summaryrefslogtreecommitdiff
path: root/src/cmd/fix/testdata/reflect.print.go.out
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/fix/testdata/reflect.print.go.out')
-rw-r--r--src/cmd/fix/testdata/reflect.print.go.out944
1 files changed, 0 insertions, 944 deletions
diff --git a/src/cmd/fix/testdata/reflect.print.go.out b/src/cmd/fix/testdata/reflect.print.go.out
deleted file mode 100644
index e4e4c7368..000000000
--- a/src/cmd/fix/testdata/reflect.print.go.out
+++ /dev/null
@@ -1,944 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package fmt
-
-import (
- "bytes"
- "io"
- "os"
- "reflect"
- "utf8"
-)
-
-// Some constants in the form of bytes, to avoid string overhead.
-// Needlessly fastidious, I suppose.
-var (
- commaSpaceBytes = []byte(", ")
- nilAngleBytes = []byte("<nil>")
- nilParenBytes = []byte("(nil)")
- nilBytes = []byte("nil")
- mapBytes = []byte("map[")
- missingBytes = []byte("(MISSING)")
- extraBytes = []byte("%!(EXTRA ")
- irparenBytes = []byte("i)")
- bytesBytes = []byte("[]byte{")
- widthBytes = []byte("%!(BADWIDTH)")
- precBytes = []byte("%!(BADPREC)")
- noVerbBytes = []byte("%!(NOVERB)")
-)
-
-// State represents the printer state passed to custom formatters.
-// It provides access to the io.Writer interface plus information about
-// the flags and options for the operand's format specifier.
-type State interface {
- // Write is the function to call to emit formatted output to be printed.
- Write(b []byte) (ret int, err os.Error)
- // Width returns the value of the width option and whether it has been set.
- Width() (wid int, ok bool)
- // Precision returns the value of the precision option and whether it has been set.
- Precision() (prec int, ok bool)
-
- // Flag returns whether the flag c, a character, has been set.
- Flag(int) bool
-}
-
-// Formatter is the interface implemented by values with a custom formatter.
-// The implementation of Format may call Sprintf or Fprintf(f) etc.
-// to generate its output.
-type Formatter interface {
- Format(f State, c int)
-}
-
-// Stringer is implemented by any value that has a String method(),
-// which defines the ``native'' format for that value.
-// The String method is used to print values passed as an operand
-// to a %s or %v format or to an unformatted printer such as Print.
-type Stringer interface {
- String() string
-}
-
-// GoStringer is implemented by any value that has a GoString() method,
-// which defines the Go syntax for that value.
-// The GoString method is used to print values passed as an operand
-// to a %#v format.
-type GoStringer interface {
- GoString() string
-}
-
-type pp struct {
- n int
- buf bytes.Buffer
- runeBuf [utf8.UTFMax]byte
- fmt fmt
-}
-
-// A cache holds a set of reusable objects.
-// The buffered channel holds the currently available objects.
-// If more are needed, the cache creates them by calling new.
-type cache struct {
- saved chan interface{}
- new func() interface{}
-}
-
-func (c *cache) put(x interface{}) {
- select {
- case c.saved <- x:
- // saved in cache
- default:
- // discard
- }
-}
-
-func (c *cache) get() interface{} {
- select {
- case x := <-c.saved:
- return x // reused from cache
- default:
- return c.new()
- }
- panic("not reached")
-}
-
-func newCache(f func() interface{}) *cache {
- return &cache{make(chan interface{}, 100), f}
-}
-
-var ppFree = newCache(func() interface{} { return new(pp) })
-
-// Allocate a new pp struct or grab a cached one.
-func newPrinter() *pp {
- p := ppFree.get().(*pp)
- p.fmt.init(&p.buf)
- return p
-}
-
-// Save used pp structs in ppFree; avoids an allocation per invocation.
-func (p *pp) free() {
- // Don't hold on to pp structs with large buffers.
- if cap(p.buf.Bytes()) > 1024 {
- return
- }
- p.buf.Reset()
- ppFree.put(p)
-}
-
-func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
-
-func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
-
-func (p *pp) Flag(b int) bool {
- switch b {
- case '-':
- return p.fmt.minus
- case '+':
- return p.fmt.plus
- case '#':
- return p.fmt.sharp
- case ' ':
- return p.fmt.space
- case '0':
- return p.fmt.zero
- }
- return false
-}
-
-func (p *pp) add(c int) {
- p.buf.WriteRune(c)
-}
-
-// Implement Write so we can call Fprintf on a pp (through State), for
-// recursive use in custom verbs.
