summaryrefslogtreecommitdiff
path: root/doc/go_tutorial.html
diff options
context:
space:
mode:
Diffstat (limited to 'doc/go_tutorial.html')
-rw-r--r--doc/go_tutorial.html1454
1 files changed, 0 insertions, 1454 deletions
diff --git a/doc/go_tutorial.html b/doc/go_tutorial.html
deleted file mode 100644
index 8f6e07b06..000000000
--- a/doc/go_tutorial.html
+++ /dev/null
@@ -1,1454 +0,0 @@
-<!-- A Tutorial for the Go Programming Language -->
-<h2>Introduction</h2>
-<p>
-This document is a tutorial introduction to the basics of the Go programming
-language, intended for programmers familiar with C or C++. It is not a comprehensive
-guide to the language; at the moment the document closest to that is the
-<a href='/doc/go_spec.html'>language specification</a>.
-After you've read this tutorial, you should look at
-<a href='/doc/effective_go.html'>Effective Go</a>,
-which digs deeper into how the language is used and
-talks about the style and idioms of programming in Go.
-Also, slides from a 3-day course about Go are available.
-They provide some background and a lot of examples:
-<a href='/doc/GoCourseDay1.pdf'>Day 1</a>,
-<a href='/doc/GoCourseDay2.pdf'>Day 2</a>,
-<a href='/doc/GoCourseDay3.pdf'>Day 3</a>.
-<p>
-The presentation here proceeds through a series of modest programs to illustrate
-key features of the language. All the programs work (at time of writing) and are
-checked into the repository in the directory <a href='/doc/progs'><code>/doc/progs/</code></a>.
-<p>
-<h2>Hello, World</h2>
-<p>
-Let's start in the usual way:
-<p>
-<pre><!--{{code "progs/helloworld.go" `/package/` "$"}}
--->package main
-
-import fmt &#34;fmt&#34; // Package implementing formatted I/O.
-
-func main() {
- fmt.Printf(&#34;Hello, world; or Καλημέρα κόσμε; or こんにちは 世界\n&#34;)
-}
-</pre>
-<p>
-Every Go source file declares, using a <code>package</code> statement, which package it's part of.
-It may also import other packages to use their facilities.
-This program imports the package <code>fmt</code> to gain access to
-our old, now capitalized and package-qualified, friend, <code>fmt.Printf</code>.
-<p>
-Functions are introduced with the <code>func</code> keyword.
-The <code>main</code> package's <code>main</code> function is where the program starts running (after
-any initialization).
-<p>
-String constants can contain Unicode characters, encoded in UTF-8.
-(In fact, Go source files are defined to be encoded in UTF-8.)
-<p>
-The comment convention is the same as in C++:
-<p>
-<pre>
-/* ... */
-// ...
-</pre>
-<p>
-Later we'll have much more to say about printing.
-<p>
-<h2>Semicolons</h2>
-<p>
-You might have noticed that our program has no semicolons. In Go
-code, the only place you typically see semicolons is separating the
-clauses of <code>for</code> loops and the like; they are not necessary after
-every statement.
-<p>
-In fact, what happens is that the formal language uses semicolons,
-much as in C or Java, but they are inserted automatically
-at the end of every line that looks like the end of a statement. You
-don't need to type them yourself.
-<p>
-For details about how this is done you can see the language
-specification, but in practice all you need to know is that you
-never need to put a semicolon at the end of a line. (You can put
-them in if you want to write multiple statements per line.) As an
-extra help, you can also leave out a semicolon immediately before
-a closing brace.
-<p>
-This approach makes for clean-looking, semicolon-free code. The
-one surprise is that it's important to put the opening
-brace of a construct such as an <code>if</code> statement on the same line as
-the <code>if</code>; if you don't, there are situations that may not compile
-or may give the wrong result. The language forces the brace style
-to some extent.
-<p>
-<h2>Compiling</h2>
-<p>
-Go is a compiled language. At the moment there are two compilers.
-<code>Gccgo</code> is a Go compiler that uses the GCC back end. There is also a
-suite of compilers with different (and odd) names for each architecture:
-<code>6g</code> for the 64-bit x86, <code>8g</code> for the 32-bit x86, and more. These
-compilers run significantly faster but generate less efficient code
-than <code>gccgo</code>. At the time of writing (late 2009), they also have
-a more robust run-time system although <code>gccgo</code> is catching up.
-<p>
-Here's how to compile and run our program. With <code>6g</code>, say,
-<p>
-<pre>
-$ 6g helloworld.go # compile; object goes into helloworld.6
-$ 6l helloworld.6 # link; output goes into 6.out
-$ ./6.out
-Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
-$
-</pre>
-<p>
-With <code>gccgo</code> it looks a little more traditional.
-<p>
-<pre>
-$ gccgo helloworld.go
-$ a.out
-Hello, world; or Καλημέρα κόσμε; or こんにちは 世界
-$
-</pre>
-<p>
-<h2>Echo</h2>
-<p>
-Next up, here's a version of the Unix utility <code>echo(1)</code>:
-<p>
-<pre><!--{{code "progs/echo.go" `/package/` "$"}}
--->package main
-
-import (
- &#34;os&#34;
- &#34;flag&#34; // command line option parser
-)
-
-var omitNewline = flag.Bool(&#34;n&#34;, false, &#34;don&#39;t print final newline&#34;)
-
-const (
- Space = &#34; &#34;
- Newline = &#34;\n&#34;
-)
-
-func main() {
- flag.Parse() // Scans the arg list and sets up flags
- var s string = &#34;&#34;
- for i := 0; i &lt; flag.NArg(); i++ {
- if i &gt; 0 {
- s += Space
- }
- s += flag.Arg(i)
- }
- if !*omitNewline {
- s += Newline
- }
- os.Stdout.WriteString(s)
-}
-</pre>
-<p>
-This program is small but it's doing a number of new things. In the last example,
-we saw <code>func</code> introduce a function. The keywords <code>var</code>, <code>const</code>, and <code>type</code>
-(not used yet) also introduce declarations, as does <code>import</code>.
-Notice that we can group declarations of the same sort into
-parenthesized lists, one item per line, as in the <code>import</code> and <code>const</code> clauses here.
-But it's not necessary to do so; we could have said
-<p>
-<pre>
-const Space = " "
-const Newline = "\n"
-</pre>
-<p>
-This program imports the <code>&quot;os&quot;</code> package to access its <code>Stdout</code> variable, of type
-<code>*os.File</code>. The <code>import</code> statement is actually a declaration: in its general form,
-as used in our ``hello world'' program,
-it names the identifier (<code>fmt</code>)
-that will be used to access members of the package imported from the file (<code>&quot;fmt&quot;</code>),
-found in the current directory or in a standard location.
-In this program, though, we've dropped the explicit name from the imports; by default,
-packages are imported using the name defined by the imported package,
-which by convention is of course the file name itself. Our ``hello world'' program
-could have said just <code>import &quot;fmt&quot;</code>.
