summaryrefslogtreecommitdiff
path: root/src/cmd/gofix/testdata/reflect.print.go.out
diff options
context:
space:
mode:
Diffstat (limited to 'src/cmd/gofix/testdata/reflect.print.go.out')
-rw-r--r--src/cmd/gofix/testdata/reflect.print.go.out945
1 files changed, 945 insertions, 0 deletions
diff --git a/src/cmd/gofix/testdata/reflect.print.go.out b/src/cmd/gofix/testdata/reflect.print.go.out
new file mode 100644
index 000000000..e3dc775cf
--- /dev/null
+++ b/src/cmd/gofix/testdata/reflect.print.go.out
@@ -0,0 +1,945 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package fmt
+
+import (
+ "bytes"
+ "io"
+ "os"
+ "reflect"
+ "utf8"
+)
+
+// Some constants in the form of bytes, to avoid string overhead.
+// Needlessly fastidious, I suppose.
+var (
+ commaSpaceBytes = []byte(", ")
+ nilAngleBytes = []byte("<nil>")
+ nilParenBytes = []byte("(nil)")
+ nilBytes = []byte("nil")
+ mapBytes = []byte("map[")
+ missingBytes = []byte("(MISSING)")
+ extraBytes = []byte("%!(EXTRA ")
+ irparenBytes = []byte("i)")
+ bytesBytes = []byte("[]byte{")
+ widthBytes = []byte("%!(BADWIDTH)")
+ precBytes = []byte("%!(BADPREC)")
+ noVerbBytes = []byte("%!(NOVERB)")
+)
+
+// State represents the printer state passed to custom formatters.
+// It provides access to the io.Writer interface plus information about
+// the flags and options for the operand's format specifier.
+type State interface {
+ // Write is the function to call to emit formatted output to be printed.
+ Write(b []byte) (ret int, err os.Error)
+ // Width returns the value of the width option and whether it has been set.
+ Width() (wid int, ok bool)
+ // Precision returns the value of the precision option and whether it has been set.
+ Precision() (prec int, ok bool)
+
+ // Flag returns whether the flag c, a character, has been set.
+ Flag(int) bool
+}
+
+// Formatter is the interface implemented by values with a custom formatter.
+// The implementation of Format may call Sprintf or Fprintf(f) etc.
+// to generate its output.
+type Formatter interface {
+ Format(f State, c int)
+}
+
+// Stringer is implemented by any value that has a String method(),
+// which defines the ``native'' format for that value.
+// The String method is used to print values passed as an operand
+// to a %s or %v format or to an unformatted printer such as Print.
+type Stringer interface {
+ String() string
+}
+
+// GoStringer is implemented by any value that has a GoString() method,
+// which defines the Go syntax for that value.
+// The GoString method is used to print values passed as an operand
+// to a %#v format.
+type GoStringer interface {
+ GoString() string
+}
+
+type pp struct {
+ n int
+ buf bytes.Buffer
+ runeBuf [utf8.UTFMax]byte
+ fmt fmt
+}
+
+// A cache holds a set of reusable objects.
+// The buffered channel holds the currently available objects.
+// If more are needed, the cache creates them by calling new.
+type cache struct {
+ saved chan interface{}
+ new func() interface{}
+}
+
+func (c *cache) put(x interface{}) {
+ select {
+ case c.saved <- x:
+ // saved in cache
+ default:
+ // discard
+ }
+}
+
+func (c *cache) get() interface{} {
+ select {
+ case x := <-c.saved:
+ return x // reused from cache
+ default:
+ return c.new()
+ }
+ panic("not reached")
+}
+
+func newCache(f func() interface{}) *cache {
+ return &cache{make(chan interface{}, 100), f}
+}
+
+var ppFree = newCache(func() interface{} { return new(pp) })
+
+// Allocate a new pp struct or grab a cached one.
+func newPrinter() *pp {
+ p := ppFree.get().(*pp)
+ p.fmt.init(&p.buf)
+ return p
+}
+
+// Save used pp structs in ppFree; avoids an allocation per invocation.
+func (p *pp) free() {
+ // Don't hold on to pp structs with large buffers.