-func (p *pp) Write(b []byte) (ret int, err os.Error) {
- return p.buf.Write(b)
-}
-
-// These routines end in 'f' and take a format string.
-
-// Fprintf formats according to a format specifier and writes to w.
-// It returns the number of bytes written and any write error encountered.
-func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) {
- p := newPrinter()
- p.doPrintf(format, a)
- n64, error := p.buf.WriteTo(w)
- p.free()
- return int(n64), error
-}
-
-// Printf formats according to a format specifier and writes to standard output.
-// It returns the number of bytes written and any write error encountered.
-func Printf(format string, a ...interface{}) (n int, errno os.Error) {
- n, errno = Fprintf(os.Stdout, format, a...)
- return n, errno
-}
-
-// Sprintf formats according to a format specifier and returns the resulting string.
-func Sprintf(format string, a ...interface{}) string {
- p := newPrinter()
- p.doPrintf(format, a)
- s := p.buf.String()
- p.free()
- return s
-}
-
-// Errorf formats according to a format specifier and returns the string
-// converted to an os.ErrorString, which satisfies the os.Error interface.
-func Errorf(format string, a ...interface{}) os.Error {
- return os.NewError(Sprintf(format, a...))
-}
-
-// These routines do not take a format string
-
-// Fprint formats using the default formats for its operands and writes to w.
-// Spaces are added between operands when neither is a string.
-// It returns the number of bytes written and any write error encountered.
-func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) {
- p := newPrinter()
- p.doPrint(a, false, false)
- n64, error := p.buf.WriteTo(w)
- p.free()
- return int(n64), error
-}
-
-// Print formats using the default formats for its operands and writes to standard output.
-// Spaces are added between operands when neither is a string.
-// It returns the number of bytes written and any write error encountered.
-func Print(a ...interface{}) (n int, errno os.Error) {
- n, errno = Fprint(os.Stdout, a...)
- return n, errno
-}
-
-// Sprint formats using the default formats for its operands and returns the resulting string.
-// Spaces are added between operands when neither is a string.
-func Sprint(a ...interface{}) string {
- p := newPrinter()
- p.doPrint(a, false, false)
- s := p.buf.String()
- p.free()
- return s
-}
-
-// These routines end in 'ln', do not take a format string,
-// always add spaces between operands, and add a newline
-// after the last operand.
-
-// Fprintln formats using the default formats for its operands and writes to w.
-// Spaces are always added between operands and a newline is appended.
-// It returns the number of bytes written and any write error encountered.
-func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) {
- p := newPrinter()
- p.doPrint(a, true, true)
- n64, error := p.buf.WriteTo(w)
- p.free()
- return int(n64), error
-}
-
-// Println formats using the default formats for its operands and writes to standard output.
-// Spaces are always added between operands and a newline is appended.
-// It returns the number of bytes written and any write error encountered.
-func Println(a ...interface{}) (n int, errno os.Error) {
- n, errno = Fprintln(os.Stdout, a...)
- return n, errno
-}
-
-// Sprintln formats using the default formats for its operands and returns the resulting string.
-// Spaces are always added between operands and a newline is appended.
-func Sprintln(a ...interface{}) string {
- p := newPrinter()
- p.doPrint(a, true, true)
- s := p.buf.String()
- p.free()
- return s
-}
-
-// Get the i'th arg of the struct value.
-// If the arg itself is an interface, return a value for
-// the thing inside the interface, not the interface itself.
-func getField(v reflect.Value, i int) reflect.Value {
- val := v.Field(i)
- if i := val; i.Kind() == reflect.Interface {
- if inter := i.Interface(); inter != nil {
- return reflect.ValueOf(inter)
- }
- }
- return val
-}
-
-// Convert ASCII to integer. n is 0 (and got is false) if no number present.
-func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
- if start >= end {
- return 0, false, end
- }
- for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
- num = num*10 + int(s[newi]-'0')
- isnum = true
- }
- return
-}
-
-func (p *pp) unknownType(v interface{}) {
- if v == nil {
- p.buf.Write(nilAngleBytes)
- return
- }
- p.buf.WriteByte('?')
