summaryrefslogtreecommitdiff
path: root/src/cmd/cgo/gcc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/cgo/gcc.go')
-rw-r--r--src/cmd/cgo/gcc.go1375
1 files changed, 1375 insertions, 0 deletions
diff --git a/src/cmd/cgo/gcc.go b/src/cmd/cgo/gcc.go
new file mode 100644
index 000000000..7ec4d8ccf
--- /dev/null
+++ b/src/cmd/cgo/gcc.go
@@ -0,0 +1,1375 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Annotate Ref in Prog with C types by parsing gcc debug output.
+// Conversion of debug output to Go types.
+
+package main
+
+import (
+ "bytes"
+ "debug/dwarf"
+ "debug/elf"
+ "debug/macho"
+ "debug/pe"
+ "encoding/binary"
+ "flag"
+ "fmt"
+ "go/ast"
+ "go/parser"
+ "go/token"
+ "os"
+ "runtime"
+ "strconv"
+ "strings"
+ "unicode"
+)
+
+var debugDefine = flag.Bool("debug-define", false, "print relevant #defines")
+var debugGcc = flag.Bool("debug-gcc", false, "print gcc invocations")
+
+var nameToC = map[string]string{
+ "schar": "signed char",
+ "uchar": "unsigned char",
+ "ushort": "unsigned short",
+ "uint": "unsigned int",
+ "ulong": "unsigned long",
+ "longlong": "long long",
+ "ulonglong": "unsigned long long",
+ "complexfloat": "float complex",
+ "complexdouble": "double complex",
+}
+
+// cname returns the C name to use for C.s.
+// The expansions are listed in nameToC and also
+// struct_foo becomes "struct foo", and similarly for
+// union and enum.
+func cname(s string) string {
+ if t, ok := nameToC[s]; ok {
+ return t
+ }
+
+ if strings.HasPrefix(s, "struct_") {
+ return "struct " + s[len("struct_"):]
+ }
+ if strings.HasPrefix(s, "union_") {
+ return "union " + s[len("union_"):]
+ }
+ if strings.HasPrefix(s, "enum_") {
+ return "enum " + s[len("enum_"):]
+ }
+ return s
+}
+
+// ParseFlags extracts #cgo CFLAGS and LDFLAGS options from the file
+// preamble. Multiple occurrences are concatenated with a separating space,
+// even across files.
+func (p *Package) ParseFlags(f *File, srcfile string) {
+ linesIn := strings.Split(f.Preamble, "\n")
+ linesOut := make([]string, 0, len(linesIn))
+
+NextLine:
+ for _, line := range linesIn {
+ l := strings.TrimSpace(line)
+ if len(l) < 5 || l[:4] != "#cgo" || !unicode.IsSpace(int(l[4])) {
+ linesOut = append(linesOut, line)
+ continue
+ }
+
+ l = strings.TrimSpace(l[4:])
+ fields := strings.SplitN(l, ":", 2)
+ if len(fields) != 2 {
+ fatalf("%s: bad #cgo line: %s", srcfile, line)
+ }
+
+ var k string
+ kf := strings.Fields(fields[0])
+ switch len(kf) {
+ case 1:
+ k = kf[0]
+ case 2:
+ k = kf[1]
+ switch kf[0] {
+ case runtime.GOOS:
+ case runtime.GOARCH:
+ case runtime.GOOS + "/" + runtime.GOARCH:
+ default:
+ continue NextLine
+ }
+ default:
+ fatalf("%s: bad #cgo option: %s", srcfile, fields[0])
+ }
+
+ args, err := splitQuoted(fields[1])
+ if err != nil {
+ fatalf("%s: bad #cgo option %s: %s", srcfile, k, err)
+ }
+ for _, arg := range args {
+ if !safeName(arg) {
+ fatalf("%s: #cgo option %s is unsafe: %s", srcfile, k, arg)
+ }
+ }
+
+ switch k {
+
+ case "CFLAGS", "LDFLAGS":
+ p.addToFlag(k, args)
+
+ case "pkg-config":
+ cflags, ldflags, err := pkgConfig(args)
+ if err != nil {
+ fatalf("%s: bad #cgo option %s: %s", srcfile, k, err)
+ }
+ p.addToFlag("CFLAGS", cflags)
+ p.addToFlag("LDFLAGS", ldflags)
+
+ default:
+ fatalf("%s: unsupported #cgo option %s", srcfile, k)
+
+ }
+ }
+ f.Preamble = strings.Join(linesOut, "\n")
+}
+
+// addToFlag appends args to flag. All flags are later written out onto the
+// _cgo_flags file for the build system to use.
+func (p *Package) addToFlag(flag string, args []string) {
+ if oldv, ok := p.CgoFlags[flag]; ok {
+ p.CgoFlags[flag] = oldv + " " + strings.Join(args, " ")
+ } else {
+ p.CgoFlags[flag] = strings.Join(args, " ")
+ }
+ if flag == "CFLAGS" {
+ // We'll also need these when preprocessing for dwarf information.
+ p.GccOptions = append(p.GccOptions, args...)
+ }
+}
+
+// pkgConfig runs pkg-config and extracts --libs and --cflags information
+// for packages.
+func pkgConfig(packages []string) (cflags, ldflags []string, err os.Error) {
+ for _, name := range packages {
+ if len(name) == 0 || name[0] == '-' {
+ return nil, nil, os.NewError(fmt.Sprintf("invalid name: %q", name))
+ }
+ }
+
+ args := append([]string{"pkg-config", "--cflags"}, packages...)
+ stdout, stderr, ok := run(nil, args)
+ if !ok {
+ os.Stderr.Write(stderr)
+ return nil, nil, os.NewError("pkg-config failed")
+ }
+ cflags, err = splitQuoted(string(stdout))
+ if err != nil {
+ return
+ }
+
+ args = append([]string{"pkg-config", "--libs"}, packages...)
