such an <code>f</code>.
-If there is not exactly one <code>f</code> with shallowest depth, the selector
-expression is illegal.
-</li>
-<li>
-For a variable <code>x</code> of type <code>I</code>
-where <code>I</code> is an interface type,
-<code>x.f</code> denotes the actual method with name <code>f</code> of the value assigned
-to <code>x</code> if there is such a method.
-If no value or <code>nil</code> was assigned to <code>x</code>, <code>x.f</code> is illegal.
-</li>
-<li>
-In all other cases, <code>x.f</code> is illegal.
-</li>
-</ol>
-<p>
-Selectors automatically dereference pointers to structs.
-If <code>x</code> is a pointer to a struct, <code>x.y</code>
-is shorthand for <code>(*x).y</code>; if the field <code>y</code>
-is also a pointer to a struct, <code>x.y.z</code> is shorthand
-for <code>(*(*x).y).z</code>, and so on.
-If <code>x</code> contains an anonymous field of type <code>*A</code>,
-where <code>A</code> is also a struct type,
-<code>x.f</code> is a shortcut for <code>(*x.A).f</code>.
-</p>
-<p>
-For example, given the declarations:
-</p>
-
-<pre>
-type T0 struct {
- x int
-}
-
-func (recv *T0) M0()
-
-type T1 struct {
- y int
-}
-
-func (recv T1) M1()
-
-type T2 struct {
- z int
- T1
- *T0
-}
-
-func (recv *T2) M2()
-
-var p *T2 // with p != nil and p.T1 != nil
-</pre>
-
-<p>
-one may write:
-</p>
-
-<pre>
-p.z // (*p).z
-p.y // ((*p).T1).y
-p.x // (*(*p).T0).x
-
-p.M2 // (*p).M2
-p.M1 // ((*p).T1).M1
-p.M0 // ((*p).T0).M0
-</pre>
-
-
-<!--
-<span class="alert">
-TODO: Specify what happens to receivers.
-</span>
--->
-
-
-<h3 id="Indexes">Indexes</h3>
-
-<p>
-A primary expression of the form
-</p>
-
-<pre>
-a[x]
-</pre>
-
-<p>
-denotes the element of the array, slice, string or map <code>a</code> indexed by <code>x</code>.
-The value <code>x</code> is called the
-<i>index</i> or <i>map key</i>, respectively. The following
-rules apply:
-</p>
-
-<p>
-For <code>a</code> of type <code>A</code> or <code>*A</code>
-where <code>A</code> is an <a href="#Array_types">array type</a>,
-or for <code>a</code> of type <code>S</code> where <code>S</code> is a <a href="#Slice_types">slice type</a>:
-</p>
-<ul>
- <li><code>x</code> must be an integer value and <code>0 &lt;= x &lt; len(a)</code></li>
- <li><code>a[x]</code> is the array element at index <code>x</code> and the type of
- <code>a[x]</code> is the element type of <code>A</code></li>
- <li>if <code>a</code> is <code>nil</code> or if the index <code>x</code> is out of range,
- a <a href="#Run_time_panics">run-time panic</a> occurs</li>
-</ul>
-
-<p>
-For <code>a</code> of type <code>T</code>
-where <code>T</code> is a <a href="#String_types">string type</a>:
-</p>
-<ul>
- <li><code>x</code> must be an integer value and <code>0 &lt;= x &lt; len(a)</code></li>
- <li><code>a[x]</code> is the byte at index <code>x</code> and the type of
- <code>a[x]</code> is <code>byte</code></li>
- <li><code>a[x]</code> may not be assigned to</li>
- <li>if the index <code>x</code> is out of range,
- a <a href="#Run_time_panics">run-time panic</a> occurs</li>
-</ul>
-
-<p>
-For <code>a</code> of type <code>M</code>
-where <code>M</code> is a <a href="#Map_types">map type</a>:
-</p>
-<ul>
- <li><code>x</code>'s type must be
- <a href="#Assignability">assignable</a>
- to the key type of <code>M</code></li>
- <li>if the map contains an entry with key <code>x</code>,
- <code>a[x]</code> is the map value with key <code>x</code>
- and the type of <code>a[x]</code> is the value type of <code>M</code></li>
- <li>if the map is <code>nil</code> or does not contain such an entry,
- <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
- for the value type of <code>M</code></li>
-</ul>
-
-<p>
-Otherwise <code>a[x]</code> is illegal.
-</p>
-
-<p>
-An index expression on a map <code>a</code> of type <code>map[K]V</code>
-may be used in an assignment or initialization of the special form
-</p>
-
-<pre>
-v, ok = a[x]
-v, ok := a[x]
-var v, ok = a[x]
-</pre>
-
-<p>
-where the result of the index expression is a pair of values with types
-<code>(V, bool)</code>. In this form, the value of <code>ok</code> is
-<code>true</code> if the key <code>x</code> is present in the map, and
-<code>false</code> otherwise. The value of <code>v</code> is the value
-<code>a[x]</code> as in the single-result form.
-</p>
-
-<p>
-Similarly, if an assignment to a map element has the special form
-</p>
-
-<pre>
-a[x] = v, ok
-</pre>
-
-<p>
-and boolean <code>ok</code> has the value <code>false</code>,
-the entry for key <code>x</code> is deleted from the map; if
-<code>ok</code> is <code>true</code>, the construct acts like
-a regular assignment to an element of the map.
-</p>
-
-<p>
-Assigning to an element of a <code>nil</code> map causes a
-<a href="#Run_time_panics">run-time panic</a>.
-</p>
-
-
-<h3 id="Slices">Slices</h3>
-
-<p>
-For a string, array, or slice <code>a</code>, the primary expression
-</p>
-
-<pre>
-a[low : high]
-</pre>
-
-<p>
-constructs a substring or slice. The index expressions <code>low</code> and
-<code>high</code> select which elements appear in the result. The result has
-indexes starting at 0 and length equal to
-<code>high</code>&nbsp;-&nbsp;<code>low</code>.
-After slicing the array <code>a</code>
-</p>
-
-<pre>
-a := [5]int{1, 2, 3, 4, 5}
-s := a[1:4]
-</pre>
-
-<p>
-the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
-</p>
-
-<pre>
-s[0] == 2
-s[1] == 3
-s[2] == 4
-</pre>
-
-<p>
-For convenience, any of the index expressions may be omitted. A missing <code>low</code>
-index defaults to zero; a missing <code>high</code> index defaults to the length of the
-sliced operand:
-</p>
-
-<pre>
-a[2:] // same a[2 : len(a)]
-a[:3] // same as a[0 : 3]
-a[:] // same as a[0 : len(a)]
-</pre>
-
-<p>
-For arrays or strings, the indexes <code>low</code> and <code>high</code> must
-satisfy 0 &lt;= <code>low</code> &lt;= <code>high</code> &lt;= length; for
-slices, the upper bound is the capacity rather than the length.
-</p>
-
-<p>
-If the sliced operand is a string or slice, the result of the slice operation
-is a string or slice of the same type.
-If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
-and the result of the slice operation is a slice with the same element type as the array.
-</p>
-
-
-<h3 id="Type_assertions">Type assertions</h3>
-
-<p>
-For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
-and a type <code>T</code>, the primary expression
-</p>
-
-<pre>
-x.(T)
-</pre>
-
-<p>
-asserts that <code>x</code> is not <code>nil</code>
-and that the value stored in <code>x</code> is of type <code>T</code>.
-The notation <code>x.(T)</code> is called a <i>type assertion</i>.
-</p>
-<p>
-More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
-that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
-to the type <code>T</code>.
-If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
-of <code>x</code> implements the interface <code>T</code> (§<a href="#Interface_types">Interface types</a>).
-</p>
-<p>
-If the type assertion holds, the value of the expression is the value
-stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
-a <a href="#Run_time_panics">run-time panic</a> occurs.
-In other words, even though the dynamic type of <code>x</code>
-is known only at run-time, the type of <code>x.(T)</code> is
-known to be <code>T</code> in a correct program.
-</p>
-<p>
-If a type assertion is used in an assignment or initialization of the form
-</p>
-
-<pre>
-v, ok = x.(T)
-v, ok := x.(T)
-var v, ok = x.(T)
-</pre>
-
-<p>
-the result of the assertion is a pair of values with types <code>(T, bool)</code>.
-If the assertion holds, the expression returns the pair <code>(x.(T), true)</code>;
-otherwise, the expression returns <code>(Z, false)</code> where <code>Z</code>
-is the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
-No run-time panic occurs in this case.
-The type assertion in this construct thus acts like a function call
-returning a value and a boolean indicating success. (§<a href="#Assignments">Assignments</a>)
-</p>
-
-
-<h3 id="Calls">Calls</h3>
-
-<p>
-Given an expression <code>f</code> of function type
-<code>F</code>,
-</p>
-
-<pre>
-f(a1, a2, … an)
-</pre>
-
-<p>
-calls <code>f</code> with arguments <code>a1, a2, … an</code>.
-Except for one special case, arguments must be single-valued expressions
-<a href="#Assignability">assignable</a> to the parameter types of
-<code>F</code> and are evaluated before the function is called.
-The type of the expression is the result type
-of <code>F</code>.
-A method invocation is similar but the method itself
-is specified as a selector upon a value of the receiver type for
-the method.
-</p>
-
-<pre>
-math.Atan2(x, y) // function call
-var pt *Point
-pt.Scale(3.5) // method call with receiver pt
-</pre>
-
-<p>
-As a special case, if the return parameters of a function or method
-<code>g</code> are equal in number and individually
-assignable to the parameters of another function or method
-<code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
-will invoke <code>f</code> after binding the return values of
-<code>g</code> to the parameters of <code>f</code> in order. The call
-of <code>f</code> must contain no parameters other than the call of <code>g</code>.
-If <code>f</code> has a final <code>...</code> parameter, it is
-assigned the return values of <code>g</code> that remain after
-assignment of regular parameters.
-</p>
-
-<pre>
-func Split(s string, pos int) (string, string) {
- return s[0:pos], s[pos:]
-}
-
-func Join(s, t string) string {
- return s + t
-}
-
-if Join(Split(value, len(value)/2)) != value {
- log.Panic("test fails")
-}
-</pre>
-
-<p>
-A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
-of (the type of) <code>x</code> contains <code>m</code> and the
-argument list can be assigned to the parameter list of <code>m</code>.
-If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
-set contains <code>m</code>, <code>x.m()</code> is shorthand
-for <code>(&amp;x).m()</code>:
-</p>
-
-<pre>
-var p Point
-p.Scale(3.5)
-</pre>
-
-<p>
-There is no distinct method type and there are no method literals.