+ if cap(p.buf.Bytes()) > 1024 {
+ return
+ }
+ p.buf.Reset()
+ ppFree.put(p)
+}
+
+func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
+
+func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
+
+func (p *pp) Flag(b int) bool {
+ switch b {
+ case '-':
+ return p.fmt.minus
+ case '+':
+ return p.fmt.plus
+ case '#':
+ return p.fmt.sharp
+ case ' ':
+ return p.fmt.space
+ case '0':
+ return p.fmt.zero
+ }
+ return false
+}
+
+func (p *pp) add(c int) {
+ p.buf.WriteRune(c)
+}
+
+// Implement Write so we can call Fprintf on a pp (through State), for
+// recursive use in custom verbs.
+func (p *pp) Write(b []byte) (ret int, err os.Error) {
+ return p.buf.Write(b)
+}
+
+// These routines end in 'f' and take a format string.
+
+// Fprintf formats according to a format specifier and writes to w.
+// It returns the number of bytes written and any write error encountered.
+func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrintf(format, a)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Printf formats according to a format specifier and writes to standard output.
+// It returns the number of bytes written and any write error encountered.
+func Printf(format string, a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprintf(os.Stdout, format, a...)
+ return n, errno
+}
+
+// Sprintf formats according to a format specifier and returns the resulting string.
+func Sprintf(format string, a ...interface{}) string {
+ p := newPrinter()
+ p.doPrintf(format, a)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+// Errorf formats according to a format specifier and returns the string
+// converted to an os.ErrorString, which satisfies the os.Error interface.
+func Errorf(format string, a ...interface{}) os.Error {
+ return os.ErrorString(Sprintf(format, a...))
+}
+
+// These routines do not take a format string
+
+// Fprint formats using the default formats for its operands and writes to w.
+// Spaces are added between operands when neither is a string.
+// It returns the number of bytes written and any write error encountered.
+func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrint(a, false, false)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Print formats using the default formats for its operands and writes to standard output.
+// Spaces are added between operands when neither is a string.
+// It returns the number of bytes written and any write error encountered.
+func Print(a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprint(os.Stdout, a...)
+ return n, errno
+}
+
+// Sprint formats using the default formats for its operands and returns the resulting string.
+// Spaces are added between operands when neither is a string.
+func Sprint(a ...interface{}) string {
+ p := newPrinter()
+ p.doPrint(a, false, false)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+// These routines end in 'ln', do not take a format string,
+// always add spaces between operands, and add a newline
+// after the last operand.
+
+// Fprintln formats using the default formats for its operands and writes to w.
+// Spaces are always added between operands and a newline is appended.
+// It returns the number of bytes written and any write error encountered.
+func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) {
+ p := newPrinter()
+ p.doPrint(a, true, true)
+ n64, error := p.buf.WriteTo(w)
+ p.free()
+ return int(n64), error
+}
+
+// Println formats using the default formats for its operands and writes to standard output.
+// Spaces are always added between operands and a newline is appended.
+// It returns the number of bytes written and any write error encountered.
+func Println(a ...interface{}) (n int, errno os.Error) {
+ n, errno = Fprintln(os.Stdout, a...)
+ return n, errno
+}
+
+// Sprintln formats using the default formats for its operands and returns the resulting string.
+// Spaces are always added between operands and a newline is appended.
+func Sprintln(a ...interface{}) string {
+ p := newPrinter()
+ p.doPrint(a, true, true)
+ s := p.buf.String()
+ p.free()
+ return s
+}
+
+
+// Get the i'th arg of the struct value.
+// If the arg itself is an interface, return a value for
+// the thing inside the interface, not the interface itself.
+func getField(v reflect.Value, i int) reflect.Value {
+ val := v.Field(i)
+ if i := val; i.Kind() == reflect.Interface {
+ if inter := i.Interface(); inter != nil {
+ return reflect.NewValue(inter)
+ }
+ }
+ return val
+}
+
+// Convert ASCII to integer. n is 0 (and got is false) if no number present.