-<p>
-You can specify your
-own import names if you want but it's only necessary if you need to resolve
-a naming conflict.
-<p>
-Given <code>os.Stdout</code> we can use its <code>WriteString</code> method to print the string.
-<p>
-After importing the <code>flag</code> package, we use a <code>var</code> declaration
-to create and initialize a global variable, called <code>omitNewline</code>,
-to hold the value of echo's <code>-n</code> flag.
-The variable has type <code>*bool</code>, pointer to <code>bool</code>.
-<p>
-In <code>main.main</code>, we parse the arguments (the call to <code>flag.Parse</code>) and then create a local
-string variable with which to build the output.
-<p>
-The declaration statement has the form
-<p>
-<pre>
-var s string = ""
-</pre>
-<p>
-This is the <code>var</code> keyword, followed by the name of the variable, followed by
-its type, followed by an equals sign and an initial value for the variable.
-<p>
-Go tries to be terse, and this declaration could be shortened. Since the
-string constant is of type string, we don't have to tell the compiler that.
-We could write
-<p>
-<pre>
-var s = ""
-</pre>
-<p>
-or we could go even shorter and write the idiom
-<p>
-<pre>
-s := ""
-</pre>
-<p>
-The <code>:=</code> operator is used a lot in Go to represent an initializing declaration.
-There's one in the <code>for</code> clause on the next line:
-<p>
-<pre><!--{{code "progs/echo.go" `/for/`}}
---> for i := 0; i &lt; flag.NArg(); i++ {
-</pre>
-<p>
-The <code>flag</code> package has parsed the arguments and left the non-flag arguments
-in a list that can be iterated over in the obvious way.
-<p>
-The Go <code>for</code> statement differs from that of C in a number of ways. First,
-it's the only looping construct; there is no <code>while</code> or <code>do</code>. Second,
-there are no parentheses on the clause, but the braces on the body
-are mandatory. The same applies to the <code>if</code> and <code>switch</code> statements.
-Later examples will show some other ways <code>for</code> can be written.
-<p>
-The body of the loop builds up the string <code>s</code> by appending (using <code>+=</code>)
-the arguments and separating spaces. After the loop, if the <code>-n</code> flag is not
-set, the program appends a newline. Finally, it writes the result.
-<p>
-Notice that <code>main.main</code> is a niladic function with no return type.
-It's defined that way. Falling off the end of <code>main.main</code> means
-''success''; if you want to signal an erroneous return, call
-<p>
-<pre>
-os.Exit(1)
-</pre>
-<p>
-The <code>os</code> package contains other essentials for getting
-started; for instance, <code>os.Args</code> is a slice used by the
-<code>flag</code> package to access the command-line arguments.
-<p>
-<h2>An Interlude about Types</h2>
-<p>
-Go has some familiar types such as <code>int</code> and <code>uint</code> (unsigned <code>int</code>), which represent
-values of the ''appropriate'' size for the machine. It also defines
-explicitly-sized types such as <code>int8</code>, <code>float64</code>, and so on, plus
-unsigned integer types such as <code>uint</code>, <code>uint32</code>, etc.
-These are distinct types; even if <code>int</code> and <code>int32</code> are both 32 bits in size,
-they are not the same type. There is also a <code>byte</code> synonym for
-<code>uint8</code>, which is the element type for strings.
-<p>
-Floating-point types are always sized: <code>float32</code> and <code>float64</code>,
-plus <code>complex64</code> (two <code>float32s</code>) and <code>complex128</code>
-(two <code>float64s</code>). Complex numbers are outside the
-scope of this tutorial.
-<p>
-Speaking of <code>string</code>, that's a built-in type as well. Strings are
-<i>immutable values</i>&mdash;they are not just arrays of <code>byte</code> values.
-Once you've built a string <i>value</i>, you can't change it, although
-of course you can change a string <i>variable</i> simply by
-reassigning it. This snippet from <code>strings.go</code> is legal code:
-<p>
-<pre><!--{{code "progs/strings.go" `/hello/` `/ciao/`}}
---> s := &#34;hello&#34;
- if s[1] != &#39;e&#39; {
- os.Exit(1)
- }
- s = &#34;good bye&#34;
- var p *string = &amp;s
- *p = &#34;ciao&#34;
-</pre>
-<p>
-However the following statements are illegal because they would modify
-a <code>string</code> value:
-<p>
-<pre>
-s[0] = 'x'
-(*p)[1] = 'y'
-</pre>
-<p>
-In C++ terms, Go strings are a bit like <code>const strings</code>, while pointers
-to strings are analogous to <code>const string</code> references.
-<p>
-Yes, there are pointers. However, Go simplifies their use a little;
-read on.
-<p>
-Arrays are declared like this:
-<p>
-<pre>
-var arrayOfInt [10]int
-</pre>
-<p>
-Arrays, like strings, are values, but they are mutable. This differs
-from C, in which <code>arrayOfInt</code> would be usable as a pointer to <code>int</code>.
-In Go, since arrays are values, it's meaningful (and useful) to talk
-about pointers to arrays.
-<p>
-The size of the array is part of its type; however, one can declare
-a <i>slice</i> variable to hold a reference to any array, of any size,
-with the same element type.
-A <i>slice
-expression</i> has the form <code>a[low : high]</code>, representing
-the internal array indexed from <code>low</code> through <code>high-1</code>; the resulting
-slice is indexed from <code>0</code> through <code>high-low-1</code>.
-In short, slices look a lot like arrays but with
-no explicit size (<code>[]</code> vs. <code>[10]</code>) and they reference a segment of
-an underlying, usually anonymous, regular array. Multiple slices
-can share data if they represent pieces of the same array;
-multiple arrays can never share data.
-<p>
-Slices are much more common in Go programs than
-regular arrays; they're more flexible, have reference semantics,
-and are efficient. What they lack is the precise control of storage
-layout of a regular array; if you want to have a hundred elements
-of an array stored within your structure, you should use a regular
-array. To create one, use a compound value <i>constructor</i>&mdash;an
-expression formed
-from a type followed by a brace-bounded expression like this:
-<p>
-<pre>
-[3]int{1,2,3}
-</pre>
-<p>
-In this case the constructor builds an array of 3 <code>ints</code>.
-<p>
-When passing an array to a function, you almost always want
-to declare the formal parameter to be a slice. When you call
-the function, slice the array to create
-(efficiently) a slice reference and pass that.
-By default, the lower and upper bounds of a slice match the
-ends of the existing object, so the concise notation <code>[:]</code>
-will slice the whole array.