-</p>
-
-<h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
-
-<p>
-If <code>f</code> is variadic with final parameter type <code>...T</code>,
-then within the function the argument is equivalent to a parameter of type
-<code>[]T</code>. At each call of <code>f</code>, the argument
-passed to the final parameter is
-a new slice of type <code>[]T</code> whose successive elements are
-the actual arguments, which all must be <a href="#Assignability">assignable</a>
-to the type <code>T</code>. The length of the slice is therefore the number of
-arguments bound to the final parameter and may differ for each call site.
-</p>
-
-<p>
-Given the function and call
-</p>
-<pre>
-func Greeting(prefix string, who ...string)
-Greeting("hello:", "Joe", "Anna", "Eileen")
-</pre>
-
-<p>
-within <code>Greeting</code>, <code>who</code> will have the value
-<code>[]string{"Joe", "Anna", "Eileen"}</code>
-</p>
-
-<p>
-If the final argument is assignable to a slice type <code>[]T</code>, it may be
-passed unchanged as the value for a <code>...T</code> parameter if the argument
-is followed by <code>...</code>. In this case no new slice is created.
-</p>
-
-<p>
-Given the slice <code>s</code> and call
-</p>
-
-<pre>
-s := []string{"James", "Jasmine"}
-Greeting("goodbye:", s...)
-</pre>
-
-<p>
-within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
-with the same underlying array.
-</p>
-
-
-<h3 id="Operators">Operators</h3>
-
-<p>
-Operators combine operands into expressions.
-</p>
-
-<pre class="ebnf">
-Expression = UnaryExpr | Expression binary_op UnaryExpr .
-UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
-
-binary_op = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
-rel_op = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
-add_op = "+" | "-" | "|" | "^" .
-mul_op = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
-
-unary_op = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
-</pre>
-
-<p>
-Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
-For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
-unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
-For operations involving constants only, see the section on
-<a href="#Constant_expressions">constant expressions</a>.
-</p>
-
-<p>
-Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
-and the other operand is not, the constant is <a href="#Conversions">converted</a>
-to the type of the other operand.
-</p>
-
-<p>
-The right operand in a shift expression must have unsigned integer type
-or be an untyped constant that can be converted to unsigned integer type.
-If the left operand of a non-constant shift expression is an untyped constant,
-the type of the constant is what it would be if the shift expression were
-replaced by its left operand alone; the type is <code>int</code> if it cannot
-be determined from the context (for instance, if the shift expression is an
-operand in a comparison against an untyped constant).
-</p>
-
-<pre>
-var s uint = 33
-var i = 1&lt;&lt;s // 1 has type int
-var j int32 = 1&lt;&lt;s // 1 has type int32; j == 0
-var k = uint64(1&lt;&lt;s) // 1 has type uint64; k == 1&lt;&lt;33
-var m int = 1.0&lt;&lt;s // legal: 1.0 has type int
-var n = 1.0&lt;&lt;s != 0 // legal: 1.0 has type int; n == false if ints are 32bits in size
-var o = 1&lt;&lt;s == 2&lt;&lt;s // legal: 1 and 2 have type int; o == true if ints are 32bits in size
-var p = 1&lt;&lt;s == 1&lt;&lt;33 // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
-var u = 1.0&lt;&lt;s // illegal: 1.0 has type float64, cannot shift
-var v float32 = 1&lt;&lt;s // illegal: 1 has type float32, cannot shift
-var w int64 = 1.0&lt;&lt;33 // legal: 1.0&lt;&lt;33 is a constant shift expression
-</pre>
-
-<h3 id="Operator_precedence">Operator precedence</h3>
-<p>
-Unary operators have the highest precedence.
-As the <code>++</code> and <code>--</code> operators form
-statements, not expressions, they fall
-outside the operator hierarchy.
-As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
-<p>
-There are five precedence levels for binary operators.
-Multiplication operators bind strongest, followed by addition
-operators, comparison operators, <code>&amp;&amp;</code> (logical and),
-and finally <code>||</code> (logical or):
-</p>
-
-<pre class="grammar">
-Precedence Operator
- 5 * / % &lt;&lt; &gt;&gt; &amp; &amp;^
- 4 + - | ^
- 3 == != &lt; &lt;= &gt; &gt;=
- 2 &amp;&amp;
- 1 ||
-</pre>
-
-<p>
-Binary operators of the same precedence associate from left to right.
-For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
-</p>
-
-<pre>
-+x
-23 + 3*x[i]
-x &lt;= f()
-^a &gt;&gt; b
-f() || g()
-x == y+1 &amp;&amp; &lt;-chan_ptr &gt; 0
-</pre>
-
-
-<h3 id="Arithmetic_operators">Arithmetic operators</h3>
-<p>
-Arithmetic operators apply to numeric values and yield a result of the same
-type as the first operand. The four standard arithmetic operators (<code>+</code>,
-<code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
-floating-point, and complex types; <code>+</code> also applies
-to strings. All other arithmetic operators apply to integers only.
-</p>
-
-<pre class="grammar">
-+ sum integers, floats, complex values, strings
-- difference integers, floats, complex values
-* product integers, floats, complex values
-/ quotient integers, floats, complex values
-% remainder integers
-
-&amp; bitwise and integers
-| bitwise or integers
-^ bitwise xor integers
-&amp;^ bit clear (and not) integers
-
-&lt;&lt; left shift integer &lt;&lt; unsigned integer
-&gt;&gt; right shift integer &gt;&gt; unsigned integer
-</pre>
-
-<p>
-Strings can be concatenated using the <code>+</code> operator
-or the <code>+=</code> assignment operator:
-</p>
-
-<pre>
-s := "hi" + string(c)
-s += " and good bye"
-</pre>
-
-<p>
-String addition creates a new string by concatenating the operands.
-</p>
-<p>
-For two integer values <code>x</code> and <code>y</code>, the integer quotient
-<code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
-relationships:
-</p>
-
-<pre>
-x = q*y + r and |r| &lt; |y|
-</pre>
-
-<p>
-with <code>x / y</code> truncated towards zero
-(<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
-</p>
-
-<pre>
- x y x / y x % y
- 5 3 1 2
--5 3 -1 -2
- 5 -3 -1 2
--5 -3 1 -2
-</pre>
-
-<p>
-As an exception to this rule, if the dividend <code>x</code> is the most
-negative value for the int type of <code>x</code>, the quotient
-<code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
-</p>
-
-<pre>
- x, q
-int8 -128
-int16 -32768
-int32 -2147483648
-int64 -9223372036854775808
-</pre>
-
-<p>
-If the divisor is zero, a <a href="#Run_time_panics">run-time panic</a> occurs.
-If the dividend is positive and the divisor is a constant power of 2,
-the division may be replaced by a right shift, and computing the remainder may
-be replaced by a bitwise "and" operation:
-</p>
-
-<pre>
- x x / 4 x % 4 x &gt;&gt; 2 x &amp; 3
- 11 2 3 2 3
--11 -2 -3 -3 1
-</pre>
-
-<p>
-The shift operators shift the left operand by the shift count specified by the
-right operand. They implement arithmetic shifts if the left operand is a signed
-integer and logical shifts if it is an unsigned integer.
-There is no upper limit on the shift count. Shifts behave
-as if the left operand is shifted <code>n</code> times by 1 for a shift
-count of <code>n</code>.
-As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
-and <code>x &gt;&gt; 1</code> is the same as
-<code>x/2</code> but truncated towards negative infinity.
-</p>
-
-<p>
-For integer operands, the unary operators
-<code>+</code>, <code>-</code>, and <code>^</code> are defined as
-follows:
-</p>
-
-<pre class="grammar">
-+x is 0 + x
--x negation is 0 - x
-^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x
- and m = -1 for signed x
-</pre>
-
-<p>
-For floating-point numbers,
-<code>+x</code> is the same as <code>x</code>,
-while <code>-x</code> is the negation of <code>x</code>.
-The result of a floating-point division by zero is not specified beyond the
-IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
-occurs is implementation-specific.
-</p>
-
-<h3 id="Integer_overflow">Integer overflow</h3>
-
-<p>
-For unsigned integer values, the operations <code>+</code>,
-<code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
-computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
-the unsigned integer's type
-(§<a href="#Numeric_types">Numeric types</a>). Loosely speaking, these unsigned integer operations
-discard high bits upon overflow, and programs may rely on ``wrap around''.
-</p>
-<p>
-For signed integers, the operations <code>+</code>,
-<code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
-overflow and the resulting value exists and is deterministically defined
-by the signed integer representation, the operation, and its operands.
-No exception is raised as a result of overflow. A
-compiler may not optimize code under the assumption that overflow does
-not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
-</p>
-
-
-<h3 id="Comparison_operators">Comparison operators</h3>
-
-<p>
-Comparison operators compare two operands and yield a value of type <code>bool</code>.
-</p>
-
-<pre class="grammar">
-== equal
-!= not equal
-&lt; less
-&lt;= less or equal
-> greater
->= greater or equal
-</pre>
-
-<p>
-The operands must be <i>comparable</i>; that is, the first operand
-must be <a href="#Assignability">assignable</a>
-to the type of the second operand, or vice versa.
-</p>
-<p>
-The operators <code>==</code> and <code>!=</code> apply
-to operands of all types except arrays and structs.
-All other comparison operators apply only to integer, floating-point
-and string values. The result of a comparison is defined as follows:
-</p>
-
-<ul>
- <li>
- Integer values are compared in the usual way.
- </li>
- <li>
- Floating point values are compared as defined by the IEEE-754
- standard.
- </li>
- <li>
- Two complex values <code>u</code>, <code>v</code> are
- equal if both <code>real(u) == real(v)</code> and
- <code>imag(u) == imag(v)</code>.
- </li>
- <li>
- String values are compared byte-wise (lexically).
- </li>
- <li>
- Boolean values are equal if they are either both
- <code>true</code> or both <code>false</code>.
- </li>
- <li>
- Pointer values are equal if they point to the same location
- or if both are <code>nil</code>.
- </li>
- <li>
- Function values are equal if they refer to the same function
- or if both are <code>nil</code>.
- </li>
- <li>
- A slice value may only be compared to <code>nil</code>.
- </li>
- <li>
- Channel and map values are equal if they were created by the same call to <code>make</code>
- (§<a href="#Making_slices_maps_and_channels">Making slices, maps, and channels</a>)
- or if both are <code>nil</code>.
- </li>
- <li>
- Interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types and
- equal dynamic values or if both are <code>nil</code>.
- </li>
- <li>
- An interface value <code>x</code> is equal to a non-interface value
- <code>y</code> if the dynamic type of <code>x</code> is identical to
- the static type of <code>y</code> and the dynamic value of <code>x</code>
- is equal to <code>y</code>.