+ stdout, stderr, ok = run(nil, args)
+ if !ok {
+ os.Stderr.Write(stderr)
+ return nil, nil, os.NewError("pkg-config failed")
+ }
+ ldflags, err = splitQuoted(string(stdout))
+ return
+}
+
+// splitQuoted splits the string s around each instance of one or more consecutive
+// white space characters while taking into account quotes and escaping, and
+// returns an array of substrings of s or an empty list if s contains only white space.
+// Single quotes and double quotes are recognized to prevent splitting within the
+// quoted region, and are removed from the resulting substrings. If a quote in s
+// isn't closed err will be set and r will have the unclosed argument as the
+// last element. The backslash is used for escaping.
+//
+// For example, the following string:
+//
+// `a b:"c d" 'e''f' "g\""`
+//
+// Would be parsed as:
+//
+// []string{"a", "b:c d", "ef", `g"`}
+//
+func splitQuoted(s string) (r []string, err os.Error) {
+ var args []string
+ arg := make([]int, len(s))
+ escaped := false
+ quoted := false
+ quote := 0
+ i := 0
+ for _, rune := range s {
+ switch {
+ case escaped:
+ escaped = false
+ case rune == '\\':
+ escaped = true
+ continue
+ case quote != 0:
+ if rune == quote {
+ quote = 0
+ continue
+ }
+ case rune == '"' || rune == '\'':
+ quoted = true
+ quote = rune
+ continue
+ case unicode.IsSpace(rune):
+ if quoted || i > 0 {
+ quoted = false
+ args = append(args, string(arg[:i]))
+ i = 0
+ }
+ continue
+ }
+ arg[i] = rune
+ i++
+ }
+ if quoted || i > 0 {
+ args = append(args, string(arg[:i]))
+ }
+ if quote != 0 {
+ err = os.NewError("unclosed quote")
+ } else if escaped {
+ err = os.NewError("unfinished escaping")
+ }
+ return args, err
+}
+
+var safeBytes = []byte("+-.,/0123456789=ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz")
+
+func safeName(s string) bool {
+ if s == "" {
+ return false
+ }
+ for i := 0; i < len(s); i++ {
+ if c := s[i]; c < 0x80 && bytes.IndexByte(safeBytes, c) < 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// Translate rewrites f.AST, the original Go input, to remove
+// references to the imported package C, replacing them with
+// references to the equivalent Go types, functions, and variables.
+func (p *Package) Translate(f *File) {
+ for _, cref := range f.Ref {
+ // Convert C.ulong to C.unsigned long, etc.
+ cref.Name.C = cname(cref.Name.Go)
+ }
+ p.loadDefines(f)
+ needType := p.guessKinds(f)
+ if len(needType) > 0 {
+ p.loadDWARF(f, needType)
+ }
+ p.rewriteRef(f)
+}
+
+// loadDefines coerces gcc into spitting out the #defines in use
+// in the file f and saves relevant renamings in f.Name[name].Define.
+func (p *Package) loadDefines(f *File) {
+ var b bytes.Buffer
+ b.WriteString(builtinProlog)
+ b.WriteString(f.Preamble)
+ stdout := p.gccDefines(b.Bytes())
+
+ for _, line := range strings.Split(stdout, "\n") {
+ if len(line) < 9 || line[0:7] != "#define" {
+ continue
+ }
+
+ line = strings.TrimSpace(line[8:])
+
+ var key, val string
+ spaceIndex := strings.Index(line, " ")
+ tabIndex := strings.Index(line, "\t")
+
+ if spaceIndex == -1 && tabIndex == -1 {
+ continue
+ } else if tabIndex == -1 || (spaceIndex != -1 && spaceIndex < tabIndex) {
+ key = line[0:spaceIndex]
+ val = strings.TrimSpace(line[spaceIndex:])
+ } else {
+ key = line[0:tabIndex]
+ val = strings.TrimSpace(line[tabIndex:])
+ }
+
+ if n := f.Name[key]; n != nil {
+ if *debugDefine {
+ fmt.Fprintf(os.Stderr, "#define %s %s\n", key, val)
+ }
+ n.Define = val
+ }
+ }
+}
+
+// guessKinds tricks gcc into revealing the kind of each
+// name xxx for the references C.xxx in the Go input.
+// The kind is either a constant, type, or variable.
+func (p *Package) guessKinds(f *File) []*Name {
+ // Coerce gcc into telling us whether each name is
+ // a type, a value, or undeclared. We compile a function
+ // containing the line:
+ // name;
+ // If name is a type, gcc will print:
+ // cgo-test:2: warning: useless type name in empty declaration
+ // If name is a value, gcc will print
+ // cgo-test:2: warning: statement with no effect
+ // If name is undeclared, gcc will print
+ // cgo-test:2: error: 'name' undeclared (first use in this function)
+ // A line number directive causes the line number to
+ // correspond to the index in the names array.
+ //
+ // The line also has an enum declaration:
+ // name; enum { _cgo_enum_1 = name };
+ // If name is not a constant, gcc will print:
+ // cgo-test:4: error: enumerator value for '_cgo_enum_4' is not an integer constant
+ // we assume lines without that error are constants.
+
+ // Make list of names that need sniffing, type lookup.
+ toSniff := make([]*Name, 0, len(f.Name))
+ needType := make([]*Name, 0, len(f.Name))
+
+ for _, n := range f.Name {
+ // If we've already found this name as a #define
+ // and we can translate it as a constant value, do so.
+ if n.Define != "" {
+ ok := false
+ if _, err := strconv.Atoi(n.Define); err == nil {
+ ok = true
+ } else if n.Define[0] == '"' || n.Define[0] == '\'' {
+ _, err := parser.ParseExpr(fset, "", n.Define)
+ if err == nil {
+ ok = true
+ }
+ }
+ if ok {
+ n.Kind = "const"
+ n.Const = n.Define
+ continue
+ }
+
+ if isName(n.Define) {
+ n.C = n.Define
+ }
+ }
+
+ // If this is a struct, union, or enum type name,
+ // record the kind but also that we need type information.