-<p>
-Using slices one can write this function (from <code>sum.go</code>):
-<p>
-<pre><!--{{code "progs/sum.go" `/sum/` `/^}/`}}
--->func sum(a []int) int { // returns an int
- s := 0
- for i := 0; i &lt; len(a); i++ {
- s += a[i]
- }
- return s
-}
-</pre>
-<p>
-Note how the return type (<code>int</code>) is defined for <code>sum</code> by stating it
-after the parameter list.
-<p>
-To call the function, we slice the array. This intricate call (we'll show
-a simpler way in a moment) constructs
-an array and slices it:
-<p>
-<pre>
-s := sum([3]int{1,2,3}[:])
-</pre>
-<p>
-If you are creating a regular array but want the compiler to count the
-elements for you, use <code>...</code> as the array size:
-<p>
-<pre>
-s := sum([...]int{1,2,3}[:])
-</pre>
-<p>
-That's fussier than necessary, though.
-In practice, unless you're meticulous about storage layout within a
-data structure, a slice itself&mdash;using empty brackets with no size&mdash;is all you need:
-<p>
-<pre>
-s := sum([]int{1,2,3})
-</pre>
-<p>
-There are also maps, which you can initialize like this:
-<p>
-<pre>
-m := map[string]int{"one":1 , "two":2}
-</pre>
-<p>
-The built-in function <code>len</code>, which returns number of elements,
-makes its first appearance in <code>sum</code>. It works on strings, arrays,
-slices, maps, and channels.
-<p>
-By the way, another thing that works on strings, arrays, slices, maps
-and channels is the <code>range</code> clause on <code>for</code> loops. Instead of writing
-<p>
-<pre>
-for i := 0; i &lt; len(a); i++ { ... }
-</pre>
-<p>
-to loop over the elements of a slice (or map or ...) , we could write
-<p>
-<pre>
-for i, v := range a { ... }
-</pre>
-<p>
-This assigns <code>i</code> to the index and <code>v</code> to the value of the successive
-elements of the target of the range. See
-<a href='/doc/effective_go.html'>Effective Go</a>
-for more examples of its use.
-<p>
-<p>
-<h2>An Interlude about Allocation</h2>
-<p>
-Most types in Go are values. If you have an <code>int</code> or a <code>struct</code>
-or an array, assignment
-copies the contents of the object.
-To allocate a new variable, use the built-in function <code>new</code>, which
-returns a pointer to the allocated storage.
-<p>
-<pre>
-type T struct { a, b int }
-var t *T = new(T)
-</pre>
-<p>
-or the more idiomatic
-<p>
-<pre>
-t := new(T)
-</pre>
-<p>
-Some types&mdash;maps, slices, and channels (see below)&mdash;have reference semantics.
-If you're holding a slice or a map and you modify its contents, other variables
-referencing the same underlying data will see the modification. For these three
-types you want to use the built-in function <code>make</code>:
-<p>
-<pre>
-m := make(map[string]int)
-</pre>
-<p>
-This statement initializes a new map ready to store entries.
-If you just declare the map, as in
-<p>
-<pre>
-var m map[string]int
-</pre>
-<p>
-it creates a <code>nil</code> reference that cannot hold anything. To use the map,
-you must first initialize the reference using <code>make</code> or by assignment from an
-existing map.
-<p>
-Note that <code>new(T)</code> returns type <code>*T</code> while <code>make(T)</code> returns type
-<code>T</code>. If you (mistakenly) allocate a reference object with <code>new</code> rather than <code>make</code>,
-you receive a pointer to a nil reference, equivalent to
-declaring an uninitialized variable and taking its address.
-<p>
-<h2>An Interlude about Constants</h2>
-<p>
-Although integers come in lots of sizes in Go, integer constants do not.
-There are no constants like <code>0LL</code> or <code>0x0UL</code>. Instead, integer
-constants are evaluated as large-precision values that
-can overflow only when they are assigned to an integer variable with
-too little precision to represent the value.
-<p>
-<pre>
-const hardEight = (1 &lt;&lt; 100) &gt;&gt; 97 // legal
-</pre>
-<p>
-There are nuances that deserve redirection to the legalese of the
-language specification but here are some illustrative examples:
-<p>
-<pre>
-var a uint64 = 0 // a has type uint64, value 0
-a := uint64(0) // equivalent; uses a "conversion"
-i := 0x1234 // i gets default type: int
-var j int = 1e6 // legal - 1000000 is representable in an int
-x := 1.5 // a float64, the default type for floating constants
-i3div2 := 3/2 // integer division - result is 1
-f3div2 := 3./2. // floating-point division - result is 1.5
-</pre>
-<p>
-Conversions only work for simple cases such as converting <code>ints</code> of one
-sign or size to another and between integers and floating-point numbers,
-plus a couple of other instances outside the scope of a tutorial.
-There are no automatic numeric conversions of any kind in Go,
-other than that of making constants have concrete size and type when
-assigned to a variable.
-<p>
-<h2>An I/O Package</h2>
-<p>
-Next we'll look at a simple package for doing file I/O with an
-open/close/read/write interface. Here's the start of <code>file.go</code>:
-<p>
-<pre><!--{{code "progs/file.go" `/package/` `/^}/`}}
--->package file
-
-import (
- &#34;os&#34;
- &#34;syscall&#34;
-)
-
-type File struct {
- fd int // file descriptor number
- name string // file name at Open time
-}
-</pre>
-<p>
-The first few lines declare the name of the
-package&mdash;<code>file</code>&mdash;and then import two packages. The <code>os</code>
-package hides the differences
-between various operating systems to give a consistent view of files and
-so on; here we're going to use its error handling utilities
-and reproduce the rudiments of its file I/O.
-<p>
-The other item is the low-level, external <code>syscall</code> package, which provides
-a primitive interface to the underlying operating system's calls.
-<p>
-Next is a type definition: the <code>type</code> keyword introduces a type declaration,
-in this case a data structure called <code>File</code>.
-To make things a little more interesting, our <code>File</code> includes the name of the file
-that the file descriptor refers to.
-<p>
-Because <code>File</code> starts with a capital letter, the type is available outside the package,
-that is, by users of the package. In Go the rule about visibility of information is
-simple: if a name (of a top-level type, function, method, constant or variable, or of
-a structure field or method) is capitalized, users of the package may see it. Otherwise, the
-name and hence the thing being named is visible only inside the package in which
-it is declared. This is more than a convention; the rule is enforced by the compiler.
-In Go, the term for publicly visible names is ''exported''.
-<p>
-In the case of <code>File</code>, all its fields are lower case and so invisible to users, but we
-will soon give it some exported, upper-case methods.
-<p>
-First, though, here is a factory to create a <code>File</code>:
-<p>
-<pre><!--{{code "progs/file.go" `/newFile/` `/^}/`}}
--->func newFile(fd int, name string) *File {
- if fd &lt; 0 {
- return nil
- }
- return &amp;File{fd, name}
-}
-</pre>
-<p>
-This returns a pointer to a new <code>File</code> structure with the file descriptor and name
-filled in. This code uses Go's notion of a ''composite literal'', analogous to
-the ones used to build maps and arrays, to construct a new heap-allocated
-object. We could write
-<p>
-<pre>
-n := new(File)
-n.fd = fd
-n.name = name
-return n
-</pre>
-<p>
-but for simple structures like <code>File</code> it's easier to return the address of a
-composite literal, as is done here in the <code>return</code> statement from <code>newFile</code>.