- </li>
- <li>
- A pointer, function, slice, channel, map, or interface value is equal
- to <code>nil</code> if it has been assigned the explicit value
- <code>nil</code>, if it is uninitialized, or if it has been assigned
- another value equal to <code>nil</code>.
- </li>
-</ul>
-
-
-<h3 id="Logical_operators">Logical operators</h3>
-
-<p>
-Logical operators apply to <a href="#Boolean_types">boolean</a> values
-and yield a result of the same type as the operands.
-The right operand is evaluated conditionally.
-</p>
-
-<pre class="grammar">
-&amp;&amp; conditional and p &amp;&amp; q is "if p then q else false"
-|| conditional or p || q is "if p then true else q"
-! not !p is "not p"
-</pre>
-
-
-<h3 id="Address_operators">Address operators</h3>
-
-<p>
-For an operand <code>x</code> of type <code>T</code>, the address operation
-<code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
-The operand must be <i>addressable</i>,
-that is, either a variable, pointer indirection, or slice indexing
-operation; or a field selector of an addressable struct operand;
-or an array indexing operation of an addressable array.
-As an exception to the addressability requirement, <code>x</code> may also be a
-<a href="#Composite_literals">composite literal</a>.
-</p>
-<p>
-For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
-indirection <code>*x</code> denotes the value of type <code>T</code> pointed
-to by <code>x</code>.
-</p>
-
-<pre>
-&amp;x
-&amp;a[f(2)]
-*p
-*pf(x)
-</pre>
-
-
-<h3 id="Receive_operator">Receive operator</h3>
-
-<p>
-For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
-the value of the receive operation <code>&lt;-ch</code> is the value received
-from the channel <code>ch</code>. The type of the value is the element type of
-the channel. The expression blocks until a value is available.
-Receiving from a <code>nil</code> channel blocks forever.
-</p>
-
-<pre>
-v1 := &lt;-ch
-v2 = &lt;-ch
-f(&lt;-ch)
-&lt;-strobe // wait until clock pulse and discard received value
-</pre>
-
-<p>
-A receive expression used in an assignment or initialization of the form
-</p>
-
-<pre>
-x, ok = &lt;-ch
-x, ok := &lt;-ch
-var x, ok = &lt;-ch
-</pre>
-
-<p>
-yields an additional result.
-The boolean variable <code>ok</code> indicates whether
-the received value was sent on the channel (<code>true</code>)
-or is a <a href="#The_zero_value">zero value</a> returned
-because the channel is closed and empty (<code>false</code>).
-</p>
-
-<!--
-<p>
-<span class="alert">TODO: Probably in a separate section, communication semantics
-need to be presented regarding send, receive, select, and goroutines.</span>
-</p>
--->
-
-
-<h3 id="Method_expressions">Method expressions</h3>
-
-<p>
-If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
-<code>T.M</code> is a function that is callable as a regular function
-with the same arguments as <code>M</code> prefixed by an additional
-argument that is the receiver of the method.
-</p>
-
-<pre class="ebnf">
-MethodExpr = ReceiverType "." MethodName .
-ReceiverType = TypeName | "(" "*" TypeName ")" .
-</pre>
-
-<p>
-Consider a struct type <code>T</code> with two methods,
-<code>Mv</code>, whose receiver is of type <code>T</code>, and
-<code>Mp</code>, whose receiver is of type <code>*T</code>.
-</p>
-
-<pre>
-type T struct {
- a int
-}
-func (tv T) Mv(a int) int { return 0 } // value receiver
-func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver
-var t T
-</pre>
-
-<p>
-The expression
-</p>
-
-<pre>
-T.Mv
-</pre>
-
-<p>
-yields a function equivalent to <code>Mv</code> but
-with an explicit receiver as its first argument; it has signature
-</p>
-
-<pre>
-func(tv T, a int) int
-</pre>
-
-<p>
-That function may be called normally with an explicit receiver, so
-these three invocations are equivalent:
-</p>
-
-<pre>
-t.Mv(7)
-T.Mv(t, 7)
-f := T.Mv; f(t, 7)
-</pre>
-
-<p>
-Similarly, the expression
-</p>
-
-<pre>
-(*T).Mp
-</pre>
-
-<p>
-yields a function value representing <code>Mp</code> with signature
-</p>
-
-<pre>
-func(tp *T, f float32) float32
-</pre>
-
-<p>
-For a method with a value receiver, one can derive a function
-with an explicit pointer receiver, so
-</p>
-
-<pre>
-(*T).Mv
-</pre>
-
-<p>
-yields a function value representing <code>Mv</code> with signature
-</p>
-
-<pre>
-func(tv *T, a int) int
-</pre>
-
-<p>
-Such a function indirects through the receiver to create a value
-to pass as the receiver to the underlying method;
-the method does not overwrite the value whose address is passed in
-the function call.
-</p>
-
-<p>
-The final case, a value-receiver function for a pointer-receiver method,
-is illegal because pointer-receiver methods are not in the method set
-of the value type.
-</p>
-
-<p>
-Function values derived from methods are called with function call syntax;
-the receiver is provided as the first argument to the call.
-That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
-as <code>f(t, 7)</code> not <code>t.f(7)</code>.
-To construct a function that binds the receiver, use a
-<a href="#Function_literals">closure</a>.
-</p>
-
-<p>
-It is legal to derive a function value from a method of an interface type.
-The resulting function takes an explicit receiver of that interface type.
-</p>
-
-<h3 id="Conversions">Conversions</h3>
-
-<p>
-Conversions are expressions of the form <code>T(x)</code>
-where <code>T</code> is a type and <code>x</code> is an expression
-that can be converted to type <code>T</code>.
-</p>
-
-<pre class="ebnf">
-Conversion = Type "(" Expression ")" .
-</pre>
-
-<p>
-If the type starts with an operator it must be parenthesized:
-</p>
-
-<pre>
-*Point(p) // same as *(Point(p))
-(*Point)(p) // p is converted to (*Point)
-&lt;-chan int(c) // same as &lt;-(chan int(c))
-(&lt;-chan int)(c) // c is converted to (&lt;-chan int)
-</pre>
-
-<p>
-A <a href="#Constants">constant</a> value <code>x</code> can be converted to
-type <code>T</code> in any of these cases:
-</p>
-
-<ul>
- <li>
- <code>x</code> is representable by a value of type <code>T</code>.
- </li>
- <li>
- <code>x</code> is an integer constant and <code>T</code> is a
- <a href="#String_types">string type</a>.
- The same rule as for non-constant <code>x</code> applies in this case
- (§<a href="#Conversions_to_and_from_a_string_type">Conversions to and from a string type</a>).
- </li>
-</ul>
-
-<p>
-Converting a constant yields a typed constant as result.
-</p>
-
-<pre>
-uint(iota) // iota value of type uint
-float32(2.718281828) // 2.718281828 of type float32
-complex128(1) // 1.0 + 0.0i of type complex128
-string('x') // "x" of type string
-string(0x266c) // "♬" of type string
-MyString("foo" + "bar") // "foobar" of type MyString
-string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant
-(*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
-int(1.2) // illegal: 1.2 cannot be represented as an int
-string(65.0) // illegal: 65.0 is not an integer constant
-</pre>
-
-<p>
-A non-constant value <code>x</code> can be converted to type <code>T</code>
-in any of these cases:
-</p>
-
-<ul>
- <li>
- <code>x</code> is <a href="#Assignability">assignable</a>
- to <code>T</code>.
- </li>
- <li>
- <code>x</code>'s type and <code>T</code> have identical
- <a href="#Types">underlying types</a>.
- </li>
- <li>
- <code>x</code>'s type and <code>T</code> are unnamed pointer types
- and their pointer base types have identical underlying types.
- </li>
- <li>
- <code>x</code>'s type and <code>T</code> are both integer or floating
- point types.
- </li>
- <li>
- <code>x</code>'s type and <code>T</code> are both complex types.
- </li>
- <li>
- <code>x</code> is an integer or has type <code>[]byte</code> or
- <code>[]int</code> and <code>T</code> is a string type.
- </li>
- <li>
- <code>x</code> is a string and <code>T</code> is <code>[]byte</code> or
- <code>[]int</code>.
- </li>
-</ul>
-
-<p>
-Specific rules apply to (non-constant) conversions between numeric types or
-to and from a string type.
-These conversions may change the representation of <code>x</code>
-and incur a run-time cost.
-All other conversions only change the type but not the representation
-of <code>x</code>.
-</p>
-
-<p>
-There is no linguistic mechanism to convert between pointers and integers.
-The package <a href="#Package_unsafe"><code>unsafe</code></a>
-implements this functionality under
-restricted circumstances.
-</p>
-
-<h4>Conversions between numeric types</h4>
-
-<p>
-For the conversion of non-constant numeric values, the following rules apply:
-</p>
-
-<ol>
-<li>
-When converting between integer types, if the value is a signed integer, it is
-sign extended to implicit infinite precision; otherwise it is zero extended.
-It is then truncated to fit in the result type's size.
-For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
-The conversion always yields a valid value; there is no indication of overflow.
-</li>
-<li>
-When converting a floating-point number to an integer, the fraction is discarded
-(truncation towards zero).
-</li>
-<li>
-When converting an integer or floating-point number to a floating-point type,
-or a complex number to another complex type, the result value is rounded
-to the precision specified by the destination type.
-For instance, the value of a variable <code>x</code> of type <code>float32</code>
-may be stored using additional precision beyond that of an IEEE-754 32-bit number,
-but float32(x) represents the result of rounding <code>x</code>'s value to
-32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
-of precision, but <code>float32(x + 0.1)</code> does not.
-</li>
-</ol>
-
-<p>
-In all non-constant conversions involving floating-point or complex values,
-if the result type cannot represent the value the conversion
-succeeds but the result value is implementation-dependent.
-</p>
-
-<h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
-
-<ol>
-<li>
-Converting a signed or unsigned integer value to a string type yields a
-string containing the UTF-8 representation of the integer. Values outside
-the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
-
-<pre>
-string('a') // "a"
-string(-1) // "\ufffd" == "\xef\xbf\xbd "
-string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8"
-type MyString string
-MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5"
-</pre>
-</li>
-
-<li>
-Converting a value of type <code>[]byte</code> (or
-the equivalent <code>[]uint8</code>) to a string type yields a
-string whose successive bytes are the elements of the slice. If
-the slice value is <code>nil</code>, the result is the empty string.
-
-<pre>
-string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø"
-</pre>
-</li>
-
-<li>
-Converting a value of type <code>[]int</code> to a string type yields
-a string that is the concatenation of the individual integers
-converted to strings. If the slice value is <code>nil</code>, the
-result is the empty string.
-<pre>
-string([]int{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔"
-</pre>
-</li>
-
-<li>
-Converting a value of a string type to <code>[]byte</code> (or <code>[]uint8</code>)
-yields a slice whose successive elements are the bytes of the string.