+ if strings.HasPrefix(n.C, "struct ") || strings.HasPrefix(n.C, "union ") || strings.HasPrefix(n.C, "enum ") {
+ n.Kind = "type"
+ i := len(needType)
+ needType = needType[0 : i+1]
+ needType[i] = n
+ continue
+ }
+
+ i := len(toSniff)
+ toSniff = toSniff[0 : i+1]
+ toSniff[i] = n
+ }
+
+ if len(toSniff) == 0 {
+ return needType
+ }
+
+ var b bytes.Buffer
+ b.WriteString(builtinProlog)
+ b.WriteString(f.Preamble)
+ b.WriteString("void __cgo__f__(void) {\n")
+ b.WriteString("#line 0 \"cgo-test\"\n")
+ for i, n := range toSniff {
+ fmt.Fprintf(&b, "%s; enum { _cgo_enum_%d = %s }; /* cgo-test:%d */\n", n.C, i, n.C, i)
+ }
+ b.WriteString("}\n")
+ stderr := p.gccErrors(b.Bytes())
+ if stderr == "" {
+ fatalf("gcc produced no output\non input:\n%s", b.Bytes())
+ }
+
+ names := make([]*Name, len(toSniff))
+ copy(names, toSniff)
+
+ isConst := make([]bool, len(toSniff))
+ for i := range isConst {
+ isConst[i] = true // until proven otherwise
+ }
+
+ for _, line := range strings.Split(stderr, "\n") {
+ if len(line) < 9 || line[0:9] != "cgo-test:" {
+ // the user will see any compiler errors when the code is compiled later.
+ continue
+ }
+ line = line[9:]
+ colon := strings.Index(line, ":")
+ if colon < 0 {
+ continue
+ }
+ i, err := strconv.Atoi(line[0:colon])
+ if err != nil {
+ continue
+ }
+ what := ""
+ switch {
+ default:
+ continue
+ case strings.Contains(line, ": useless type name in empty declaration"):
+ what = "type"
+ isConst[i] = false
+ case strings.Contains(line, ": statement with no effect"):
+ what = "not-type" // const or func or var
+ case strings.Contains(line, "undeclared"):
+ error(token.NoPos, "%s", strings.TrimSpace(line[colon+1:]))
+ case strings.Contains(line, "is not an integer constant"):
+ isConst[i] = false
+ continue
+ }
+ n := toSniff[i]
+ if n == nil {
+ continue
+ }
+ toSniff[i] = nil
+ n.Kind = what
+
+ j := len(needType)
+ needType = needType[0 : j+1]
+ needType[j] = n
+ }
+ for i, b := range isConst {
+ if b {
+ names[i].Kind = "const"
+ }
+ }
+ for _, n := range toSniff {
+ if n == nil {
+ continue
+ }
+ if n.Kind != "" {
+ continue
+ }
+ error(token.NoPos, "could not determine kind of name for C.%s", n.Go)
+ }
+ if nerrors > 0 {
+ fatalf("unresolved names")
+ }
+ return needType
+}
+
+// loadDWARF parses the DWARF debug information generated
+// by gcc to learn the details of the constants, variables, and types
+// being referred to as C.xxx.
+func (p *Package) loadDWARF(f *File, names []*Name) {
+ // Extract the types from the DWARF section of an object
+ // from a well-formed C program. Gcc only generates DWARF info
+ // for symbols in the object file, so it is not enough to print the
+ // preamble and hope the symbols we care about will be there.
+ // Instead, emit
+ // typeof(names[i]) *__cgo__i;
+ // for each entry in names and then dereference the type we
+ // learn for __cgo__i.
+ var b bytes.Buffer
+ b.WriteString(builtinProlog)
+ b.WriteString(f.Preamble)
+ for i, n := range names {
+ fmt.Fprintf(&b, "typeof(%s) *__cgo__%d;\n", n.C, i)
+ if n.Kind == "const" {
+ fmt.Fprintf(&b, "enum { __cgo_enum__%d = %s };\n", i, n.C)
+ }
+ }
+
+ // Apple's LLVM-based gcc does not include the enumeration
+ // names and values in its DWARF debug output. In case we're
+ // using such a gcc, create a data block initialized with the values.
+ // We can read them out of the object file.
+ fmt.Fprintf(&b, "long long __cgodebug_data[] = {\n")
+ for _, n := range names {
+ if n.Kind == "const" {
+ fmt.Fprintf(&b, "\t%s,\n", n.C)
+ } else {
+ fmt.Fprintf(&b, "\t0,\n")
+ }
+ }
+ fmt.Fprintf(&b, "\t0\n")
+ fmt.Fprintf(&b, "};\n")
+
+ d, bo, debugData := p.gccDebug(b.Bytes())
+ enumVal := make([]int64, len(debugData)/8)
+ for i := range enumVal {
+ enumVal[i] = int64(bo.Uint64(debugData[i*8:]))
+ }
+
+ // Scan DWARF info for top-level TagVariable entries with AttrName __cgo__i.