-<p>
-We can use the factory to construct some familiar, exported variables of type <code>*File</code>:
-<p>
-<pre><!--{{code "progs/file.go" `/var/` `/^\)/`}}
--->var (
- Stdin = newFile(syscall.Stdin, &#34;/dev/stdin&#34;)
- Stdout = newFile(syscall.Stdout, &#34;/dev/stdout&#34;)
- Stderr = newFile(syscall.Stderr, &#34;/dev/stderr&#34;)
-)
-</pre>
-<p>
-The <code>newFile</code> function was not exported because it's internal. The proper,
-exported factory to use is <code>OpenFile</code> (we'll explain that name in a moment):
-<p>
-<pre><!--{{code "progs/file.go" `/func.OpenFile/` `/^}/`}}
--->func OpenFile(name string, mode int, perm uint32) (file *File, err os.Error) {
- r, e := syscall.Open(name, mode, perm)
- if e != 0 {
- err = os.Errno(e)
- }
- return newFile(r, name), err
-}
-</pre>
-<p>
-There are a number of new things in these few lines. First, <code>OpenFile</code> returns
-multiple values, a <code>File</code> and an error (more about errors in a moment).
-We declare the
-multi-value return as a parenthesized list of declarations; syntactically
-they look just like a second parameter list. The function
-<code>syscall.Open</code>
-also has a multi-value return, which we can grab with the multi-variable
-declaration on the first line; it declares <code>r</code> and <code>e</code> to hold the two values,
-both of type <code>int</code> (although you'd have to look at the <code>syscall</code> package
-to see that). Finally, <code>OpenFile</code> returns two values: a pointer to the new <code>File</code>
-and the error. If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
-be negative and <code>newFile</code> will return <code>nil</code>.
-<p>
-About those errors: The <code>os</code> library includes a general notion of an error.
-It's a good idea to use its facility in your own interfaces, as we do here, for
-consistent error handling throughout Go code. In <code>Open</code> we use a
-conversion to translate Unix's integer <code>errno</code> value into the integer type
-<code>os.Errno</code>, which implements <code>os.Error</code>.
-<p>
-Why <code>OpenFile</code> and not <code>Open</code>? To mimic Go's <code>os</code> package, which
-our exercise is emulating. The <code>os</code> package takes the opportunity
-to make the two commonest cases - open for read and create for
-write - the simplest, just <code>Open</code> and <code>Create</code>. <code>OpenFile</code> is the
-general case, analogous to the Unix system call <code>Open</code>. Here is
-the implementation of our <code>Open</code> and <code>Create</code>; they're trivial
-wrappers that eliminate common errors by capturing
-the tricky standard arguments to open and, especially, to create a file:
-<p>
-<pre><!--{{code "progs/file.go" `/^const/` `/^}/`}}
--->const (
- O_RDONLY = syscall.O_RDONLY
- O_RDWR = syscall.O_RDWR
- O_CREATE = syscall.O_CREAT
- O_TRUNC = syscall.O_TRUNC
-)
-
-func Open(name string) (file *File, err os.Error) {
- return OpenFile(name, O_RDONLY, 0)
-}
-</pre>
-<p>
-<pre><!--{{code "progs/file.go" `/func.Create/` `/^}/`}}
--->func Create(name string) (file *File, err os.Error) {
- return OpenFile(name, O_RDWR|O_CREATE|O_TRUNC, 0666)
-}
-</pre>
-<p>
-Back to our main story.
-Now that we can build <code>Files</code>, we can write methods for them. To declare
-a method of a type, we define a function to have an explicit receiver
-of that type, placed
-in parentheses before the function name. Here are some methods for <code>*File</code>,
-each of which declares a receiver variable <code>file</code>.
-<p>
-<pre><!--{{code "progs/file.go" `/Close/` "$"}}
--->func (file *File) Close() os.Error {
- if file == nil {
- return os.EINVAL
- }
- e := syscall.Close(file.fd)
- file.fd = -1 // so it can&#39;t be closed again
- if e != 0 {
- return os.Errno(e)
- }
- return nil
-}
-
-func (file *File) Read(b []byte) (ret int, err os.Error) {
- if file == nil {
- return -1, os.EINVAL
- }
- r, e := syscall.Read(file.fd, b)
- if e != 0 {
- err = os.Errno(e)
- }
- return int(r), err
-}
-
-func (file *File) Write(b []byte) (ret int, err os.Error) {
- if file == nil {
- return -1, os.EINVAL
- }
- r, e := syscall.Write(file.fd, b)
- if e != 0 {
- err = os.Errno(e)
- }
- return int(r), err
-}
-
-func (file *File) String() string {
- return file.name
-}
-</pre>
-<p>
-There is no implicit <code>this</code> and the receiver variable must be used to access
-members of the structure. Methods are not declared within
-the <code>struct</code> declaration itself. The <code>struct</code> declaration defines only data members.
-In fact, methods can be created for almost any type you name, such as an integer or
-array, not just for <code>structs</code>. We'll see an example with arrays later.
-<p>
-The <code>String</code> method is so called because of a printing convention we'll
-describe later.
-<p>
-The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
-version of the) Unix error code <code>EINVAL</code>. The <code>os</code> library defines a standard
-set of such error values.
-<p>
-We can now use our new package:
-<p>
-<pre><!--{{code "progs/helloworld3.go" `/package/` "$"}}
--->package main
-
-import (
- &#34;./file&#34;
- &#34;fmt&#34;
- &#34;os&#34;
-)
-
-func main() {
- hello := []byte(&#34;hello, world\n&#34;)
- file.Stdout.Write(hello)
- f, err := file.Open(&#34;/does/not/exist&#34;)
- if f == nil {
- fmt.Printf(&#34;can&#39;t open file; err=%s\n&#34;, err.String())
- os.Exit(1)
- }
-}
-</pre>
-<p>
-The ''<code>./</code>'' in the import of ''<code>./file</code>'' tells the compiler
-to use our own package rather than
-something from the directory of installed packages.
-(Also, ''<code>file.go</code>'' must be compiled before we can import the
-package.)