-If the string is empty, the result is <code>[]byte(nil)</code>.
-
-<pre>
-[]byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
-</pre>
-</li>
-
-<li>
-Converting a value of a string type to <code>[]int</code> yields a
-slice containing the individual Unicode code points of the string.
-If the string is empty, the result is <code>[]int(nil)</code>.
-<pre>
-[]int(MyString("白鵬翔")) // []int{0x767d, 0x9d6c, 0x7fd4}
-</pre>
-</li>
-</ol>
-
-
-<h3 id="Constant_expressions">Constant expressions</h3>
-
-<p>
-Constant expressions may contain only <a href="#Constants">constant</a>
-operands and are evaluated at compile-time.
-</p>
-
-<p>
-Untyped boolean, numeric, and string constants may be used as operands
-wherever it is legal to use an operand of boolean, numeric, or string type,
-respectively. Except for shift operations, if the operands of a binary operation
-are an untyped integer constant and an untyped floating-point constant,
-the integer constant is converted to an untyped floating-point constant
-(relevant for <code>/</code> and <code>%</code>).
-Similarly, untyped integer or floating-point constants may be used as operands
-wherever it is legal to use an operand of complex type;
-the integer or floating point constant is converted to a
-complex constant with a zero imaginary part.
-</p>
-
-<p>
-A constant <a href="#Comparison_operators">comparison</a> always yields
-a constant of type <code>bool</code>. If the left operand of a constant
-<a href="#Operators">shift expression</a> is an untyped constant, the
-result is an integer constant; otherwise it is a constant of the same
-type as the left operand, which must be of integer type
-(§<a href="#Arithmetic_operators">Arithmetic operators</a>).
-Applying all other operators to untyped constants results in an untyped
-constant of the same kind (that is, a boolean, integer, floating-point,
-complex, or string constant).
-</p>
-
-<pre>
-const a = 2 + 3.0 // a == 5.0 (floating-point constant)
-const b = 15 / 4 // b == 3 (integer constant)
-const c = 15 / 4.0 // c == 3.75 (floating-point constant)
-const d = 1 &lt;&lt; 3.0 // d == 8 (integer constant)
-const e = 1.0 &lt;&lt; 3 // e == 8 (integer constant)
-const f = int32(1) &lt;&lt; 33 // f == 0 (type int32)
-const g = float64(2) &gt;&gt; 1 // illegal (float64(2) is a typed floating-point constant)
-const h = "foo" &gt; "bar" // h == true (type bool)
-</pre>
-
-<p>
-Imaginary literals are untyped complex constants (with zero real part)
-and may be combined in binary
-operations with untyped integer and floating-point constants; the
-result is an untyped complex constant.
-Complex constants are always constructed from
-constant expressions involving imaginary
-literals or constants derived from them, or calls of the built-in function
-<a href="#Complex_numbers"><code>complex</code></a>.
-</p>
-
-<pre>
-const Σ = 1 - 0.707i
-const Δ = Σ + 2.0e-4 - 1/1i
-const Φ = iota * 1i
-const iΓ = complex(0, Γ)
-</pre>
-
-<p>
-Constant expressions are always evaluated exactly; intermediate values and the
-constants themselves may require precision significantly larger than supported
-by any predeclared type in the language. The following are legal declarations:
-</p>
-
-<pre>
-const Huge = 1 &lt;&lt; 100
-const Four int8 = Huge &gt;&gt; 98
-</pre>
-
-<p>
-The values of <i>typed</i> constants must always be accurately representable as values
-of the constant type. The following constant expressions are illegal:
-</p>
-
-<pre>
-uint(-1) // -1 cannot be represented as a uint
-int(3.14) // 3.14 cannot be represented as an int
-int64(Huge) // 1&lt;&lt;100 cannot be represented as an int64
-Four * 300 // 300 cannot be represented as an int8
-Four * 100 // 400 cannot be represented as an int8
-</pre>
-
-<p>
-The mask used by the unary bitwise complement operator <code>^</code> matches
-the rule for non-constants: the mask is all 1s for unsigned constants
-and -1 for signed and untyped constants.
-</p>
-
-<pre>
-^1 // untyped integer constant, equal to -2
-uint8(^1) // error, same as uint8(-2), out of range
-^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
-int8(^1) // same as int8(-2)
-^int8(1) // same as -1 ^ int8(1) = -2
-</pre>
-
-<!--
-<p>
-<span class="alert">
-TODO: perhaps ^ should be disallowed on non-uints instead of assuming twos complement.
-Also it may be possible to make typed constants more like variables, at the cost of fewer
-overflow etc. errors being caught.
-</span>
-</p>
--->
-
-<h3 id="Order_of_evaluation">Order of evaluation</h3>
-
-<p>
-When evaluating the elements of an assignment or expression,
-all function calls, method calls and
-communication operations are evaluated in lexical left-to-right
-order.
-</p>
-
-<p>
-For example, in the assignment
-</p>
-<pre>
-y[f()], ok = g(h(), i() + x[j()], &lt;-c), k()
-</pre>
-<p>
-the function calls and communication happen in the order
-<code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
-<code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
-However, the order of those events compared to the evaluation
-and indexing of <code>x</code> and the evaluation
-of <code>y</code> is not specified.
-</p>
-
-<p>
-Floating-point operations within a single expression are evaluated according to
-the associativity of the operators. Explicit parentheses affect the evaluation
-by overriding the default associativity.
-In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
-is performed before adding <code>x</code>.
-</p>
-
-<h2 id="Statements">Statements</h2>
-
-<p>
-Statements control execution.
-</p>
-
-<pre class="ebnf">
-Statement =
- Declaration | LabeledStmt | SimpleStmt |
- GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
- FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
- DeferStmt .
-
-SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
-</pre>
-
-
-<h3 id="Empty_statements">Empty statements</h3>
-
-<p>
-The empty statement does nothing.
-</p>
-
-<pre class="ebnf">
-EmptyStmt = .
-</pre>
-
-
-<h3 id="Labeled_statements">Labeled statements</h3>
-
-<p>
-A labeled statement may be the target of a <code>goto</code>,
-<code>break</code> or <code>continue</code> statement.
-</p>
-
-<pre class="ebnf">
-LabeledStmt = Label ":" Statement .
-Label = identifier .
-</pre>
-
-<pre>
-Error: log.Panic("error encountered")
-</pre>
-
-
-<h3 id="Expression_statements">Expression statements</h3>
-
-<p>
-Function calls, method calls, and receive operations
-can appear in statement context. Such statements may be parenthesized.
-</p>
-
-<pre class="ebnf">
-ExpressionStmt = Expression .
-</pre>
-
-<pre>
-h(x+y)
-f.Close()
-&lt;-ch
-(&lt;-ch)
-</pre>
-
-
-<h3 id="Send_statements">Send statements</h3>
-
-<p>
-A send statement sends a value on a channel.
-The channel expression must be of <a href="#Channel_types">channel type</a>
-and the type of the value must be <a href="#Assignability">assignable</a>
-to the channel's element type.
-</p>
-
-<pre class="ebnf">
-SendStmt = Channel "&lt;-" Expression .
-Channel = Expression .
-</pre>
-
-<p>
-Both the channel and the value expression are evaluated before communication
-begins. Communication blocks until the send can proceed, at which point the
-value is transmitted on the channel.
-A send on an unbuffered channel can proceed if a receiver is ready.
-A send on a buffered channel can proceed if there is room in the buffer.
-A send on a <code>nil</code> channel blocks forever.
-</p>
-
-<pre>
-ch &lt;- 3
-</pre>
-
-
-<h3 id="IncDec_statements">IncDec statements</h3>
-
-<p>
-The "++" and "--" statements increment or decrement their operands
-by the untyped <a href="#Constants">constant</a> <code>1</code>.
-As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
-or a map index expression.
-</p>
-
-<pre class="ebnf">
-IncDecStmt = Expression ( "++" | "--" ) .
-</pre>
-
-<p>
-The following <a href="#Assignments">assignment statements</a> are semantically
-equivalent:
-</p>
-
-<pre class="grammar">
-IncDec statement Assignment
-x++ x += 1
-x-- x -= 1
-</pre>
-
-
-<h3 id="Assignments">Assignments</h3>
-
-<pre class="ebnf">
-Assignment = ExpressionList assign_op ExpressionList .
-
-assign_op = [ add_op | mul_op ] "=" .
-</pre>
-
-<p>
-Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
-a map index expression, or the <a href="#Blank_identifier">blank identifier</a>.
-Operands may be parenthesized.
-</p>
-
-<pre>
-x = 1
-*p = f()
-a[i] = 23
-(k) = &lt;-ch // same as: k = &lt;-ch
-</pre>
-
-<p>
-An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
-<code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
-to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
-<code>y</code> but evaluates <code>x</code>
-only once. The <i>op</i><code>=</code> construct is a single token.
-In assignment operations, both the left- and right-hand expression lists
-must contain exactly one single-valued expression.
-</p>
-
-<pre>
-a[i] &lt;&lt;= 2
-i &amp;^= 1&lt;&lt;n
-</pre>
-
-<p>
-A tuple assignment assigns the individual elements of a multi-valued
-operation to a list of variables. There are two forms. In the
-first, the right hand operand is a single multi-valued expression
-such as a function evaluation or <a href="#Channel_types">channel</a> or
-<a href="#Map_types">map</a> operation or a <a href="#Type_assertions">type assertion</a>.
-The number of operands on the left
-hand side must match the number of values. For instance, if
-<code>f</code> is a function returning two values,
-</p>
-
-<pre>
-x, y = f()
-</pre>
-
-<p>
-assigns the first value to <code>x</code> and the second to <code>y</code>.
-The <a href="#Blank_identifier">blank identifier</a> provides a
-way to ignore values returned by a multi-valued expression:
-</p>
-
-<pre>
-x, _ = f() // ignore second value returned by f()
-</pre>
-
-<p>
-In the second form, the number of operands on the left must equal the number
-of expressions on the right, each of which must be single-valued, and the
-<i>n</i>th expression on the right is assigned to the <i>n</i>th
-operand on the left.
-The expressions on the right are evaluated before assigning to
-any of the operands on the left, but otherwise the evaluation
-order is unspecified beyond <a href="#Order_of_evaluation">the usual rules</a>.
-</p>
-
-<pre>
-a, b = b, a // exchange a and b
-</pre>
-
-<p>
-In assignments, each value must be
-<a href="#Assignability">assignable</a> to the type of the
-operand to which it is assigned. If an untyped <a href="#Constants">constant</a>
-is assigned to a variable of interface type, the constant is <a href="#Conversions">converted</a>
-to type <code>bool</code>, <code>int</code>, <code>float64</code>,
-<code>complex128</code> or <code>string</code>
-respectively, depending on whether the value is a boolean, integer, floating-point,
-complex, or string constant.