+ types := make([]dwarf.Type, len(names))
+ enums := make([]dwarf.Offset, len(names))
+ nameToIndex := make(map[*Name]int)
+ for i, n := range names {
+ nameToIndex[n] = i
+ }
+ r := d.Reader()
+ for {
+ e, err := r.Next()
+ if err != nil {
+ fatalf("reading DWARF entry: %s", err)
+ }
+ if e == nil {
+ break
+ }
+ switch e.Tag {
+ case dwarf.TagEnumerationType:
+ offset := e.Offset
+ for {
+ e, err := r.Next()
+ if err != nil {
+ fatalf("reading DWARF entry: %s", err)
+ }
+ if e.Tag == 0 {
+ break
+ }
+ if e.Tag == dwarf.TagEnumerator {
+ entryName := e.Val(dwarf.AttrName).(string)
+ if strings.HasPrefix(entryName, "__cgo_enum__") {
+ n, _ := strconv.Atoi(entryName[len("__cgo_enum__"):])
+ if 0 <= n && n < len(names) {
+ enums[n] = offset
+ }
+ }
+ }
+ }
+ case dwarf.TagVariable:
+ name, _ := e.Val(dwarf.AttrName).(string)
+ typOff, _ := e.Val(dwarf.AttrType).(dwarf.Offset)
+ if name == "" || typOff == 0 {
+ fatalf("malformed DWARF TagVariable entry")
+ }
+ if !strings.HasPrefix(name, "__cgo__") {
+ break
+ }
+ typ, err := d.Type(typOff)
+ if err != nil {
+ fatalf("loading DWARF type: %s", err)
+ }
+ t, ok := typ.(*dwarf.PtrType)
+ if !ok || t == nil {
+ fatalf("internal error: %s has non-pointer type", name)
+ }
+ i, err := strconv.Atoi(name[7:])
+ if err != nil {
+ fatalf("malformed __cgo__ name: %s", name)
+ }
+ if enums[i] != 0 {
+ t, err := d.Type(enums[i])
+ if err != nil {
+ fatalf("loading DWARF type: %s", err)
+ }
+ types[i] = t
+ } else {
+ types[i] = t.Type
+ }
+ }
+ if e.Tag != dwarf.TagCompileUnit {
+ r.SkipChildren()
+ }
+ }
+
+ // Record types and typedef information.
+ var conv typeConv
+ conv.Init(p.PtrSize)
+ for i, n := range names {
+ f, fok := types[i].(*dwarf.FuncType)
+ if n.Kind != "type" && fok {
+ n.Kind = "func"
+ n.FuncType = conv.FuncType(f)
+ } else {
+ n.Type = conv.Type(types[i])
+ if enums[i] != 0 && n.Type.EnumValues != nil {
+ k := fmt.Sprintf("__cgo_enum__%d", i)
+ n.Kind = "const"
+ n.Const = strconv.Itoa64(n.Type.EnumValues[k])
+ // Remove injected enum to ensure the value will deep-compare
+ // equally in future loads of the same constant.
+ n.Type.EnumValues[k] = 0, false
+ } else if n.Kind == "const" && i < len(enumVal) {
+ n.Const = strconv.Itoa64(enumVal[i])
+ }
+ }
+ }
+
+}
+
+// rewriteRef rewrites all the C.xxx references in f.AST to refer to the
+// Go equivalents, now that we have figured out the meaning of all
+// the xxx.
+func (p *Package) rewriteRef(f *File) {
+ // Assign mangled names.
+ for _, n := range f.Name {
+ if n.Kind == "not-type" {
+ n.Kind = "var"
+ }
+ if n.Mangle == "" {
+ n.Mangle = "_C" + n.Kind + "_" + n.Go
+ }
+ }
+
+ // Now that we have all the name types filled in,
+ // scan through the Refs to identify the ones that
+ // are trying to do a ,err call. Also check that
+ // functions are only used in calls.
+ for _, r := range f.Ref {
+ if r.Name.Kind == "const" && r.Name.Const == "" {
+ error(r.Pos(), "unable to find value of constant C.%s", r.Name.Go)
+ }
+ var expr ast.Expr = ast.NewIdent(r.Name.Mangle) // default
+ switch r.Context {
+ case "call", "call2":
+ if r.Name.Kind != "func" {
+ if r.Name.Kind == "type" {
+ r.Context = "type"
+ expr = r.Name.Type.Go
+ break
+ }
+ error(r.Pos(), "call of non-function C.%s", r.Name.Go)
+ break
+ }
+ if r.Context == "call2" {
+ if r.Name.FuncType.Result == nil {
+ error(r.Pos(), "assignment count mismatch: 2 = 0")
+ }
+ // Invent new Name for the two-result function.
+ n := f.Name["2"+r.Name.Go]
+ if n == nil {
+ n = new(Name)
+ *n = *r.Name
+ n.AddError = true
+ n.Mangle = "_C2func_" + n.Go
+ f.Name["2"+r.Name.Go] = n
+ }
+ expr = ast.NewIdent(n.Mangle)
+ r.Name = n
+ break
+ }
+ case "expr":
+ if r.Name.Kind == "func" {
+ error(r.Pos(), "must call C.%s", r.Name.Go)
+ }
+ if r.Name.Kind == "type" {
+ // Okay - might be new(T)
+ expr = r.Name.Type.Go
+ }
+ if r.Name.Kind == "var" {
+ expr = &ast.StarExpr{X: expr}
+ }
+
+ case "type":
+ if r.Name.Kind != "type" {
+ error(r.Pos(), "expression C.%s used as type", r.Name.Go)
+ } else {
+ expr = r.Name.Type.Go
+ }
+ default:
+ if r.Name.Kind == "func" {
+ error(r.Pos(), "must call C.%s", r.Name.Go)
+ }
+ }
+ *r.Expr = expr
+ }
+}
+
+// gccName returns the name of the compiler to run. Use $GCC if set in
+// the environment, otherwise just "gcc".
+
+func (p *Package) gccName() (ret string) {
+ if ret = os.Getenv("GCC"); ret == "" {
+ ret = "gcc"
+ }
+ return
+}
+
+// gccMachine returns the gcc -m flag to use, either "-m32" or "-m64".
+func (p *Package) gccMachine() []string {
+ switch runtime.GOARCH {
+ case "amd64":
+ return []string{"-m64"}
+ case "386":
+ return []string{"-m32"}
+ }
+ return nil
+}
+
+var gccTmp = objDir + "_cgo_.o"
+
+// gccCmd returns the gcc command line to use for compiling
+// the input.