- p.buf.WriteString(reflect.TypeOf(v).String())
- p.buf.WriteByte('?')
-}
-
-func (p *pp) badVerb(verb int, val interface{}) {
- p.add('%')
- p.add('!')
- p.add(verb)
- p.add('(')
- if val == nil {
- p.buf.Write(nilAngleBytes)
- } else {
- p.buf.WriteString(reflect.TypeOf(val).String())
- p.add('=')
- p.printField(val, 'v', false, false, 0)
- }
- p.add(')')
-}
-
-func (p *pp) fmtBool(v bool, verb int, value interface{}) {
- switch verb {
- case 't', 'v':
- p.fmt.fmt_boolean(v)
- default:
- p.badVerb(verb, value)
- }
-}
-
-// fmtC formats a rune for the 'c' format.
-func (p *pp) fmtC(c int64) {
- rune := int(c) // Check for overflow.
- if int64(rune) != c {
- rune = utf8.RuneError
- }
- w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], rune)
- p.fmt.pad(p.runeBuf[0:w])
-}
-
-func (p *pp) fmtInt64(v int64, verb int, value interface{}) {
- switch verb {
- case 'b':
- p.fmt.integer(v, 2, signed, ldigits)
- case 'c':
- p.fmtC(v)
- case 'd', 'v':
- p.fmt.integer(v, 10, signed, ldigits)
- case 'o':
- p.fmt.integer(v, 8, signed, ldigits)
- case 'x':
- p.fmt.integer(v, 16, signed, ldigits)
- case 'U':
- p.fmtUnicode(v)
- case 'X':
- p.fmt.integer(v, 16, signed, udigits)
- default:
- p.badVerb(verb, value)
- }
-}
-
-// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
-// not, as requested, by temporarily setting the sharp flag.
-func (p *pp) fmt0x64(v uint64, leading0x bool) {
- sharp := p.fmt.sharp
- p.fmt.sharp = leading0x
- p.fmt.integer(int64(v), 16, unsigned, ldigits)
- p.fmt.sharp = sharp
-}
-
-// fmtUnicode formats a uint64 in U+1234 form by
-// temporarily turning on the unicode flag and tweaking the precision.
-func (p *pp) fmtUnicode(v int64) {
- precPresent := p.fmt.precPresent
- prec := p.fmt.prec
- if !precPresent {
- // If prec is already set, leave it alone; otherwise 4 is minimum.
- p.fmt.prec = 4
- p.fmt.precPresent = true
- }
- p.fmt.unicode = true // turn on U+
- p.fmt.integer(int64(v), 16, unsigned, udigits)
- p.fmt.unicode = false
- p.fmt.prec = prec
- p.fmt.precPresent = precPresent
-}
-
-func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) {
- switch verb {
- case 'b':
- p.fmt.integer(int64(v), 2, unsigned, ldigits)
- case 'c':
- p.fmtC(int64(v))
- case 'd':
- p.fmt.integer(int64(v), 10, unsigned, ldigits)
- case 'v':
- if goSyntax {
- p.fmt0x64(v, true)
- } else {
- p.fmt.integer(int64(v), 10, unsigned, ldigits)
- }
- case 'o':
- p.fmt.integer(int64(v), 8, unsigned, ldigits)
- case 'x':
- p.fmt.integer(int64(v), 16, unsigned, ldigits)
- case 'X':
- p.fmt.integer(int64(v), 16, unsigned, udigits)
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtFloat32(v float32, verb int, value interface{}) {
- switch verb {
- case 'b':
- p.fmt.fmt_fb32(v)
- case 'e':
- p.fmt.fmt_e32(v)
- case 'E':
- p.fmt.fmt_E32(v)
- case 'f':
- p.fmt.fmt_f32(v)
- case 'g', 'v':
- p.fmt.fmt_g32(v)
- case 'G':
- p.fmt.fmt_G32(v)
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtFloat64(v float64, verb int, value interface{}) {
- switch verb {
- case 'b':
- p.fmt.fmt_fb64(v)
- case 'e':
- p.fmt.fmt_e64(v)
- case 'E':
- p.fmt.fmt_E64(v)
- case 'f':
- p.fmt.fmt_f64(v)
- case 'g', 'v':