-</p>
-
-
-<h3 id="If_statements">If statements</h3>
-
-<p>
-"If" statements specify the conditional execution of two branches
-according to the value of a boolean expression. If the expression
-evaluates to true, the "if" branch is executed, otherwise, if
-present, the "else" branch is executed.
-</p>
-
-<pre class="ebnf">
-IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" Statement ] .
-</pre>
-
-<pre>
-if x &gt; max {
- x = max
-}
-</pre>
-
-<p>
-The expression may be preceded by a simple statement, which
-executes before the expression is evaluated.
-</p>
-
-<pre>
-if x := f(); x &lt; y {
- return x
-} else if x &gt; z {
- return z
-} else {
- return y
-}
-</pre>
-
-
-<h3 id="Switch_statements">Switch statements</h3>
-
-<p>
-"Switch" statements provide multi-way execution.
-An expression or type specifier is compared to the "cases"
-inside the "switch" to determine which branch
-to execute.
-</p>
-
-<pre class="ebnf">
-SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
-</pre>
-
-<p>
-There are two forms: expression switches and type switches.
-In an expression switch, the cases contain expressions that are compared
-against the value of the switch expression.
-In a type switch, the cases contain types that are compared against the
-type of a specially annotated switch expression.
-</p>
-
-<h4 id="Expression_switches">Expression switches</h4>
-
-<p>
-In an expression switch,
-the switch expression is evaluated and
-the case expressions, which need not be constants,
-are evaluated left-to-right and top-to-bottom; the first one that equals the
-switch expression
-triggers execution of the statements of the associated case;
-the other cases are skipped.
-If no case matches and there is a "default" case,
-its statements are executed.
-There can be at most one default case and it may appear anywhere in the
-"switch" statement.
-A missing switch expression is equivalent to
-the expression <code>true</code>.
-</p>
-
-<pre class="ebnf">
-ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
-ExprCaseClause = ExprSwitchCase ":" { Statement ";" } .
-ExprSwitchCase = "case" ExpressionList | "default" .
-</pre>
-
-<p>
-In a case or default clause,
-the last statement only may be a "fallthrough" statement
-(§<a href="#Fallthrough_statements">Fallthrough statement</a>) to
-indicate that control should flow from the end of this clause to
-the first statement of the next clause.
-Otherwise control flows to the end of the "switch" statement.
-</p>
-
-<p>
-The expression may be preceded by a simple statement, which
-executes before the expression is evaluated.
-</p>
-
-<pre>
-switch tag {
-default: s3()
-case 0, 1, 2, 3: s1()
-case 4, 5, 6, 7: s2()
-}
-
-switch x := f(); { // missing switch expression means "true"
-case x &lt; 0: return -x
-default: return x
-}
-
-switch {
-case x &lt; y: f1()
-case x &lt; z: f2()
-case x == 4: f3()
-}
-</pre>
-
-<h4 id="Type_switches">Type switches</h4>
-
-<p>
-A type switch compares types rather than values. It is otherwise similar
-to an expression switch. It is marked by a special switch expression that
-has the form of a <a href="#Type_assertions">type assertion</a>
-using the reserved word <code>type</code> rather than an actual type.
-Cases then match literal types against the dynamic type of the expression
-in the type assertion.
-</p>
-
-<pre class="ebnf">
-TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
-TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
-TypeCaseClause = TypeSwitchCase ":" { Statement ";" } .
-TypeSwitchCase = "case" TypeList | "default" .
-TypeList = Type { "," Type } .
-</pre>
-
-<p>
-The TypeSwitchGuard may include a
-<a href="#Short_variable_declarations">short variable declaration</a>.
-When that form is used, the variable is declared in each clause.
-In clauses with a case listing exactly one type, the variable
-has that type; otherwise, the variable has the type of the expression
-in the TypeSwitchGuard.
-</p>
-
-<p>
-The type in a case may be <code>nil</code>
-(§<a href="#Predeclared_identifiers">Predeclared identifiers</a>);
-that case is used when the expression in the TypeSwitchGuard
-is a <code>nil</code> interface value.
-</p>
-
-<p>
-Given an expression <code>x</code> of type <code>interface{}</code>,
-the following type switch:
-</p>
-
-<pre>
-switch i := x.(type) {
-case nil:
- printString("x is nil")
-case int:
- printInt(i) // i is an int
-case float64:
- printFloat64(i) // i is a float64
-case func(int) float64:
- printFunction(i) // i is a function
-case bool, string:
- printString("type is bool or string") // i is an interface{}
-default:
- printString("don't know the type")
-}
-</pre>
-
-<p>
-could be rewritten:
-</p>
-
-<pre>
-v := x // x is evaluated exactly once
-if v == nil {
- printString("x is nil")
-} else if i, is_int := v.(int); is_int {
- printInt(i) // i is an int
-} else if i, is_float64 := v.(float64); is_float64 {
- printFloat64(i) // i is a float64
-} else if i, is_func := v.(func(int) float64); is_func {
- printFunction(i) // i is a function
-} else {
- i1, is_bool := v.(bool)
- i2, is_string := v.(string)
- if is_bool || is_string {
- i := v
- printString("type is bool or string") // i is an interface{}
- } else {
- i := v
- printString("don't know the type") // i is an interface{}
- }
-}
-</pre>
-
-<p>
-The type switch guard may be preceded by a simple statement, which
-executes before the guard is evaluated.
-</p>
-
-<p>
-The "fallthrough" statement is not permitted in a type switch.
-</p>
-
-<h3 id="For_statements">For statements</h3>
-
-<p>
-A "for" statement specifies repeated execution of a block. The iteration is
-controlled by a condition, a "for" clause, or a "range" clause.
-</p>
-
-<pre class="ebnf">
-ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
-Condition = Expression .
-</pre>
-
-<p>
-In its simplest form, a "for" statement specifies the repeated execution of
-a block as long as a boolean condition evaluates to true.
-The condition is evaluated before each iteration.
-If the condition is absent, it is equivalent to <code>true</code>.
-</p>
-
-<pre>
-for a &lt; b {
- a *= 2
-}
-</pre>
-
-<p>
-A "for" statement with a ForClause is also controlled by its condition, but
-additionally it may specify an <i>init</i>
-and a <i>post</i> statement, such as an assignment,
-an increment or decrement statement. The init statement may be a
-<a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
-</p>
-
-<pre class="ebnf">
-ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
-InitStmt = SimpleStmt .
-PostStmt = SimpleStmt .
-</pre>
-
-<pre>
-for i := 0; i &lt; 10; i++ {
- f(i)
-}
-</pre>
-
-<p>
-If non-empty, the init statement is executed once before evaluating the
-condition for the first iteration;
-the post statement is executed after each execution of the block (and
-only if the block was executed).
-Any element of the ForClause may be empty but the
-<a href="#Semicolons">semicolons</a> are
-required unless there is only a condition.
-If the condition is absent, it is equivalent to <code>true</code>.
-</p>
-
-<pre>
-for cond { S() } is the same as for ; cond ; { S() }
-for { S() } is the same as for true { S() }
-</pre>
-
-<p>
-A "for" statement with a "range" clause
-iterates through all entries of an array, slice, string or map,
-or values received on a channel. For each entry it assigns <i>iteration values</i>
-to corresponding <i>iteration variables</i> and then executes the block.
-</p>
-
-<pre class="ebnf">
-RangeClause = Expression [ "," Expression ] ( "=" | ":=" ) "range" Expression .
-</pre>
-
-<p>
-The expression on the right in the "range" clause is called the <i>range expression</i>,
-which may be an array, pointer to an array, slice, string, map, or channel.
-As with an assignment, the operands on the left must be
-<a href="#Address_operators">addressable</a> or map index expressions; they
-denote the iteration variables. If the range expression is a channel, only
-one iteration variable is permitted, otherwise there may be one or two.
-If the second iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
-the range clause is equivalent to the same clause with only the first variable present.
-</p>
-
-<p>
-The range expression is evaluated once before beginning the loop
-except if the expression is an array, in which case, depending on
-the expression, it might not be evaluated (see below).
-Function calls on the left are evaluated once per iteration.
-For each iteration, iteration values are produced as follows:
-</p>
-
-<pre class="grammar">
-Range expression 1st value 2nd value (if 2nd variable is present)
-
-array or slice a [n]E, *[n]E, or []E index i int a[i] E
-string s string type index i int see below int
-map m map[K]V key k K m[k] V
-channel c chan E element e E
-</pre>
-
-<ol>
-<li>
-For an array, pointer to array, or slice value <code>a</code>, the index iteration
-values are produced in increasing order, starting at element index 0. As a special
-case, if only the first iteration variable is present, the range loop produces
-iteration values from 0 up to <code>len(a)</code> and does not index into the array
-or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
-</li>
-
-<li>
-For a string value, the "range" clause iterates over the Unicode code points
-in the string starting at byte index 0. On successive iterations, the index value will be the
-index of the first byte of successive UTF-8-encoded code points in the string,
-and the second value, of type <code>int</code>, will be the value of
-the corresponding code point. If the iteration encounters an invalid
-UTF-8 sequence, the second value will be <code>0xFFFD</code>,
-the Unicode replacement character, and the next iteration will advance
-a single byte in the string.
-</li>
-
-<li>
-The iteration order over maps is not specified.
-If map entries that have not yet been reached are deleted during iteration,
-the corresponding iteration values will not be produced. If map entries are
-inserted during iteration, the behavior is implementation-dependent, but the
-iteration values for each entry will be produced at most once. If the map
-is <code>nil</code>, the number of iterations is 0.
-</li>
-
-<li>
-For channels, the iteration values produced are the successive values sent on
-the channel until the channel is <a href="#Close">closed</a>. If the channel
-is <code>nil</code>, the range expression blocks forever.
-</li>
-</ol>
-
-<p>
-The iteration values are assigned to the respective
-iteration variables as in an <a href="#Assignments">assignment statement</a>.
-</p>
-
-<p>
-The iteration variables may be declared by the "range" clause (<code>:=</code>).
-In this case their types are set to the types of the respective iteration values
-and their <a href="#Declarations_and_scope">scope</a> ends at the end of the "for"
-statement; they are re-used in each iteration.
-If the iteration variables are declared outside the "for" statement,
-after execution their values will be those of the last iteration.