+func (p *Package) gccCmd() []string {
+ c := []string{
+ p.gccName(),
+ "-Wall", // many warnings
+ "-Werror", // warnings are errors
+ "-o" + gccTmp, // write object to tmp
+ "-gdwarf-2", // generate DWARF v2 debugging symbols
+ "-fno-eliminate-unused-debug-types", // gets rid of e.g. untyped enum otherwise
+ "-c", // do not link
+ "-xc", // input language is C
+ }
+ c = append(c, p.GccOptions...)
+ c = append(c, p.gccMachine()...)
+ c = append(c, "-") //read input from standard input
+ return c
+}
+
+// gccDebug runs gcc -gdwarf-2 over the C program stdin and
+// returns the corresponding DWARF data and, if present, debug data block.
+func (p *Package) gccDebug(stdin []byte) (*dwarf.Data, binary.ByteOrder, []byte) {
+ runGcc(stdin, p.gccCmd())
+
+ if f, err := macho.Open(gccTmp); err == nil {
+ d, err := f.DWARF()
+ if err != nil {
+ fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
+ }
+ var data []byte
+ if f.Symtab != nil {
+ for i := range f.Symtab.Syms {
+ s := &f.Symtab.Syms[i]
+ // Mach-O still uses a leading _ to denote non-assembly symbols.
+ if s.Name == "_"+"__cgodebug_data" {
+ // Found it. Now find data section.
+ if i := int(s.Sect) - 1; 0 <= i && i < len(f.Sections) {
+ sect := f.Sections[i]
+ if sect.Addr <= s.Value && s.Value < sect.Addr+sect.Size {
+ if sdat, err := sect.Data(); err == nil {
+ data = sdat[s.Value-sect.Addr:]
+ }
+ }
+ }
+ }
+ }
+ }
+ return d, f.ByteOrder, data
+ }
+
+ // Can skip debug data block in ELF and PE for now.
+ // The DWARF information is complete.
+
+ if f, err := elf.Open(gccTmp); err == nil {
+ d, err := f.DWARF()
+ if err != nil {
+ fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
+ }
+ return d, f.ByteOrder, nil
+ }
+
+ if f, err := pe.Open(gccTmp); err == nil {
+ d, err := f.DWARF()
+ if err != nil {
+ fatalf("cannot load DWARF output from %s: %v", gccTmp, err)
+ }
+ return d, binary.LittleEndian, nil
+ }
+
+ fatalf("cannot parse gcc output %s as ELF, Mach-O, PE object", gccTmp)
+ panic("not reached")
+}
+
+// gccDefines runs gcc -E -dM -xc - over the C program stdin
+// and returns the corresponding standard output, which is the
+// #defines that gcc encountered while processing the input
+// and its included files.
+func (p *Package) gccDefines(stdin []byte) string {
+ base := []string{p.gccName(), "-E", "-dM", "-xc"}
+ base = append(base, p.gccMachine()...)
+ stdout, _ := runGcc(stdin, append(append(base, p.GccOptions...), "-"))
+ return stdout
+}
+
+// gccErrors runs gcc over the C program stdin and returns
+// the errors that gcc prints. That is, this function expects
+// gcc to fail.
+func (p *Package) gccErrors(stdin []byte) string {
+ // TODO(rsc): require failure
+ args := p.gccCmd()
+ if *debugGcc {
+ fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
+ os.Stderr.Write(stdin)
+ fmt.Fprint(os.Stderr, "EOF\n")
+ }
+ stdout, stderr, _ := run(stdin, args)
+ if *debugGcc {
+ os.Stderr.Write(stdout)
+ os.Stderr.Write(stderr)
+ }
+ return string(stderr)
+}
+
+// runGcc runs the gcc command line args with stdin on standard input.
+// If the command exits with a non-zero exit status, runGcc prints
+// details about what was run and exits.
+// Otherwise runGcc returns the data written to standard output and standard error.
+// Note that for some of the uses we expect useful data back
+// on standard error, but for those uses gcc must still exit 0.
+func runGcc(stdin []byte, args []string) (string, string) {
+ if *debugGcc {
+ fmt.Fprintf(os.Stderr, "$ %s <<EOF\n", strings.Join(args, " "))
+ os.Stderr.Write(stdin)
+ fmt.Fprint(os.Stderr, "EOF\n")
+ }
+ stdout, stderr, ok := run(stdin, args)
+ if *debugGcc {
+ os.Stderr.Write(stdout)
+ os.Stderr.Write(stderr)
+ }
+ if !ok {
+ os.Stderr.Write(stderr)
+ os.Exit(2)
+ }
+ return string(stdout), string(stderr)
+}
+
+// A typeConv is a translator from dwarf types to Go types
+// with equivalent memory layout.
+type typeConv struct {
+ // Cache of already-translated or in-progress types.
+ m map[dwarf.Type]*Type
+ typedef map[string]ast.Expr
+
+ // Predeclared types.