-<p>
-Now we can compile and run the program. On Unix, this would be the result:
-<p>
-<pre>
-$ 6g file.go # compile file package
-$ 6g helloworld3.go # compile main package
-$ 6l -o helloworld3 helloworld3.6 # link - no need to mention "file"
-$ helloworld3
-hello, world
-can't open file; err=No such file or directory
-$
-</pre>
-<p>
-<h2>Rotting cats</h2>
-<p>
-Building on the <code>file</code> package, here's a simple version of the Unix utility <code>cat(1)</code>,
-<code>progs/cat.go</code>:
-<p>
-<pre><!--{{code "progs/cat.go" `/package/` "$"}}
--->package main
-
-import (
- &#34;./file&#34;
- &#34;flag&#34;
- &#34;fmt&#34;
- &#34;os&#34;
-)
-
-func cat(f *file.File) {
- const NBUF = 512
- var buf [NBUF]byte
- for {
- switch nr, er := f.Read(buf[:]); true {
- case nr &lt; 0:
- fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, f.String(), er.String())
- os.Exit(1)
- case nr == 0: // EOF
- return
- case nr &gt; 0:
- if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
- fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, f.String(), ew.String())
- os.Exit(1)
- }
- }
- }
-}
-
-func main() {
- flag.Parse() // Scans the arg list and sets up flags
- if flag.NArg() == 0 {
- cat(file.Stdin)
- }
- for i := 0; i &lt; flag.NArg(); i++ {
- f, err := file.Open(flag.Arg(i))
- if f == nil {
- fmt.Fprintf(os.Stderr, &#34;cat: can&#39;t open %s: error %s\n&#34;, flag.Arg(i), err)
- os.Exit(1)
- }
- cat(f)
- f.Close()
- }
-}
-</pre>
-<p>
-By now this should be easy to follow, but the <code>switch</code> statement introduces some
-new features. Like a <code>for</code> loop, an <code>if</code> or <code>switch</code> can include an
-initialization statement. The <code>switch</code> statement in <code>cat</code> uses one to create variables
-<code>nr</code> and <code>er</code> to hold the return values from the call to <code>f.Read</code>. (The <code>if</code> a few lines later
-has the same idea.) The <code>switch</code> statement is general: it evaluates the cases
-from top to bottom looking for the first case that matches the value; the
-case expressions don't need to be constants or even integers, as long as
-they all have the same type.
-<p>
-Since the <code>switch</code> value is just <code>true</code>, we could leave it off&mdash;as is also
-the situation
-in a <code>for</code> statement, a missing value means <code>true</code>. In fact, such a <code>switch</code>
-is a form of <code>if-else</code> chain. While we're here, it should be mentioned that in
-<code>switch</code> statements each <code>case</code> has an implicit <code>break</code>.
-<p>
-The argument to <code>file.Stdout.Write</code> is created by slicing the array <code>buf</code>.
-Slices provide the standard Go way to handle I/O buffers.
-<p>
-Now let's make a variant of <code>cat</code> that optionally does <code>rot13</code> on its input.
-It's easy to do by just processing the bytes, but instead we will exploit
-Go's notion of an <i>interface</i>.
-<p>
-The <code>cat</code> subroutine uses only two methods of <code>f</code>: <code>Read</code> and <code>String</code>,
-so let's start by defining an interface that has exactly those two methods.
-Here is code from <code>progs/cat_rot13.go</code>:
-<p>
-<pre><!--{{code "progs/cat_rot13.go" `/type.reader/` `/^}/`}}
--->type reader interface {
- Read(b []byte) (ret int, err os.Error)
- String() string
-}
-</pre>
-<p>
-Any type that has the two methods of <code>reader</code>&mdash;regardless of whatever
-other methods the type may also have&mdash;is said to <i>implement</i> the
-interface. Since <code>file.File</code> implements these methods, it implements the
-<code>reader</code> interface. We could tweak the <code>cat</code> subroutine to accept a <code>reader</code>
-instead of a <code>*file.File</code> and it would work just fine, but let's embellish a little
-first by writing a second type that implements <code>reader</code>, one that wraps an
-existing <code>reader</code> and does <code>rot13</code> on the data. To do this, we just define
-the type and implement the methods and with no other bookkeeping,
-we have a second implementation of the <code>reader</code> interface.
-<p>
-<pre><!--{{code "progs/cat_rot13.go" `/type.rotate13/` `/end.of.rotate13/`}}
--->type rotate13 struct {
- source reader
-}
-
-func newRotate13(source reader) *rotate13 {
- return &amp;rotate13{source}
-}
-
-func (r13 *rotate13) Read(b []byte) (ret int, err os.Error) {
- r, e := r13.source.Read(b)
- for i := 0; i &lt; r; i++ {
- b[i] = rot13(b[i])
- }
- return r, e
-}
-
-func (r13 *rotate13) String() string {
- return r13.source.String()
-}
-// end of rotate13 implementation
-</pre>
-<p>
-(The <code>rot13</code> function called in <code>Read</code> is trivial and not worth reproducing here.)
-<p>
-To use the new feature, we define a flag:
-<p>
-<pre><!--{{code "progs/cat_rot13.go" `/rot13Flag/`}}
--->var rot13Flag = flag.Bool(&#34;rot13&#34;, false, &#34;rot13 the input&#34;)
-</pre>
-<p>
-and use it from within a mostly unchanged <code>cat</code> function:
-<p>
-<pre><!--{{code "progs/cat_rot13.go" `/func.cat/` `/^}/`}}
--->func cat(r reader) {
- const NBUF = 512
- var buf [NBUF]byte
-
- if *rot13Flag {
- r = newRotate13(r)
- }
- for {
- switch nr, er := r.Read(buf[:]); {
- case nr &lt; 0:
- fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, r.String(), er.String())
- os.Exit(1)
- case nr == 0: // EOF
- return
- case nr &gt; 0:
- nw, ew := file.Stdout.Write(buf[0:nr])
- if nw != nr {
- fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, r.String(), ew.String())
- os.Exit(1)
- }
- }
- }
-}
-</pre>
-<p>
-(We could also do the wrapping in <code>main</code> and leave <code>cat</code> mostly alone, except
-for changing the type of the argument; consider that an exercise.)
-The <code>if</code> at the top of <code>cat</code> sets it all up: If the <code>rot13</code> flag is true, wrap the <code>reader</code>
-we received into a <code>rotate13</code> and proceed. Note that the interface variables
-are values, not pointers: the argument is of type <code>reader</code>, not <code>*reader</code>,
-even though under the covers it holds a pointer to a <code>struct</code>.
-<p>
-Here it is in action:
-<p>
-<pre>
-$ echo abcdefghijklmnopqrstuvwxyz | ./cat
-abcdefghijklmnopqrstuvwxyz
-$ echo abcdefghijklmnopqrstuvwxyz | ./cat --rot13
-nopqrstuvwxyzabcdefghijklm
-$
-</pre>
-<p>
-Fans of dependency injection may take cheer from how easily interfaces
-allow us to substitute the implementation of a file descriptor.
-<p>
-Interfaces are a distinctive feature of Go. An interface is implemented by a
-type if the type implements all the methods declared in the interface.
-This means
-that a type may implement an arbitrary number of different interfaces.