-</p>
-
-<pre>
-var testdata *struct {
- a *[7]int
-}
-for i, _ := range testdata.a {
- // testdata.a is never evaluated; len(testdata.a) is constant
- // i ranges from 0 to 6
- f(i)
-}
-
-var a [10]string
-m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
-for i, s := range a {
- // type of i is int
- // type of s is string
- // s == a[i]
- g(i, s)
-}
-
-var key string
-var val interface {} // value type of m is assignable to val
-for key, val = range m {
- h(key, val)
-}
-// key == last map key encountered in iteration
-// val == map[key]
-
-var ch chan Work = producer()
-for w := range ch {
- doWork(w)
-}
-</pre>
-
-
-<h3 id="Go_statements">Go statements</h3>
-
-<p>
-A "go" statement starts the execution of a function or method call
-as an independent concurrent thread of control, or <i>goroutine</i>,
-within the same address space.
-</p>
-
-<pre class="ebnf">
-GoStmt = "go" Expression .
-</pre>
-
-<p>
-The expression must be a call, and
-unlike with a regular call, program execution does not wait
-for the invoked function to complete.
-</p>
-
-<pre>
-go Server()
-go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
-</pre>
-
-
-<h3 id="Select_statements">Select statements</h3>
-
-<p>
-A "select" statement chooses which of a set of possible communications
-will proceed. It looks similar to a "switch" statement but with the
-cases all referring to communication operations.
-</p>
-
-<pre class="ebnf">
-SelectStmt = "select" "{" { CommClause } "}" .
-CommClause = CommCase ":" { Statement ";" } .
-CommCase = "case" ( SendStmt | RecvStmt ) | "default" .
-RecvStmt = [ Expression [ "," Expression ] ( "=" | ":=" ) ] RecvExpr .
-RecvExpr = Expression .
-</pre>
-
-<p>
-RecvExpr must be a <a href="#Receive_operator">receive operation</a>.
-For all the cases in the "select"
-statement, the channel expressions are evaluated in top-to-bottom order, along with
-any expressions that appear on the right hand side of send statements.
-A channel may be <code>nil</code>,
-which is equivalent to that case not
-being present in the select statement
-except, if a send, its expression is still evaluated.
-If any of the resulting operations can proceed, one of those is
-chosen and the corresponding communication and statements are
-evaluated. Otherwise, if there is a default case, that executes;
-if there is no default case, the statement blocks until one of the communications can
-complete.
-If there are no cases with non-<code>nil</code> channels,
-the statement blocks forever.
-Even if the statement blocks,
-the channel and send expressions are evaluated only once,
-upon entering the select statement.
-</p>
-<p>
-Since all the channels and send expressions are evaluated, any side
-effects in that evaluation will occur for all the communications
-in the "select" statement.
-</p>
-<p>
-If multiple cases can proceed, a pseudo-random fair choice is made to decide
-which single communication will execute.
-<p>
-The receive case may declare one or two new variables using a
-<a href="#Short_variable_declarations">short variable declaration</a>.
-</p>
-
-<pre>
-var c, c1, c2, c3 chan int
-var i1, i2 int
-select {
-case i1 = &lt;-c1:
- print("received ", i1, " from c1\n")
-case c2 &lt;- i2:
- print("sent ", i2, " to c2\n")
-case i3, ok := (&lt;-c3): // same as: i3, ok := &lt;-c3
- if ok {
- print("received ", i3, " from c3\n")
- } else {
- print("c3 is closed\n")
- }
-default:
- print("no communication\n")
-}
-
-for { // send random sequence of bits to c
- select {
- case c &lt;- 0: // note: no statement, no fallthrough, no folding of cases
- case c &lt;- 1:
- }
-}
-
-select { } // block forever
-</pre>
-
-
-<h3 id="Return_statements">Return statements</h3>
-
-<p>
-A "return" statement terminates execution of the containing function
-and optionally provides a result value or values to the caller.
-</p>
-
-<pre class="ebnf">
-ReturnStmt = "return" [ ExpressionList ] .
-</pre>
-
-<p>
-In a function without a result type, a "return" statement must not
-specify any result values.
-</p>
-<pre>
-func no_result() {
- return
-}
-</pre>
-
-<p>
-There are three ways to return values from a function with a result
-type:
-</p>
-
-<ol>
- <li>The return value or values may be explicitly listed
- in the "return" statement. Each expression must be single-valued
- and <a href="#Assignability">assignable</a>
- to the corresponding element of the function's result type.
-<pre>
-func simple_f() int {
- return 2
-}
-
-func complex_f1() (re float64, im float64) {
- return -7.0, -4.0
-}
-</pre>
- </li>
- <li>The expression list in the "return" statement may be a single
- call to a multi-valued function. The effect is as if each value
- returned from that function were assigned to a temporary
- variable with the type of the respective value, followed by a
- "return" statement listing these variables, at which point the
- rules of the previous case apply.
-<pre>
-func complex_f2() (re float64, im float64) {
- return complex_f1()
-}
-</pre>
- </li>
- <li>The expression list may be empty if the function's result
- type specifies names for its result parameters (§<a href="#Function_types">Function Types</a>).
- The result parameters act as ordinary local variables
- and the function may assign values to them as necessary.
- The "return" statement returns the values of these variables.
-<pre>
-func complex_f3() (re float64, im float64) {
- re = 7.0
- im = 4.0
- return
-}
-
-func (devnull) Write(p []byte) (n int, _ os.Error) {
- n = len(p)
- return
-}
-</pre>
- </li>
-</ol>
-
-<p>
-Regardless of how they are declared, all the result values are initialized to the zero values for their type (§<a href="#The_zero_value">The zero value</a>) upon entry to the function.
-</p>
-
-<!--
-<p>
-<span class="alert">
-TODO: Define when return is required.<br />
-TODO: Language about result parameters needs to go into a section on
- function/method invocation<br />
-</span>
-</p>
--->
-
-<h3 id="Break_statements">Break statements</h3>
-
-<p>
-A "break" statement terminates execution of the innermost
-"for", "switch" or "select" statement.
-</p>
-
-<pre class="ebnf">
-BreakStmt = "break" [ Label ] .
-</pre>
-
-<p>
-If there is a label, it must be that of an enclosing
-"for", "switch" or "select" statement, and that is the one whose execution
-terminates
-(§<a href="#For_statements">For statements</a>, §<a href="#Switch_statements">Switch statements</a>, §<a href="#Select_statements">Select statements</a>).
-</p>
-
-<pre>
-L:
- for i &lt; n {
- switch i {
- case 5:
- break L
- }
- }
-</pre>
-
-<h3 id="Continue_statements">Continue statements</h3>
-
-<p>
-A "continue" statement begins the next iteration of the
-innermost "for" loop at its post statement (§<a href="#For_statements">For statements</a>).
-</p>
-
-<pre class="ebnf">
-ContinueStmt = "continue" [ Label ] .
-</pre>
-
-<p>
-If there is a label, it must be that of an enclosing
-"for" statement, and that is the one whose execution
-advances
-(§<a href="#For_statements">For statements</a>).
-</p>
-
-<h3 id="Goto_statements">Goto statements</h3>
-
-<p>
-A "goto" statement transfers control to the statement with the corresponding label.
-</p>
-
-<pre class="ebnf">
-GotoStmt = "goto" Label .
-</pre>
-
-<pre>
-goto Error
-</pre>
-
-<p>
-Executing the "goto" statement must not cause any variables to come into
-<a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
-For instance, this example:
-</p>
-
-<pre>
- goto L // BAD
- v := 3
-L:
-</pre>
-
-<p>
-is erroneous because the jump to label <code>L</code> skips
-the creation of <code>v</code>.
-</p>
-
-<p>
-A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
-For instance, this example:
-</p>
-
-<pre>
-if n%2 == 1 {
- goto L1
-}
-for n &gt; 0 {
- f()
- n--
-L1:
- f()
- n--
-}
-</pre>
-
-<p>
-is erroneous because the label <code>L1</code> is inside
-the "for" statement's block but the <code>goto</code> is not.
-</p>
-
-<h3 id="Fallthrough_statements">Fallthrough statements</h3>
-
-<p>
-A "fallthrough" statement transfers control to the first statement of the
-next case clause in a expression "switch" statement (§<a href="#Expression_switches">Expression switches</a>). It may
-be used only as the final non-empty statement in a case or default clause in an
-expression "switch" statement.
-</p>
-
-<pre class="ebnf">
-FallthroughStmt = "fallthrough" .
-</pre>
-
-
-<h3 id="Defer_statements">Defer statements</h3>
-
-<p>
-A "defer" statement invokes a function whose execution is deferred to the moment
-the surrounding function returns.
-</p>
-
-<pre class="ebnf">
-DeferStmt = "defer" Expression .
-</pre>
-
-<p>
-The expression must be a function or method call.
-Each time the "defer" statement
-executes, the parameters to the function call are evaluated and saved anew but the
-function is not invoked.
-Deferred function calls are executed in LIFO order
-immediately before the surrounding function returns,
-after the return values, if any, have been evaluated, but before they
-are returned to the caller. For instance, if the deferred function is
-a <a href="#Function_literals">function literal</a> and the surrounding
-function has <a href="#Function_types">named result parameters</a> that
-are in scope within the literal, the deferred function may access and modify
-the result parameters before they are returned.
-</p>
-
-<pre>
-lock(l)
-defer unlock(l) // unlocking happens before surrounding function returns
-
-// prints 3 2 1 0 before surrounding function returns
-for i := 0; i &lt;= 3; i++ {
- defer fmt.Print(i)
-}
-
-// f returns 1
-func f() (result int) {
- defer func() {
- result++
- }()
- return 0
-}
-</pre>
-
-<h2 id="Built-in_functions">Built-in functions</h2>
-
-<p>
-Built-in functions are
-<a href="#Predeclared_identifiers">predeclared</a>.
-They are called like any other function but some of them
-accept a type instead of an expression as the first argument.
-</p>
-
-<p>
-The built-in functions do not have standard Go types,
-so they can only appear in <a href="#Calls">call expressions</a>;
-they cannot be used as function values.
-</p>
-
-<pre class="ebnf">
-BuiltinCall = identifier "(" [ BuiltinArgs [ "," ] ] ")" .
-BuiltinArgs = Type [ "," ExpressionList ] | ExpressionList .
-</pre>
-
-<h3 id="Close">Close</h3>
-
-<p>
-For a channel <code>c</code>, the built-in function <code>close(c)</code>
-marks the channel as unable to accept more values through a send operation;
-sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
-After calling <code>close</code>, and after any previously
-sent values have been received, receive operations will return
-the zero value for the channel's type without blocking.
-
-The multi-valued <a href="#Receive_operator">receive operation</a>
-returns a received value along with an indication of whether the channel is closed.
-</p>
-
-
-<h3 id="Length_and_capacity">Length and capacity</h3>
-
-<p>
-The built-in functions <code>len</code> and <code>cap</code> take arguments
-of various types and return a result of type <code>int</code>.
-The implementation guarantees that the result always fits into an <code>int</code>.