- p.fmt.fmt_g64(v)
- case 'G':
- p.fmt.fmt_G64(v)
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) {
- switch verb {
- case 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c64(v, verb)
- case 'v':
- p.fmt.fmt_c64(v, 'g')
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) {
- switch verb {
- case 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c128(v, verb)
- case 'v':
- p.fmt.fmt_c128(v, 'g')
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) {
- switch verb {
- case 'v':
- if goSyntax {
- p.fmt.fmt_q(v)
- } else {
- p.fmt.fmt_s(v)
- }
- case 's':
- p.fmt.fmt_s(v)
- case 'x':
- p.fmt.fmt_sx(v)
- case 'X':
- p.fmt.fmt_sX(v)
- case 'q':
- p.fmt.fmt_q(v)
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) {
- if verb == 'v' || verb == 'd' {
- if goSyntax {
- p.buf.Write(bytesBytes)
- } else {
- p.buf.WriteByte('[')
- }
- for i, c := range v {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- return
- }
- s := string(v)
- switch verb {
- case 's':
- p.fmt.fmt_s(s)
- case 'x':
- p.fmt.fmt_sx(s)
- case 'X':
- p.fmt.fmt_sX(s)
- case 'q':
- p.fmt.fmt_q(s)
- default:
- p.badVerb(verb, value)
- }
-}
-
-func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) {
- var u uintptr
- switch value.Kind() {
- case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
- u = value.Pointer()
- default:
- p.badVerb(verb, field)
- return
- }
- if goSyntax {
- p.add('(')
- p.buf.WriteString(reflect.TypeOf(field).String())
- p.add(')')
- p.add('(')
- if u == 0 {
- p.buf.Write(nilBytes)
- } else {
- p.fmt0x64(uint64(u), true)
- }
- p.add(')')
- } else {
- p.fmt0x64(uint64(u), !p.fmt.sharp)
- }
-}
-
-var (
- intBits = reflect.TypeOf(0).Bits()
- floatBits = reflect.TypeOf(0.0).Bits()
- complexBits = reflect.TypeOf(1i).Bits()
- uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
-)
-
-func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) {
- if field == nil {
- if verb == 'T' || verb == 'v' {
- p.buf.Write(nilAngleBytes)
- } else {
- p.badVerb(verb, field)
- }
- return false
- }
-
- // Special processing considerations.
- // %T (the value's type) and %p (its address) are special; we always do them first.
- switch verb {
- case 'T':
- p.printField(reflect.TypeOf(field).String(), 's', false, false, 0)
- return false
- case 'p':
- p.fmtPointer(field, reflect.ValueOf(field), verb, goSyntax)
- return false
- }
- // Is it a Formatter?
- if formatter, ok := field.(Formatter); ok {
- formatter.Format(p, verb)
- return false // this value is not a string
-
- }
- // Must not touch flags before Formatter looks at them.
- if plus {
- p.fmt.plus = false
- }
- // If we're doing Go syntax and the field knows how to supply it, take care of it now.
- if goSyntax {
- p.fmt.sharp = false
- if stringer, ok := field.(GoStringer); ok {
- // Print the result of GoString unadorned.
- p.fmtString(stringer.GoString(), 's', false, field)
- return false // this value is not a string
- }
- } else {
- // Is it a Stringer?
- if stringer, ok := field.(Stringer); ok {
- p.printField(stringer.String(), verb, plus, false, depth)
- return false // this value is not a string
- }
- }
-
- // Some types can be done without reflection.