-There is no type hierarchy; things can be much more <i>ad hoc</i>,
-as we saw with <code>rot13</code>. The type <code>file.File</code> implements <code>reader</code>; it could also
-implement a <code>writer</code>, or any other interface built from its methods that
-fits the current situation. Consider the <i>empty interface</i>
-<p>
-<pre>
-type Empty interface {}
-</pre>
-<p>
-<i>Every</i> type implements the empty interface, which makes it
-useful for things like containers.
-<p>
-<h2>Sorting</h2>
-<p>
-Interfaces provide a simple form of polymorphism. They completely
-separate the definition of what an object does from how it does it, allowing
-distinct implementations to be represented at different times by the
-same interface variable.
-<p>
-As an example, consider this simple sort algorithm taken from <code>progs/sort.go</code>:
-<p>
-<pre><!--{{code "progs/sort.go" `/func.Sort/` `/^}/`}}
--->func Sort(data Interface) {
- for i := 1; i &lt; data.Len(); i++ {
- for j := i; j &gt; 0 &amp;&amp; data.Less(j, j-1); j-- {
- data.Swap(j, j-1)
- }
- }
-}
-</pre>
-<p>
-The code needs only three methods, which we wrap into sort's <code>Interface</code>:
-<p>
-<pre><!--{{code "progs/sort.go" `/interface/` `/^}/`}}
--->type Interface interface {
- Len() int
- Less(i, j int) bool
- Swap(i, j int)
-}
-</pre>
-<p>
-We can apply <code>Sort</code> to any type that implements <code>Len</code>, <code>Less</code>, and <code>Swap</code>.
-The <code>sort</code> package includes the necessary methods to allow sorting of
-arrays of integers, strings, etc.; here's the code for arrays of <code>int</code>
-<p>
-<pre><!--{{code "progs/sort.go" `/type.*IntSlice/` `/Swap/`}}
--->type IntSlice []int
-
-func (p IntSlice) Len() int { return len(p) }
-func (p IntSlice) Less(i, j int) bool { return p[i] &lt; p[j] }
-func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
-</pre>
-<p>
-Here we see methods defined for non-<code>struct</code> types. You can define methods
-for any type you define and name in your package.
-<p>
-And now a routine to test it out, from <code>progs/sortmain.go</code>. This
-uses a function in the <code>sort</code> package, omitted here for brevity,
-to test that the result is sorted.
-<p>
-<pre><!--{{code "progs/sortmain.go" `/func.ints/` `/^}/`}}
--->func ints() {
- data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
- a := sort.IntSlice(data)
- sort.Sort(a)
- if !sort.IsSorted(a) {
- panic(&#34;fail&#34;)
- }
-}
-</pre>
-<p>
-If we have a new type we want to be able to sort, all we need to do is
-to implement the three methods for that type, like this:
-<p>
-<pre><!--{{code "progs/sortmain.go" `/type.day/` `/Swap/`}}
--->type day struct {
- num int
- shortName string
- longName string
-}
-
-type dayArray struct {
- data []*day
-}
-
-func (p *dayArray) Len() int { return len(p.data) }
-func (p *dayArray) Less(i, j int) bool { return p.data[i].num &lt; p.data[j].num }
-func (p *dayArray) Swap(i, j int) { p.data[i], p.data[j] = p.data[j], p.data[i] }
-</pre>
-<p>
-<p>
-<h2>Printing</h2>
-<p>
-The examples of formatted printing so far have been modest. In this section
-we'll talk about how formatted I/O can be done well in Go.
-<p>
-We've seen simple uses of the package <code>fmt</code>, which
-implements <code>Printf</code>, <code>Fprintf</code>, and so on.
-Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
-<p>
-<pre>
-Printf(format string, v ...interface{}) (n int, errno os.Error)
-</pre>
-<p>
-The token <code>...</code> introduces a variable-length argument list that in C would
-be handled using the <code>stdarg.h</code> macros.
-In Go, variadic functions are passed a slice of the arguments of the
-specified type. In <code>Printf</code>'s case, the declaration says <code>...interface{}</code>
-so the actual type is a slice of empty interface values, <code>[]interface{}</code>.
-<code>Printf</code> can examine the arguments by iterating over the slice
-and, for each element, using a type switch or the reflection library
-to interpret the value.
-It's off topic here but such run-time type analysis
-helps explain some of the nice properties of Go's <code>Printf</code>,
-due to the ability of <code>Printf</code> to discover the type of its arguments
-dynamically.
-<p>
-For example, in C each format must correspond to the type of its
-argument. It's easier in many cases in Go. Instead of <code>%llud</code> you
-can just say <code>%d</code>; <code>Printf</code> knows the size and signedness of the
-integer and can do the right thing for you. The snippet
-<p>
-<pre><!--{{code "progs/print.go" 10 11}}
---> var u64 uint64 = 1&lt;&lt;64 - 1
- fmt.Printf(&#34;%d %d\n&#34;, u64, int64(u64))
-</pre>
-<p>
-prints
-<p>
-<pre>
-18446744073709551615 -1
-</pre>
-<p>
-In fact, if you're lazy the format <code>%v</code> will print, in a simple
-appropriate style, any value, even an array or structure. The output of
-<p>
-<pre><!--{{code "progs/print.go" 14 20}}
---> type T struct {
- a int
- b string
- }
- t := T{77, &#34;Sunset Strip&#34;}
- a := []int{1, 2, 3, 4}
- fmt.Printf(&#34;%v %v %v\n&#34;, u64, t, a)
-</pre>
-<p>
-is
-<p>
-<pre>
-18446744073709551615 {77 Sunset Strip} [1 2 3 4]
-</pre>
-<p>
-You can drop the formatting altogether if you use <code>Print</code> or <code>Println</code>
-instead of <code>Printf</code>. Those routines do fully automatic formatting.
-The <code>Print</code> function just prints its elements out using the equivalent
-of <code>%v</code> while <code>Println</code> inserts spaces between arguments
-and adds a newline. The output of each of these two lines is identical
-to that of the <code>Printf</code> call above.
-<p>
-<pre><!--{{code "progs/print.go" 21 22}}
---> fmt.Print(u64, &#34; &#34;, t, &#34; &#34;, a, &#34;\n&#34;)
- fmt.Println(u64, t, a)
-</pre>
-<p>
-If you have your own type you'd like <code>Printf</code> or <code>Print</code> to format,
-just give it a <code>String</code> method that returns a string. The print
-routines will examine the value to inquire whether it implements
-the method and if so, use it rather than some other formatting.
-Here's a simple example.