-</p>
-
-<pre class="grammar">
-Call Argument type Result
-
-len(s) string type string length in bytes
- [n]T, *[n]T array length (== n)
- []T slice length
- map[K]T map length (number of defined keys)
- chan T number of elements queued in channel buffer
-
-cap(s) [n]T, *[n]T array length (== n)
- []T slice capacity
- chan T channel buffer capacity
-</pre>
-
-<p>
-The capacity of a slice is the number of elements for which there is
-space allocated in the underlying array.
-At any time the following relationship holds:
-</p>
-
-<pre>
-0 &lt;= len(s) &lt;= cap(s)
-</pre>
-
-<p>
-The length and capacity of a <code>nil</code> slice, map, or channel are 0.
-</p>
-
-<p>
-The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
-<code>s</code> is a string constant. The expressions <code>len(s)</code> and
-<code>cap(s)</code> are constants if the type of <code>s</code> is an array
-or pointer to an array and the expression <code>s</code> does not contain
-<a href="#Receive_operator">channel receives</a> or
-<a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
-Otherwise, invocations of <code>len</code> and <code>cap</code> are not
-constant and <code>s</code> is evaluated.
-</p>
-
-
-<h3 id="Allocation">Allocation</h3>
-
-<p>
-The built-in function <code>new</code> takes a type <code>T</code> and
-returns a value of type <code>*T</code>.
-The memory is initialized as described in the section on initial values
-(§<a href="#The_zero_value">The zero value</a>).
-</p>
-
-<pre class="grammar">
-new(T)
-</pre>
-
-<p>
-For instance
-</p>
-
-<pre>
-type S struct { a int; b float64 }
-new(S)
-</pre>
-
-<p>
-dynamically allocates memory for a variable of type <code>S</code>,
-initializes it (<code>a=0</code>, <code>b=0.0</code>),
-and returns a value of type <code>*S</code> containing the address
-of the memory.
-</p>
-
-<h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
-
-<p>
-Slices, maps and channels are reference types that do not require the
-extra indirection of an allocation with <code>new</code>.
-The built-in function <code>make</code> takes a type <code>T</code>,
-which must be a slice, map or channel type,
-optionally followed by a type-specific list of expressions.
-It returns a value of type <code>T</code> (not <code>*T</code>).
-The memory is initialized as described in the section on initial values
-(§<a href="#The_zero_value">The zero value</a>).
-</p>
-
-<pre class="grammar">
-Call Type T Result
-
-make(T, n) slice slice of type T with length n and capacity n
-make(T, n, m) slice slice of type T with length n and capacity m
-
-make(T) map map of type T
-make(T, n) map map of type T with initial space for n elements
-
-make(T) channel synchronous channel of type T
-make(T, n) channel asynchronous channel of type T, buffer size n
-</pre>
-
-
-<p>
-The arguments <code>n</code> and <code>m</code> must be of integer type.
-A <a href="#Run_time_panics">run-time panic</a> occurs if <code>n</code>
-is negative or larger than <code>m</code>, or if <code>n</code> or
-<code>m</code> cannot be represented by an <code>int</code>.
-</p>
-
-<pre>
-s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100
-s := make([]int, 10) // slice with len(s) == cap(s) == 10
-c := make(chan int, 10) // channel with a buffer size of 10
-m := make(map[string] int, 100) // map with initial space for 100 elements
-</pre>
-
-
-<h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
-
-<p>
-Two built-in functions assist in common slice operations.
-</p>
-
-<p>
-The <a href="#Function_types">variadic</a> function <code>append</code>
-appends zero or more values <code>x</code>
-to <code>s</code> of type <code>S</code>, which must be a slice type, and
-returns the resulting slice, also of type <code>S</code>.
-The values <code>x</code> are passed to a parameter of type <code>...T</code>
-where <code>T</code> is the <a href="#Slice_types">element type</a> of
-<code>S</code> and the respective
-<a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
-</p>
-
-<pre class="grammar">
-append(s S, x ...T) S // T is the element type of S
-</pre>
-
-<p>
-If the capacity of <code>s</code> is not large enough to fit the additional
-values, <code>append</code> allocates a new, sufficiently large slice that fits
-both the existing slice elements and the additional values. Thus, the returned
-slice may refer to a different underlying array.
-</p>
-
-<pre>
-s0 := []int{0, 0}
-s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2}
-s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7}
-s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
-
-var t []interface{}
-t = append(t, 42, 3.1415, "foo") t == []interface{}{42, 3.1415, "foo"}
-</pre>
-
-<p>
-The function <code>copy</code> copies slice elements from
-a source <code>src</code> to a destination <code>dst</code> and returns the
-number of elements copied. Source and destination may overlap.
-Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
-<a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
-The number of elements copied is the minimum of
-<code>len(src)</code> and <code>len(dst)</code>.
-As a special case, <code>copy</code> also accepts a destination argument assignable
-to type <code>[]byte</code> with a source argument of a string type.
-This form copies the bytes from the string into the byte slice.
-</p>
-
-<pre class="grammar">
-copy(dst, src []T) int
-copy(dst []byte, src string) int
-</pre>
-
-<p>
-Examples:
-</p>
-
-<pre>
-var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
-var s = make([]int, 6)
-var b = make([]byte, 5)
-n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
-n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
-n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello")
-</pre>
-
-<h3 id="Complex_numbers">Assembling and disassembling complex numbers</h3>
-
-<p>
-Three functions assemble and disassemble complex numbers.
-The built-in function <code>complex</code> constructs a complex
-value from a floating-point real and imaginary part, while
-<code>real</code> and <code>imag</code>
-extract the real and imaginary parts of a complex value.
-</p>
-
-<pre class="grammar">
-complex(realPart, imaginaryPart floatT) complexT
-real(complexT) floatT
-imag(complexT) floatT
-</pre>
-
-<p>
-The type of the arguments and return value correspond.
-For <code>complex</code>, the two arguments must be of the same
-floating-point type and the return type is the complex type
-with the corresponding floating-point constituents:
-<code>complex64</code> for <code>float32</code>,
-<code>complex128</code> for <code>float64</code>.
-The <code>real</code> and <code>imag</code> functions
-together form the inverse, so for a complex value <code>z</code>,
-<code>z</code> <code>==</code> <code>complex(real(z),</code> <code>imag(z))</code>.
-</p>
-
-<p>
-If the operands of these functions are all constants, the return
-value is a constant.
-</p>
-
-<pre>
-var a = complex(2, -2) // complex128
-var b = complex(1.0, -1.4) // complex128
-x := float32(math.Cos(math.Pi/2)) // float32
-var c64 = complex(5, -x) // complex64
-var im = imag(b) // float64
-var rl = real(c64) // float32
-</pre>
-
-<h3 id="Handling_panics">Handling panics</h3>
-
-<p> Two built-in functions, <code>panic</code> and <code>recover</code>,
-assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
-and program-defined error conditions.
-</p>
-
-<pre class="grammar">
-func panic(interface{})
-func recover() interface{}
-</pre>
-
-<p>
-When a function <code>F</code> calls <code>panic</code>, normal
-execution of <code>F</code> stops immediately. Any functions whose
-execution was <a href="#Defer_statements">deferred</a> by the
-invocation of <code>F</code> are run in the usual way, and then
-<code>F</code> returns to its caller. To the caller, <code>F</code>
-then behaves like a call to <code>panic</code>, terminating its own
-execution and running deferred functions. This continues until all
-functions in the goroutine have ceased execution, in reverse order.
-At that point, the program is
-terminated and the error condition is reported, including the value of
-the argument to <code>panic</code>. This termination sequence is
-called <i>panicking</i>.
-</p>
-
-<pre>
-panic(42)
-panic("unreachable")
-panic(Error("cannot parse"))
-</pre>
-
-<p>
-The <code>recover</code> function allows a program to manage behavior
-of a panicking goroutine. Executing a <code>recover</code> call
-<i>inside</i> a deferred function (but not any function called by it) stops
-the panicking sequence by restoring normal execution, and retrieves
-the error value passed to the call of <code>panic</code>. If
-<code>recover</code> is called outside the deferred function it will
-not stop a panicking sequence. In this case, or when the goroutine
-is not panicking, or if the argument supplied to <code>panic</code>
-was <code>nil</code>, <code>recover</code> returns <code>nil</code>.
-</p>
-
-<p>
-The <code>protect</code> function in the example below invokes
-the function argument <code>g</code> and protects callers from
-run-time panics raised by <code>g</code>.
-</p>
-
-<pre>
-func protect(g func()) {
- defer func() {
- log.Println("done") // Println executes normally even in there is a panic
- if x := recover(); x != nil {
- log.Printf("run time panic: %v", x)
- }
- }()
- log.Println("start")
- g()
-}
-</pre>
-
-
-<h3 id="Bootstrapping">Bootstrapping</h3>
-
-<p>
-Current implementations provide several built-in functions useful during
-bootstrapping. These functions are documented for completeness but are not
-guaranteed to stay in the language. They do not return a result.
-</p>
-
-<pre class="grammar">
-Function Behavior
-
-print prints all arguments; formatting of arguments is implementation-specific
-println like print but prints spaces between arguments and a newline at the end
-</pre>
-
-
-<h2 id="Packages">Packages</h2>
-
-<p>
-Go programs are constructed by linking together <i>packages</i>.
-A package in turn is constructed from one or more source files
-that together declare constants, types, variables and functions
-belonging to the package and which are accessible in all files
-of the same package. Those elements may be
-<a href="#Exported_identifiers">exported</a> and used in another package.
-</p>
-
-<h3 id="Source_file_organization">Source file organization</h3>
-
-<p>
-Each source file consists of a package clause defining the package
-to which it belongs, followed by a possibly empty set of import
-declarations that declare packages whose contents it wishes to use,
-followed by a possibly empty set of declarations of functions,
-types, variables, and constants.
-</p>
-
-<pre class="ebnf">
-SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
-</pre>
-
-<h3 id="Package_clause">Package clause</h3>
-
-<p>
-A package clause begins each source file and defines the package
-to which the file belongs.
-</p>
-
-<pre class="ebnf">
-PackageClause = "package" PackageName .
-PackageName = identifier .
-</pre>
-
-<p>
-The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
-</p>
-
-<pre>
-package math
-</pre>
-
-<p>
-A set of files sharing the same PackageName form the implementation of a package.
-An implementation may require that all source files for a package inhabit the same directory.
-</p>
-
-<h3 id="Import_declarations">Import declarations</h3>
-
-<p>
-An import declaration states that the source file containing the
-declaration uses identifiers
-<a href="#Exported_identifiers">exported</a> by the <i>imported</i>
-package and enables access to them. The import names an
-identifier (PackageName) to be used for access and an ImportPath
-that specifies the package to be imported.