- switch f := field.(type) {
- case bool:
- p.fmtBool(f, verb, field)
- return false
- case float32:
- p.fmtFloat32(f, verb, field)
- return false
- case float64:
- p.fmtFloat64(f, verb, field)
- return false
- case complex64:
- p.fmtComplex64(complex64(f), verb, field)
- return false
- case complex128:
- p.fmtComplex128(f, verb, field)
- return false
- case int:
- p.fmtInt64(int64(f), verb, field)
- return false
- case int8:
- p.fmtInt64(int64(f), verb, field)
- return false
- case int16:
- p.fmtInt64(int64(f), verb, field)
- return false
- case int32:
- p.fmtInt64(int64(f), verb, field)
- return false
- case int64:
- p.fmtInt64(f, verb, field)
- return false
- case uint:
- p.fmtUint64(uint64(f), verb, goSyntax, field)
- return false
- case uint8:
- p.fmtUint64(uint64(f), verb, goSyntax, field)
- return false
- case uint16:
- p.fmtUint64(uint64(f), verb, goSyntax, field)
- return false
- case uint32:
- p.fmtUint64(uint64(f), verb, goSyntax, field)
- return false
- case uint64:
- p.fmtUint64(f, verb, goSyntax, field)
- return false
- case uintptr:
- p.fmtUint64(uint64(f), verb, goSyntax, field)
- return false
- case string:
- p.fmtString(f, verb, goSyntax, field)
- return verb == 's' || verb == 'v'
- case []byte:
- p.fmtBytes(f, verb, goSyntax, depth, field)
- return verb == 's'
- }
-
- // Need to use reflection
- value := reflect.ValueOf(field)
-
-BigSwitch:
- switch f := value; f.Kind() {
- case reflect.Bool:
- p.fmtBool(f.Bool(), verb, field)
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- p.fmtInt64(f.Int(), verb, field)
- case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
- p.fmtUint64(uint64(f.Uint()), verb, goSyntax, field)
- case reflect.Float32, reflect.Float64:
- if f.Type().Size() == 4 {
- p.fmtFloat32(float32(f.Float()), verb, field)
- } else {
- p.fmtFloat64(float64(f.Float()), verb, field)
- }
- case reflect.Complex64, reflect.Complex128:
- if f.Type().Size() == 8 {
- p.fmtComplex64(complex64(f.Complex()), verb, field)
- } else {
- p.fmtComplex128(complex128(f.Complex()), verb, field)
- }
- case reflect.String:
- p.fmtString(f.String(), verb, goSyntax, field)
- case reflect.Map:
- if goSyntax {
- p.buf.WriteString(f.Type().String())
- p.buf.WriteByte('{')
- } else {
- p.buf.Write(mapBytes)
- }
- keys := f.MapKeys()
- for i, key := range keys {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printField(key.Interface(), verb, plus, goSyntax, depth+1)
- p.buf.WriteByte(':')
- p.printField(f.MapIndex(key).Interface(), verb, plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- case reflect.Struct:
- if goSyntax {
- p.buf.WriteString(reflect.TypeOf(field).String())
- }
- p.add('{')
- v := f
- t := v.Type()
- for i := 0; i < v.NumField(); i++ {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- if plus || goSyntax {
- if f := t.Field(i); f.Name != "" {
- p.buf.WriteString(f.Name)
- p.buf.WriteByte(':')
- }
- }
- p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1)
- }
- p.buf.WriteByte('}')
- case reflect.Interface:
- value := f.Elem()
- if !value.IsValid() {
- if goSyntax {
- p.buf.WriteString(reflect.TypeOf(field).String())
- p.buf.Write(nilParenBytes)
- } else {
- p.buf.Write(nilAngleBytes)
- }
- } else {
- return p.printField(value.Interface(), verb, plus, goSyntax, depth+1)
- }
- case reflect.Array, reflect.Slice:
- // Byte slices are special.
- if f.Type().Elem().Kind() == reflect.Uint8 {
- // We know it's a slice of bytes, but we also know it does not have static type
- // []byte, or it would have been caught above. Therefore we cannot convert
- // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have
- // that type, and we can't write an expression of the right type and do a
- // conversion because we don't have a static way to write the right type.
- // So we build a slice by hand. This is a rare case but it would be nice
- // if reflection could help a little more.