+ bool ast.Expr
+ byte ast.Expr // denotes padding
+ int8, int16, int32, int64 ast.Expr
+ uint8, uint16, uint32, uint64, uintptr ast.Expr
+ float32, float64 ast.Expr
+ complex64, complex128 ast.Expr
+ void ast.Expr
+ unsafePointer ast.Expr
+ string ast.Expr
+
+ ptrSize int64
+}
+
+var tagGen int
+var typedef = make(map[string]ast.Expr)
+
+func (c *typeConv) Init(ptrSize int64) {
+ c.ptrSize = ptrSize
+ c.m = make(map[dwarf.Type]*Type)
+ c.bool = c.Ident("bool")
+ c.byte = c.Ident("byte")
+ c.int8 = c.Ident("int8")
+ c.int16 = c.Ident("int16")
+ c.int32 = c.Ident("int32")
+ c.int64 = c.Ident("int64")
+ c.uint8 = c.Ident("uint8")
+ c.uint16 = c.Ident("uint16")
+ c.uint32 = c.Ident("uint32")
+ c.uint64 = c.Ident("uint64")
+ c.uintptr = c.Ident("uintptr")
+ c.float32 = c.Ident("float32")
+ c.float64 = c.Ident("float64")
+ c.complex64 = c.Ident("complex64")
+ c.complex128 = c.Ident("complex128")
+ c.unsafePointer = c.Ident("unsafe.Pointer")
+ c.void = c.Ident("void")
+ c.string = c.Ident("string")
+}
+
+// base strips away qualifiers and typedefs to get the underlying type
+func base(dt dwarf.Type) dwarf.Type {
+ for {
+ if d, ok := dt.(*dwarf.QualType); ok {
+ dt = d.Type
+ continue
+ }
+ if d, ok := dt.(*dwarf.TypedefType); ok {
+ dt = d.Type
+ continue
+ }
+ break
+ }
+ return dt
+}
+
+// Map from dwarf text names to aliases we use in package "C".
+var dwarfToName = map[string]string{
+ "long int": "long",
+ "long unsigned int": "ulong",
+ "unsigned int": "uint",
+ "short unsigned int": "ushort",
+ "short int": "short",
+ "long long int": "longlong",
+ "long long unsigned int": "ulonglong",
+ "signed char": "schar",
+ "float complex": "complexfloat",
+ "double complex": "complexdouble",
+}
+
+const signedDelta = 64
+
+// String returns the current type representation. Format arguments
+// are assembled within this method so that any changes in mutable
+// values are taken into account.
+func (tr *TypeRepr) String() string {
+ if len(tr.Repr) == 0 {
+ return ""
+ }
+ if len(tr.FormatArgs) == 0 {
+ return tr.Repr
+ }
+ return fmt.Sprintf(tr.Repr, tr.FormatArgs...)
+}
+
+// Empty returns true if the result of String would be "".
+func (tr *TypeRepr) Empty() bool {
+ return len(tr.Repr) == 0
+}
+
+// Set modifies the type representation.
+// If fargs are provided, repr is used as a format for fmt.Sprintf.
+// Otherwise, repr is used unprocessed as the type representation.
+func (tr *TypeRepr) Set(repr string, fargs ...interface{}) {
+ tr.Repr = repr
+ tr.FormatArgs = fargs
+}
+
+// Type returns a *Type with the same memory layout as
+// dtype when used as the type of a variable or a struct field.
+func (c *typeConv) Type(dtype dwarf.Type) *Type {
+ if t, ok := c.m[dtype]; ok {
+ if t.Go == nil {
+ fatalf("type conversion loop at %s", dtype)
+ }
+ return t
+ }
+
+ t := new(Type)
+ t.Size = dtype.Size()
+ t.Align = -1
+ t.C = &TypeRepr{Repr: dtype.Common().Name}
+ c.m[dtype] = t
+
+ if t.Size < 0 {
+ // Unsized types are [0]byte
+ t.Size = 0
+ t.Go = c.Opaque(0)
+ if t.C.Empty() {
+ t.C.Set("void")
+ }
+ return t
+ }
+
+ switch dt := dtype.(type) {
+ default:
+ fatalf("unexpected type: %s", dtype)
+
+ case *dwarf.AddrType:
+ if t.Size != c.ptrSize {
+ fatalf("unexpected: %d-byte address type - %s", t.Size, dtype)
+ }
+ t.Go = c.uintptr
+ t.Align = t.Size
+
+ case *dwarf.ArrayType:
+ if dt.StrideBitSize > 0 {
+ // Cannot represent bit-sized elements in Go.
+ t.Go = c.Opaque(t.Size)
+ break
+ }
+ gt := &ast.ArrayType{
+ Len: c.intExpr(dt.Count),
+ }
+ t.Go = gt // publish before recursive call
+ sub := c.Type(dt.Type)
+ t.Align = sub.Align
+ gt.Elt = sub.Go
+ t.C.Set("typeof(%s[%d])", sub.C, dt.Count)
+
+ case *dwarf.BoolType:
+ t.Go = c.bool
+ t.Align = c.ptrSize
+
+ case *dwarf.CharType:
+ if t.Size != 1 {
+ fatalf("unexpected: %d-byte char type - %s", t.Size, dtype)
+ }
+ t.Go = c.int8
+ t.Align = 1
+
+ case *dwarf.EnumType:
+ if t.Align = t.Size; t.Align >= c.ptrSize {
+ t.Align = c.ptrSize
+ }
+ t.C.Set("enum " + dt.EnumName)
+ signed := 0
+ t.EnumValues = make(map[string]int64)
+ for _, ev := range dt.Val {
+ t.EnumValues[ev.Name] = ev.Val
+ if ev.Val < 0 {
+ signed = signedDelta
+ }
+ }
+ switch t.Size + int64(signed) {
+ default:
+ fatalf("unexpected: %d-byte enum type - %s", t.Size, dtype)
+ case 1:
+ t.Go = c.uint8
+ case 2:
+ t.Go = c.uint16
+ case 4:
+ t.Go = c.uint32
+ case 8:
+ t.Go = c.uint64
+ case 1 + signedDelta:
+ t.Go = c.int8
+ case 2 + signedDelta:
+ t.Go = c.int16
+ case 4 + signedDelta:
+ t.Go = c.int32
+ case 8 + signedDelta:
+ t.Go = c.int64
+ }
+
+ case *dwarf.FloatType:
+ switch t.Size {
+ default:
+ fatalf("unexpected: %d-byte float type - %s", t.Size, dtype)
+ case 4:
+ t.Go = c.float32
+ case 8:
+ t.Go = c.float64
+ }
+ if t.Align = t.Size; t.Align >= c.ptrSize {
+ t.Align = c.ptrSize
+ }
+
+ case *dwarf.ComplexType:
+ switch t.Size {
+ default:
+ fatalf("unexpected: %d-byte complex type - %s", t.Size, dtype)
+ case 8:
+ t.Go = c.complex64
+ case 16:
+ t.Go = c.complex128
+ }
+ if t.Align = t.Size; t.Align >= c.ptrSize {
+ t.Align = c.ptrSize
+ }
+
+ case *dwarf.FuncType:
+ // No attempt at translation: would enable calls
+ // directly between worlds, but we need to moderate those.