-</p>
-
-<pre class="ebnf">
-ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
-ImportSpec = [ "." | PackageName ] ImportPath .
-ImportPath = string_lit .
-</pre>
-
-<p>
-The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
-to access the exported identifiers of the package within the importing source file.
-It is declared in the <a href="#Blocks">file block</a>.
-If the PackageName is omitted, it defaults to the identifier specified in the
-<a href="#Package_clause">package clause</a> of the imported package.
-If an explicit period (<code>.</code>) appears instead of a name, all the
-package's exported identifiers will be declared in the current file's
-file block and can be accessed without a qualifier.
-</p>
-
-<p>
-The interpretation of the ImportPath is implementation-dependent but
-it is typically a substring of the full file name of the compiled
-package and may be relative to a repository of installed packages.
-</p>
-
-<p>
-Assume we have compiled a package containing the package clause
-<code>package math</code>, which exports function <code>Sin</code>, and
-installed the compiled package in the file identified by
-<code>"lib/math"</code>.
-This table illustrates how <code>Sin</code> may be accessed in files
-that import the package after the
-various types of import declaration.
-</p>
-
-<pre class="grammar">
-Import declaration Local name of Sin
-
-import "lib/math" math.Sin
-import M "lib/math" M.Sin
-import . "lib/math" Sin
-</pre>
-
-<p>
-An import declaration declares a dependency relation between
-the importing and imported package.
-It is illegal for a package to import itself or to import a package without
-referring to any of its exported identifiers. To import a package solely for
-its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
-identifier as explicit package name:
-</p>
-
-<pre>
-import _ "lib/math"
-</pre>
-
-
-<h3 id="An_example_package">An example package</h3>
-
-<p>
-Here is a complete Go package that implements a concurrent prime sieve.
-</p>
-
-<pre>
-package main
-
-import "fmt"
-
-// Send the sequence 2, 3, 4, … to channel 'ch'.
-func generate(ch chan&lt;- int) {
- for i := 2; ; i++ {
- ch &lt;- i // Send 'i' to channel 'ch'.
- }
-}
-
-// Copy the values from channel 'src' to channel 'dst',
-// removing those divisible by 'prime'.
-func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
- for i := range src { // Loop over values received from 'src'.
- if i%prime != 0 {
- dst &lt;- i // Send 'i' to channel 'dst'.
- }
- }
-}
-
-// The prime sieve: Daisy-chain filter processes together.
-func sieve() {
- ch := make(chan int) // Create a new channel.
- go generate(ch) // Start generate() as a subprocess.
- for {
- prime := &lt;-ch
- fmt.Print(prime, "\n")
- ch1 := make(chan int)
- go filter(ch, ch1, prime)
- ch = ch1
- }
-}
-
-func main() {
- sieve()
-}
-</pre>
-
-<h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
-
-<h3 id="The_zero_value">The zero value</h3>
-<p>
-When memory is allocated to store a value, either through a declaration
-or a call of <code>make</code> or <code>new</code>,
-and no explicit initialization is provided, the memory is
-given a default initialization. Each element of such a value is
-set to the <i>zero value</i> for its type: <code>false</code> for booleans,
-<code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
-for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
-This initialization is done recursively, so for instance each element of an
-array of structs will have its fields zeroed if no value is specified.
-</p>
-<p>
-These two simple declarations are equivalent:
-</p>
-
-<pre>
-var i int
-var i int = 0
-</pre>
-
-<p>
-After
-</p>
-
-<pre>
-type T struct { i int; f float64; next *T }
-t := new(T)
-</pre>
-
-<p>
-the following holds:
-</p>
-
-<pre>
-t.i == 0
-t.f == 0.0
-t.next == nil
-</pre>
-
-<p>
-The same would also be true after
-</p>
-
-<pre>
-var t T
-</pre>
-
-<h3 id="Program_execution">Program execution</h3>
-<p>
-A package with no imports is initialized by assigning initial values to
-all its package-level variables
-and then calling any
-package-level function with the name and signature of
-</p>
-<pre>
-func init()
-</pre>
-<p>
-defined in its source.
-A package may contain multiple
-<code>init</code> functions, even
-within a single source file; they execute
-in unspecified order.
-</p>
-<p>
-Within a package, package-level variables are initialized,
-and constant values are determined, in
-data-dependent order: if the initializer of <code>A</code>
-depends on the value of <code>B</code>, <code>A</code>
-will be set after <code>B</code>.
-It is an error if such dependencies form a cycle.
-Dependency analysis is done lexically: <code>A</code>
-depends on <code>B</code> if the value of <code>A</code>
-contains a mention of <code>B</code>, contains a value
-whose initializer
-mentions <code>B</code>, or mentions a function that
-mentions <code>B</code>, recursively.
-If two items are not interdependent, they will be initialized
-in the order they appear in the source.
-Since the dependency analysis is done per package, it can produce
-unspecified results if <code>A</code>'s initializer calls a function defined
-in another package that refers to <code>B</code>.
-</p>
-<p>
-Initialization code may contain "go" statements, but the functions
-they invoke do not begin execution until initialization of the entire
-program is complete. Therefore, all initialization code is run in a single
-goroutine.
-</p>
-<p>
-An <code>init</code> function cannot be referred to from anywhere
-in a program. In particular, <code>init</code> cannot be called explicitly,
-nor can a pointer to <code>init</code> be assigned to a function variable.
-</p>
-<p>
-If a package has imports, the imported packages are initialized
-before initializing the package itself. If multiple packages import
-a package <code>P</code>, <code>P</code> will be initialized only once.
-</p>
-<p>
-The importing of packages, by construction, guarantees that there can
-be no cyclic dependencies in initialization.
-</p>
-<p>
-A complete program is created by linking a single, unimported package
-called the <i>main package</i> with all the packages it imports, transitively.
-The main package must
-have package name <code>main</code> and
-declare a function <code>main</code> that takes no
-arguments and returns no value.
-</p>
-
-<pre>
-func main() { … }
-</pre>
-
-<p>
-Program execution begins by initializing the main package and then
-invoking the function <code>main</code>.
-</p>
-<p>
-When the function <code>main</code> returns, the program exits.
-It does not wait for other (non-<code>main</code>) goroutines to complete.
-</p>
-
-<h2 id="Run_time_panics">Run-time panics</h2>
-
-<p>
-Execution errors such as attempting to index an array out
-of bounds trigger a <i>run-time panic</i> equivalent to a call of
-the built-in function <a href="#Handling_panics"><code>panic</code></a>
-with a value of the implementation-defined interface type <code>runtime.Error</code>.
-That type defines at least the method
-<code>String() string</code>. The exact error values that
-represent distinct run-time error conditions are unspecified,
-at least for now.
-</p>
-
-<pre>
-package runtime
-
-type Error interface {
- String() string
- // and perhaps others
-}
-</pre>
-
-<h2 id="System_considerations">System considerations</h2>
-
-<h3 id="Package_unsafe">Package <code>unsafe</code></h3>
-
-<p>
-The built-in package <code>unsafe</code>, known to the compiler,
-provides facilities for low-level programming including operations
-that violate the type system. A package using <code>unsafe</code>
-must be vetted manually for type safety. The package provides the
-following interface:
-</p>
-
-<pre class="grammar">
-package unsafe
-
-type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type
-type Pointer *ArbitraryType
-
-func Alignof(variable ArbitraryType) uintptr
-func Offsetof(selector ArbitraryType) uinptr
-func Sizeof(variable ArbitraryType) uintptr
-
-func Reflect(val interface{}) (typ runtime.Type, addr uintptr)
-func Typeof(val interface{}) (typ interface{})
-func Unreflect(typ runtime.Type, addr uintptr) interface{}
-</pre>
-
-<p>
-Any pointer or value of type <code>uintptr</code> can be converted into
-a <code>Pointer</code> and vice versa.
-</p>
-<p>
-The function <code>Sizeof</code> takes an expression denoting a
-variable of any type and returns the size of the variable in bytes.
-</p>
-<p>
-The function <code>Offsetof</code> takes a selector (§<a href="#Selectors">Selectors</a>) denoting a struct
-field of any type and returns the field offset in bytes relative to the
-struct's address.
-For a struct <code>s</code> with field <code>f</code>:
-</p>
-
-<pre>
-uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
-</pre>
-
-<p>
-Computer architectures may require memory addresses to be <i>aligned</i>;
-that is, for addresses of a variable to be a multiple of a factor,
-the variable's type's <i>alignment</i>. The function <code>Alignof</code>
-takes an expression denoting a variable of any type and returns the
-alignment of the (type of the) variable in bytes. For a variable
-<code>x</code>:
-</p>
-
-<pre>
-uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
-</pre>
-
-<p>
-Calls to <code>Alignof</code>, <code>Offsetof</code>, and
-<code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
-</p>
-<p>
-The functions <code>unsafe.Typeof</code>,
-<code>unsafe.Reflect</code>,
-and <code>unsafe.Unreflect</code> allow access at run time to the dynamic
-types and values stored in interfaces.
-<code>Typeof</code> returns a representation of
-<code>val</code>'s
-dynamic type as a <code>runtime.Type</code>.
-<code>Reflect</code> allocates a copy of
-<code>val</code>'s dynamic
-value and returns both the type and the address of the copy.
-<code>Unreflect</code> inverts <code>Reflect</code>,
-creating an
-interface value from a type and address.
-The <a href="/pkg/reflect/"><code>reflect</code> package</a> built on these primitives
-provides a safe, more convenient way to inspect interface values.
-</p>
-
-
-<h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
-
-<p>
-For the numeric types (§<a href="#Numeric_types">Numeric types</a>), the following sizes are guaranteed:
-</p>
-
-<pre class="grammar">
-type size in bytes
-
-byte, uint8, int8 1
-uint16, int16 2
-uint32, int32, float32 4
-uint64, int64, float64, complex64 8
-complex128 16
-</pre>
-
-<p>
-The following minimal alignment properties are guaranteed:
-</p>
-<ol>
-<li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
-</li>
-
-<li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
- all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
-</li>
-
-<li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
- <code>unsafe.Alignof(x[0])</code>, but at least 1.
-</li>
-</ol>
-
-<span class="alert">
-<h2 id="Implementation_differences">Implementation differences - TODO</h2>
-<ul>
- <li><code>len(a)</code> is only a constant if <code>a</code> is a (qualified) identifier denoting an array or pointer to an array.</li>
- <li><code>nil</code> maps are not treated like empty maps.</li>
- <li>Trying to send/receive from a <code>nil</code> channel causes a run-time panic.</li>
- <li><code>unsafe.Alignof</code>, <code>unsafe.Offsetof</code>, and <code>unsafe.Sizeof</code> return an <code>int</code>.</li>
-</ul>
-</span>