- bytes := make([]byte, f.Len())
- for i := range bytes {
- bytes[i] = byte(f.Index(i).Uint())
- }
- p.fmtBytes(bytes, verb, goSyntax, depth, field)
- return verb == 's'
- }
- if goSyntax {
- p.buf.WriteString(reflect.TypeOf(field).String())
- p.buf.WriteByte('{')
- } else {
- p.buf.WriteByte('[')
- }
- for i := 0; i < f.Len(); i++ {
- if i > 0 {
- if goSyntax {
- p.buf.Write(commaSpaceBytes)
- } else {
- p.buf.WriteByte(' ')
- }
- }
- p.printField(f.Index(i).Interface(), verb, plus, goSyntax, depth+1)
- }
- if goSyntax {
- p.buf.WriteByte('}')
- } else {
- p.buf.WriteByte(']')
- }
- case reflect.Ptr:
- v := f.Pointer()
- // pointer to array or slice or struct? ok at top level
- // but not embedded (avoid loops)
- if v != 0 && depth == 0 {
- switch a := f.Elem(); a.Kind() {
- case reflect.Array, reflect.Slice:
- p.buf.WriteByte('&')
- p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
- break BigSwitch
- case reflect.Struct:
- p.buf.WriteByte('&')
- p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
- break BigSwitch
- }
- }
- if goSyntax {
- p.buf.WriteByte('(')
- p.buf.WriteString(reflect.TypeOf(field).String())
- p.buf.WriteByte(')')
- p.buf.WriteByte('(')
- if v == 0 {
- p.buf.Write(nilBytes)
- } else {
- p.fmt0x64(uint64(v), true)
- }
- p.buf.WriteByte(')')
- break
- }
- if v == 0 {
- p.buf.Write(nilAngleBytes)
- break
- }
- p.fmt0x64(uint64(v), true)
- case reflect.Chan, reflect.Func, reflect.UnsafePointer:
- p.fmtPointer(field, value, verb, goSyntax)
- default:
- p.unknownType(f)
- }
- return false
-}
-
-// intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int.
-func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) {
- newi, newfieldnum = end, fieldnum
- if i < end && fieldnum < len(a) {
- num, isInt = a[fieldnum].(int)
- newi, newfieldnum = i+1, fieldnum+1
- }
- return
-}
-
-func (p *pp) doPrintf(format string, a []interface{}) {
- end := len(format)
- fieldnum := 0 // we process one field per non-trivial format
- for i := 0; i < end; {
- lasti := i
- for i < end && format[i] != '%' {
- i++
- }
- if i > lasti {
- p.buf.WriteString(format[lasti:i])
- }
- if i >= end {
- // done processing format string
- break
- }
-
- // Process one verb
- i++
- // flags and widths
- p.fmt.clearflags()
- F:
- for ; i < end; i++ {
- switch format[i] {
- case '#':
- p.fmt.sharp = true
- case '0':
- p.fmt.zero = true
- case '+':
- p.fmt.plus = true
- case '-':
- p.fmt.minus = true
- case ' ':
- p.fmt.space = true
- default:
- break F
- }
- }
- // do we have width?
- if i < end && format[i] == '*' {
- p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum)
- if !p.fmt.widPresent {
- p.buf.Write(widthBytes)
- }
- } else {
- p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
- }
- // do we have precision?
- if i < end && format[i] == '.' {
- if format[i+1] == '*' {
- p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum)
- if !p.fmt.precPresent {
- p.buf.Write(precBytes)
- }
- } else {
- p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
- }
- }
- if i >= end {
- p.buf.Write(noVerbBytes)
- continue
- }
- c, w := utf8.DecodeRuneInString(format[i:])
- i += w
- // percent is special - absorbs no operand
- if c == '%' {
- p.buf.WriteByte('%') // We ignore width and prec.
- continue
- }
- if fieldnum >= len(a) { // out of operands
- p.buf.WriteByte('%')
- p.add(c)
- p.buf.Write(missingBytes)
- continue
- }
- field := a[fieldnum]
- fieldnum++
-
- goSyntax := c == 'v' && p.fmt.sharp
- plus := c == 'v' && p.fmt.plus
- p.printField(field, c, plus, goSyntax, 0)
- }
-
- if fieldnum < len(a) {
- p.buf.Write(extraBytes)
- for ; fieldnum < len(a); fieldnum++ {
- field := a[fieldnum]
- if field != nil {
- p.buf.WriteString(reflect.TypeOf(field).String())
- p.buf.WriteByte('=')
- }
- p.printField(field, 'v', false, false, 0)
- if fieldnum+1 < len(a) {
- p.buf.Write(commaSpaceBytes)
- }
- }
- p.buf.WriteByte(')')
- }
-}
-
-func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
- prevString := false
- for fieldnum := 0; fieldnum < len(a); fieldnum++ {
- p.fmt.clearflags()
- // always add spaces if we're doing println
- field := a[fieldnum]
- if fieldnum > 0 {
- isString := field != nil && reflect.TypeOf(field).Kind() == reflect.String
- if addspace || !isString && !prevString {
- p.buf.WriteByte(' ')
- }
- }
- prevString = p.printField(field, 'v', false, false, 0)
- }
- if addnewline {
- p.buf.WriteByte('\n')
- }
-}