+ t.Go = c.uintptr
+ t.Align = c.ptrSize
+
+ case *dwarf.IntType:
+ if dt.BitSize > 0 {
+ fatalf("unexpected: %d-bit int type - %s", dt.BitSize, dtype)
+ }
+ switch t.Size {
+ default:
+ fatalf("unexpected: %d-byte int type - %s", t.Size, dtype)
+ case 1:
+ t.Go = c.int8
+ case 2:
+ t.Go = c.int16
+ case 4:
+ t.Go = c.int32
+ case 8:
+ t.Go = c.int64
+ }
+ if t.Align = t.Size; t.Align >= c.ptrSize {
+ t.Align = c.ptrSize
+ }
+
+ case *dwarf.PtrType:
+ t.Align = c.ptrSize
+
+ // Translate void* as unsafe.Pointer
+ if _, ok := base(dt.Type).(*dwarf.VoidType); ok {
+ t.Go = c.unsafePointer
+ t.C.Set("void*")
+ break
+ }
+
+ gt := &ast.StarExpr{}
+ t.Go = gt // publish before recursive call
+ sub := c.Type(dt.Type)
+ gt.X = sub.Go
+ t.C.Set("%s*", sub.C)
+
+ case *dwarf.QualType:
+ // Ignore qualifier.
+ t = c.Type(dt.Type)
+ c.m[dtype] = t
+ return t
+
+ case *dwarf.StructType:
+ // Convert to Go struct, being careful about alignment.
+ // Have to give it a name to simulate C "struct foo" references.
+ tag := dt.StructName
+ if tag == "" {
+ tag = "__" + strconv.Itoa(tagGen)
+ tagGen++
+ } else if t.C.Empty() {
+ t.C.Set(dt.Kind + " " + tag)
+ }
+ name := c.Ident("_Ctype_" + dt.Kind + "_" + tag)
+ t.Go = name // publish before recursive calls
+ switch dt.Kind {
+ case "union", "class":
+ typedef[name.Name] = c.Opaque(t.Size)
+ if t.C.Empty() {
+ t.C.Set("typeof(unsigned char[%d])", t.Size)
+ }
+ case "struct":
+ g, csyntax, align := c.Struct(dt)
+ if t.C.Empty() {
+ t.C.Set(csyntax)
+ }
+ t.Align = align
+ typedef[name.Name] = g
+ }
+
+ case *dwarf.TypedefType:
+ // Record typedef for printing.
+ if dt.Name == "_GoString_" {
+ // Special C name for Go string type.
+ // Knows string layout used by compilers: pointer plus length,
+ // which rounds up to 2 pointers after alignment.
+ t.Go = c.string
+ t.Size = c.ptrSize * 2
+ t.Align = c.ptrSize
+ break
+ }
+ if dt.Name == "_GoBytes_" {
+ // Special C name for Go []byte type.
+ // Knows slice layout used by compilers: pointer, length, cap.
+ t.Go = c.Ident("[]byte")
+ t.Size = c.ptrSize + 4 + 4
+ t.Align = c.ptrSize
+ break
+ }
+ name := c.Ident("_Ctypedef_" + dt.Name)
+ t.Go = name // publish before recursive call
+ sub := c.Type(dt.Type)
+ t.Size = sub.Size
+ t.Align = sub.Align
+ if _, ok := typedef[name.Name]; !ok {
+ typedef[name.Name] = sub.Go
+ }
+
+ case *dwarf.UcharType:
+ if t.Size != 1 {
+ fatalf("unexpected: %d-byte uchar type - %s", t.Size, dtype)
+ }
+ t.Go = c.uint8
+ t.Align = 1
+
+ case *dwarf.UintType:
+ if dt.BitSize > 0 {
+ fatalf("unexpected: %d-bit uint type - %s", dt.BitSize, dtype)
+ }
+ switch t.Size {
+ default:
+ fatalf("unexpected: %d-byte uint type - %s", t.Size, dtype)
+ case 1:
+ t.Go = c.uint8
+ case 2:
+ t.Go = c.uint16
+ case 4:
+ t.Go = c.uint32
+ case 8:
+ t.Go = c.uint64
+ }
+ if t.Align = t.Size; t.Align >= c.ptrSize {
+ t.Align = c.ptrSize
+ }
+
+ case *dwarf.VoidType:
+ t.Go = c.void
+ t.C.Set("void")
+ }
+
+ switch dtype.(type) {
+ case *dwarf.AddrType, *dwarf.BoolType, *dwarf.CharType, *dwarf.IntType, *dwarf.FloatType, *dwarf.UcharType, *dwarf.UintType:
+ s := dtype.Common().Name
+ if s != "" {
+ if ss, ok := dwarfToName[s]; ok {
+ s = ss
+ }
+ s = strings.Join(strings.Split(s, " "), "") // strip spaces
+ name := c.Ident("_Ctype_" + s)
+ typedef[name.Name] = t.Go
+ t.Go = name
+ }
+ }
+
+ if t.C.Empty() {
+ fatalf("internal error: did not create C name for %s", dtype)
+ }
+
+ return t
+}
+
+// FuncArg returns a Go type with the same memory layout as
+// dtype when used as the type of a C function argument.