-<p>
-<pre><!--{{code "progs/print_string.go" 9 "$"}}
--->type testType struct {
- a int
- b string
-}
-
-func (t *testType) String() string {
- return fmt.Sprint(t.a) + &#34; &#34; + t.b
-}
-
-func main() {
- t := &amp;testType{77, &#34;Sunset Strip&#34;}
- fmt.Println(t)
-}
-</pre>
-<p>
-Since <code>*testType</code> has a <code>String</code> method, the
-default formatter for that type will use it and produce the output
-<p>
-<pre>
-77 Sunset Strip
-</pre>
-<p>
-Observe that the <code>String</code> method calls <code>Sprint</code> (the obvious Go
-variant that returns a string) to do its formatting; special formatters
-can use the <code>fmt</code> library recursively.
-<p>
-Another feature of <code>Printf</code> is that the format <code>%T</code> will print a string
-representation of the type of a value, which can be handy when debugging
-polymorphic code.
-<p>
-It's possible to write full custom print formats with flags and precisions
-and such, but that's getting a little off the main thread so we'll leave it
-as an exploration exercise.
-<p>
-You might ask, though, how <code>Printf</code> can tell whether a type implements
-the <code>String</code> method. Actually what it does is ask if the value can
-be converted to an interface variable that implements the method.
-Schematically, given a value <code>v</code>, it does this:
-<p>
-<p>
-<pre>
-type Stringer interface {
- String() string
-}
-</pre>
-<p>
-<pre>
-s, ok := v.(Stringer) // Test whether v implements "String()"
-if ok {
- result = s.String()
-} else {
- result = defaultOutput(v)
-}
-</pre>
-<p>
-The code uses a ``type assertion'' (<code>v.(Stringer)</code>) to test if the value stored in
-<code>v</code> satisfies the <code>Stringer</code> interface; if it does, <code>s</code>
-will become an interface variable implementing the method and <code>ok</code> will
-be <code>true</code>. We then use the interface variable to call the method.
-(The ''comma, ok'' pattern is a Go idiom used to test the success of
-operations such as type conversion, map update, communications, and so on,
-although this is the only appearance in this tutorial.)
-If the value does not satisfy the interface, <code>ok</code> will be false.
-<p>
-In this snippet the name <code>Stringer</code> follows the convention that we add ''[e]r''
-to interfaces describing simple method sets like this.
-<p>
-One last wrinkle. To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
-etc., there are also <code>Fprintf</code> etc. Unlike in C, <code>Fprintf</code>'s first argument is
-not a file. Instead, it is a variable of type <code>io.Writer</code>, which is an
-interface type defined in the <code>io</code> library:
-<p>
-<pre>
-type Writer interface {
- Write(p []byte) (n int, err os.Error)
-}
-</pre>
-<p>
-(This interface is another conventional name, this time for <code>Write</code>; there are also
-<code>io.Reader</code>, <code>io.ReadWriter</code>, and so on.)
-Thus you can call <code>Fprintf</code> on any type that implements a standard <code>Write</code>
-method, not just files but also network channels, buffers, whatever
-you want.
-<p>
-<h2>Prime numbers</h2>
-<p>
-Now we come to processes and communication&mdash;concurrent programming.
-It's a big subject so to be brief we assume some familiarity with the topic.
-<p>
-A classic program in the style is a prime sieve.
-(The sieve of Eratosthenes is computationally more efficient than
-the algorithm presented here, but we are more interested in concurrency than
-algorithmics at the moment.)
-It works by taking a stream of all the natural numbers and introducing
-a sequence of filters, one for each prime, to winnow the multiples of
-that prime. At each step we have a sequence of filters of the primes
-so far, and the next number to pop out is the next prime, which triggers
-the creation of the next filter in the chain.
-<p>
-Here's a flow diagram; each box represents a filter element whose
-creation is triggered by the first number that flowed from the
-elements before it.
-<p>
-<br>
-<p>
-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<img src='sieve.gif'>
-<p>
-<br>
-<p>
-To create a stream of integers, we use a Go <i>channel</i>, which,
-borrowing from CSP's descendants, represents a communications
-channel that can connect two concurrent computations.
-In Go, channel variables are references to a run-time object that
-coordinates the communication; as with maps and slices, use
-<code>make</code> to create a new channel.
-<p>
-Here is the first function in <code>progs/sieve.go</code>:
-<p>
-<pre><!--{{code "progs/sieve.go" `/Send/` `/^}/`}}
--->// Send the sequence 2, 3, 4, ... to channel &#39;ch&#39;.
-func generate(ch chan int) {
- for i := 2; ; i++ {
- ch &lt;- i // Send &#39;i&#39; to channel &#39;ch&#39;.
- }
-}
-</pre>
-<p>
-The <code>generate</code> function sends the sequence 2, 3, 4, 5, ... to its
-argument channel, <code>ch</code>, using the binary communications operator <code>&lt;-</code>.
-Channel operations block, so if there's no recipient for the value on <code>ch</code>,
-the send operation will wait until one becomes available.
-<p>
-The <code>filter</code> function has three arguments: an input channel, an output
-channel, and a prime number. It copies values from the input to the
-output, discarding anything divisible by the prime. The unary communications
-operator <code>&lt;-</code> (receive) retrieves the next value on the channel.
-<p>
-<pre><!--{{code "progs/sieve.go" `/Copy.the/` `/^}/`}}
--->// Copy the values from channel &#39;in&#39; to channel &#39;out&#39;,
-// removing those divisible by &#39;prime&#39;.
-func filter(in, out chan int, prime int) {
- for {
- i := &lt;-in // Receive value of new variable &#39;i&#39; from &#39;in&#39;.
- if i%prime != 0 {
- out &lt;- i // Send &#39;i&#39; to channel &#39;out&#39;.
- }
- }
-}
-</pre>
-<p>
-The generator and filters execute concurrently. Go has
-its own model of process/threads/light-weight processes/coroutines,
-so to avoid notational confusion we call concurrently executing
-computations in Go <i>goroutines</i>. To start a goroutine,
-invoke the function, prefixing the call with the keyword <code>go</code>;
-this starts the function running in parallel with the current
-computation but in the same address space:
-<p>
-<pre>
-go sum(hugeArray) // calculate sum in the background
-</pre>
-<p>
-If you want to know when the calculation is done, pass a channel
-on which it can report back:
-<p>
-<pre>
-ch := make(chan int)
-go sum(hugeArray, ch)
-// ... do something else for a while
-result := &lt;-ch // wait for, and retrieve, result
-</pre>
-<p>
-Back to our prime sieve. Here's how the sieve pipeline is stitched
-together:
-<p>
-<pre><!--{{code "progs/sieve.go" `/func.main/` `/^}/`}}
--->func main() {
- ch := make(chan int) // Create a new channel.
- go generate(ch) // Start generate() as a goroutine.
- for i := 0; i &lt; 100; i++ { // Print the first hundred primes.
- prime := &lt;-ch
- fmt.Println(prime)
- ch1 := make(chan int)
- go filter(ch, ch1, prime)
- ch = ch1
- }
-}
-</pre>
-<p>
-The first line of <code>main</code> creates the initial channel to pass to <code>generate</code>, which it
-then starts up. As each prime pops out of the channel, a new <code>filter</code>
-is added to the pipeline and <i>its</i> output becomes the new value
-of <code>ch</code>.
-<p>
-The sieve program can be tweaked to use a pattern common
-in this style of programming. Here is a variant version
-of <code>generate</code>, from <code>progs/sieve1.go</code>:
-<p>
-<pre><!--{{code "progs/sieve1.go" `/func.generate/` `/^}/`}}
--->func generate() chan int {
- ch := make(chan int)
- go func() {
- for i := 2; ; i++ {
- ch &lt;- i
- }
- }()
- return ch
-}
-</pre>
-<p>
-This version does all the setup internally. It creates the output
-channel, launches a goroutine running a function literal, and
-returns the channel to the caller. It is a factory for concurrent
-execution, starting the goroutine and returning its connection.
-<p>
-The function literal notation used in the <code>go</code> statement allows us to construct an
-anonymous function and invoke it on the spot. Notice that the local
-variable <code>ch</code> is available to the function literal and lives on even
-after <code>generate</code> returns.
-<p>
-The same change can be made to <code>filter</code>:
-<p>
-<pre><!--{{code "progs/sieve1.go" `/func.filter/` `/^}/`}}
--->func filter(in chan int, prime int) chan int {
- out := make(chan int)
- go func() {
- for {
- if i := &lt;-in; i%prime != 0 {
- out &lt;- i
- }
- }
- }()
- return out
-}
-</pre>
-<p>
-The <code>sieve</code> function's main loop becomes simpler and clearer as a
-result, and while we're at it let's turn it into a factory too:
-<p>
-<pre><!--{{code "progs/sieve1.go" `/func.sieve/` `/^}/`}}
--->func sieve() chan int {
- out := make(chan int)
- go func() {
- ch := generate()
- for {
- prime := &lt;-ch
- out &lt;- prime
- ch = filter(ch, prime)
- }
- }()
- return out
-}
-</pre>
-<p>
-Now <code>main</code>'s interface to the prime sieve is a channel of primes:
-<p>
-<pre><!--{{code "progs/sieve1.go" `/func.main/` `/^}/`}}
--->func main() {
- primes := sieve()
- for i := 0; i &lt; 100; i++ { // Print the first hundred primes.
- fmt.Println(&lt;-primes)
- }
-}
-</pre>
-<p>
-<h2>Multiplexing</h2>
-<p>
-With channels, it's possible to serve multiple independent client goroutines without
-writing an explicit multiplexer. The trick is to send the server a channel in the message,
-which it will then use to reply to the original sender.
-A realistic client-server program is a lot of code, so here is a very simple substitute
-to illustrate the idea. It starts by defining a <code>request</code> type, which embeds a channel
-that will be used for the reply.
-<p>
-<pre><!--{{code "progs/server.go" `/type.request/` `/^}/`}}
--->type request struct {
- a, b int
- replyc chan int
-}
-</pre>
-<p>
-The server will be trivial: it will do simple binary operations on integers. Here's the
-code that invokes the operation and responds to the request:
-<p>
-<pre><!--{{code "progs/server.go" `/type.binOp/` `/^}/`}}
--->type binOp func(a, b int) int
-
-func run(op binOp, req *request) {
- reply := op(req.a, req.b)
- req.replyc &lt;- reply
-}
-</pre>
-<p>
-The type declaration makes <code>binOp</code> represent a function taking two integers and
-returning a third.
-<p>
-The <code>server</code> routine loops forever, receiving requests and, to avoid blocking due to
-a long-running operation, starting a goroutine to do the actual work.
-<p>
-<pre><!--{{code "progs/server.go" `/func.server/` `/^}/`}}
--->func server(op binOp, service chan *request) {
- for {
- req := &lt;-service
- go run(op, req) // don&#39;t wait for it
- }
-}
-</pre>
-<p>
-We construct a server in a familiar way, starting it and returning a channel
-connected to it:
-<p>
-<pre><!--{{code "progs/server.go" `/func.startServer/` `/^}/`}}
--->func startServer(op binOp) chan *request {
- req := make(chan *request)
- go server(op, req)
- return req
-}
-</pre>
-<p>
-Here's a simple test. It starts a server with an addition operator and sends out
-<code>N</code> requests without waiting for the replies. Only after all the requests are sent
-does it check the results.
-<p>
-<pre><!--{{code "progs/server.go" `/func.main/` `/^}/`}}
--->func main() {
- adder := startServer(func(a, b int) int { return a + b })
- const N = 100
- var reqs [N]request
- for i := 0; i &lt; N; i++ {
- req := &amp;reqs[i]
- req.a = i
- req.b = i + N
- req.replyc = make(chan int)
- adder &lt;- req
- }
- for i := N - 1; i &gt;= 0; i-- { // doesn&#39;t matter what order
- if &lt;-reqs[i].replyc != N+2*i {
- fmt.Println(&#34;fail at&#34;, i)
- }
- }
- fmt.Println(&#34;done&#34;)
-}
-</pre>
-<p>
-One annoyance with this program is that it doesn't shut down the server cleanly; when <code>main</code> returns
-there are a number of lingering goroutines blocked on communication. To solve this,
-we can provide a second, <code>quit</code> channel to the server:
-<p>
-<pre><!--{{code "progs/server1.go" `/func.startServer/` `/^}/`}}
--->func startServer(op binOp) (service chan *request, quit chan bool) {
- service = make(chan *request)
- quit = make(chan bool)
- go server(op, service, quit)
- return service, quit
-}
-</pre>
-<p>
-It passes the quit channel to the <code>server</code> function, which uses it like this:
-<p>
-<pre><!--{{code "progs/server1.go" `/func.server/` `/^}/`}}
--->func server(op binOp, service chan *request, quit chan bool) {
- for {
- select {
- case req := &lt;-service:
- go run(op, req) // don&#39;t wait for it
- case &lt;-quit:
- return
- }
- }
-}
-</pre>
-<p>
-Inside <code>server</code>, the <code>select</code> statement chooses which of the multiple communications
-listed by its cases can proceed. If all are blocked, it waits until one can proceed; if
-multiple can proceed, it chooses one at random. In this instance, the <code>select</code> allows
-the server to honor requests until it receives a quit message, at which point it
-returns, terminating its execution.
-<p>
-<p>
-All that's left is to strobe the <code>quit</code> channel
-at the end of main:
-<p>
-<pre><!--{{code "progs/server1.go" `/adder,.quit/`}}
---> adder, quit := startServer(func(a, b int) int { return a + b })
-</pre>
-...
-<pre><!--{{code "progs/server1.go" `/quit....true/`}}
---> quit &lt;- true
-</pre>
-<p>
-There's a lot more to Go programming and concurrent programming in general but this
-quick tour should give you some of the basics.