+func (c *typeConv) FuncArg(dtype dwarf.Type) *Type {
+ t := c.Type(dtype)
+ switch dt := dtype.(type) {
+ case *dwarf.ArrayType:
+ // Arrays are passed implicitly as pointers in C.
+ // In Go, we must be explicit.
+ tr := &TypeRepr{}
+ tr.Set("%s*", t.C)
+ return &Type{
+ Size: c.ptrSize,
+ Align: c.ptrSize,
+ Go: &ast.StarExpr{X: t.Go},
+ C: tr,
+ }
+ case *dwarf.TypedefType:
+ // C has much more relaxed rules than Go for
+ // implicit type conversions. When the parameter
+ // is type T defined as *X, simulate a little of the
+ // laxness of C by making the argument *X instead of T.
+ if ptr, ok := base(dt.Type).(*dwarf.PtrType); ok {
+ // Unless the typedef happens to point to void* since
+ // Go has special rules around using unsafe.Pointer.
+ if _, void := base(ptr.Type).(*dwarf.VoidType); !void {
+ return c.Type(ptr)
+ }
+ }
+ }
+ return t
+}
+
+// FuncType returns the Go type analogous to dtype.
+// There is no guarantee about matching memory layout.
+func (c *typeConv) FuncType(dtype *dwarf.FuncType) *FuncType {
+ p := make([]*Type, len(dtype.ParamType))
+ gp := make([]*ast.Field, len(dtype.ParamType))
+ for i, f := range dtype.ParamType {
+ // gcc's DWARF generator outputs a single DotDotDotType parameter for
+ // function pointers that specify no parameters (e.g. void
+ // (*__cgo_0)()). Treat this special case as void. This case is
+ // invalid according to ISO C anyway (i.e. void (*__cgo_1)(...) is not
+ // legal).
+ if _, ok := f.(*dwarf.DotDotDotType); ok && i == 0 {
+ p, gp = nil, nil
+ break
+ }
+ p[i] = c.FuncArg(f)
+ gp[i] = &ast.Field{Type: p[i].Go}
+ }
+ var r *Type
+ var gr []*ast.Field
+ if _, ok := dtype.ReturnType.(*dwarf.VoidType); !ok && dtype.ReturnType != nil {
+ r = c.Type(dtype.ReturnType)
+ gr = []*ast.Field{&ast.Field{Type: r.Go}}
+ }
+ return &FuncType{
+ Params: p,
+ Result: r,
+ Go: &ast.FuncType{
+ Params: &ast.FieldList{List: gp},
+ Results: &ast.FieldList{List: gr},
+ },
+ }
+}
+
+// Identifier
+func (c *typeConv) Ident(s string) *ast.Ident {
+ return ast.NewIdent(s)
+}
+
+// Opaque type of n bytes.
+func (c *typeConv) Opaque(n int64) ast.Expr {
+ return &ast.ArrayType{
+ Len: c.intExpr(n),
+ Elt: c.byte,
+ }
+}
+
+// Expr for integer n.
+func (c *typeConv) intExpr(n int64) ast.Expr {
+ return &ast.BasicLit{
+ Kind: token.INT,
+ Value: strconv.Itoa64(n),
+ }
+}
+
+// Add padding of given size to fld.
+func (c *typeConv) pad(fld []*ast.Field, size int64) []*ast.Field {
+ n := len(fld)
+ fld = fld[0 : n+1]
+ fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident("_")}, Type: c.Opaque(size)}
+ return fld
+}
+
+// Struct conversion: return Go and (6g) C syntax for type.
+func (c *typeConv) Struct(dt *dwarf.StructType) (expr *ast.StructType, csyntax string, align int64) {
+ var buf bytes.Buffer
+ buf.WriteString("struct {")
+ fld := make([]*ast.Field, 0, 2*len(dt.Field)+1) // enough for padding around every field
+ off := int64(0)
+
+ // Rename struct fields that happen to be named Go keywords into
+ // _{keyword}. Create a map from C ident -> Go ident. The Go ident will
+ // be mangled. Any existing identifier that already has the same name on
+ // the C-side will cause the Go-mangled version to be prefixed with _.
+ // (e.g. in a struct with fields '_type' and 'type', the latter would be
+ // rendered as '__type' in Go).
+ ident := make(map[string]string)
+ used := make(map[string]bool)
+ for _, f := range dt.Field {
+ ident[f.Name] = f.Name
+ used[f.Name] = true
+ }
+ for cid, goid := range ident {
+ if token.Lookup([]byte(goid)).IsKeyword() {
+ // Avoid keyword
+ goid = "_" + goid
+
+ // Also avoid existing fields
+ for _, exist := used[goid]; exist; _, exist = used[goid] {
+ goid = "_" + goid
+ }
+
+ used[goid] = true
+ ident[cid] = goid
+ }
+ }
+
+ for _, f := range dt.Field {
+ if f.BitSize > 0 && f.BitSize != f.ByteSize*8 {
+ continue
+ }
+ if f.ByteOffset > off {
+ fld = c.pad(fld, f.ByteOffset-off)
+ off = f.ByteOffset
+ }
+ t := c.Type(f.Type)
+ n := len(fld)
+ fld = fld[0 : n+1]
+
+ fld[n] = &ast.Field{Names: []*ast.Ident{c.Ident(ident[f.Name])}, Type: t.Go}
+ off += t.Size
+ buf.WriteString(t.C.String())
+ buf.WriteString(" ")
+ buf.WriteString(f.Name)
+ buf.WriteString("; ")
+ if t.Align > align {
+ align = t.Align
+ }
+ }
+ if off < dt.ByteSize {
+ fld = c.pad(fld, dt.ByteSize-off)
+ off = dt.ByteSize
+ }
+ if off != dt.ByteSize {
+ fatalf("struct size calculation error")
+ }
+ buf.WriteString("}")
+ csyntax = buf.String()
+ expr = &ast.StructType{Fields: &ast.FieldList{List: fld}}
+ return
+}