+func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
+ if start >= end {
+ return 0, false, end
+ }
+ for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
+ num = num*10 + int(s[newi]-'0')
+ isnum = true
+ }
+ return
+}
+
+func (p *pp) unknownType(v interface{}) {
+ if v == nil {
+ p.buf.Write(nilAngleBytes)
+ return
+ }
+ p.buf.WriteByte('?')
+ p.buf.WriteString(reflect.Typeof(v).String())
+ p.buf.WriteByte('?')
+}
+
+func (p *pp) badVerb(verb int, val interface{}) {
+ p.add('%')
+ p.add('!')
+ p.add(verb)
+ p.add('(')
+ if val == nil {
+ p.buf.Write(nilAngleBytes)
+ } else {
+ p.buf.WriteString(reflect.Typeof(val).String())
+ p.add('=')
+ p.printField(val, 'v', false, false, 0)
+ }
+ p.add(')')
+}
+
+func (p *pp) fmtBool(v bool, verb int, value interface{}) {
+ switch verb {
+ case 't', 'v':
+ p.fmt.fmt_boolean(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+// fmtC formats a rune for the 'c' format.
+func (p *pp) fmtC(c int64) {
+ rune := int(c) // Check for overflow.
+ if int64(rune) != c {
+ rune = utf8.RuneError
+ }
+ w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], rune)
+ p.fmt.pad(p.runeBuf[0:w])
+}
+
+func (p *pp) fmtInt64(v int64, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.integer(v, 2, signed, ldigits)
+ case 'c':
+ p.fmtC(v)
+ case 'd', 'v':
+ p.fmt.integer(v, 10, signed, ldigits)
+ case 'o':
+ p.fmt.integer(v, 8, signed, ldigits)
+ case 'x':
+ p.fmt.integer(v, 16, signed, ldigits)
+ case 'U':
+ p.fmtUnicode(v)
+ case 'X':
+ p.fmt.integer(v, 16, signed, udigits)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
+// not, as requested, by temporarily setting the sharp flag.
+func (p *pp) fmt0x64(v uint64, leading0x bool) {
+ sharp := p.fmt.sharp
+ p.fmt.sharp = leading0x
+ p.fmt.integer(int64(v), 16, unsigned, ldigits)
+ p.fmt.sharp = sharp
+}
+
+// fmtUnicode formats a uint64 in U+1234 form by
+// temporarily turning on the unicode flag and tweaking the precision.
+func (p *pp) fmtUnicode(v int64) {
+ precPresent := p.fmt.precPresent
+ prec := p.fmt.prec
+ if !precPresent {
+ // If prec is already set, leave it alone; otherwise 4 is minimum.
+ p.fmt.prec = 4
+ p.fmt.precPresent = true
+ }
+ p.fmt.unicode = true // turn on U+
+ p.fmt.integer(int64(v), 16, unsigned, udigits)
+ p.fmt.unicode = false
+ p.fmt.prec = prec
+ p.fmt.precPresent = precPresent
+}
+
+func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.integer(int64(v), 2, unsigned, ldigits)
+ case 'c':
+ p.fmtC(int64(v))
+ case 'd':
+ p.fmt.integer(int64(v), 10, unsigned, ldigits)
+ case 'v':
+ if goSyntax {
+ p.fmt0x64(v, true)
+ } else {
+ p.fmt.integer(int64(v), 10, unsigned, ldigits)
+ }
+ case 'o':
+ p.fmt.integer(int64(v), 8, unsigned, ldigits)
+ case 'x':
+ p.fmt.integer(int64(v), 16, unsigned, ldigits)
+ case 'X':
+ p.fmt.integer(int64(v), 16, unsigned, udigits)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtFloat32(v float32, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.fmt_fb32(v)
+ case 'e':
+ p.fmt.fmt_e32(v)
+ case 'E':
+ p.fmt.fmt_E32(v)
+ case 'f':
+ p.fmt.fmt_f32(v)
+ case 'g', 'v':
+ p.fmt.fmt_g32(v)
+ case 'G':
+ p.fmt.fmt_G32(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtFloat64(v float64, verb int, value interface{}) {
+ switch verb {
+ case 'b':
+ p.fmt.fmt_fb64(v)
+ case 'e':
+ p.fmt.fmt_e64(v)
+ case 'E':
+ p.fmt.fmt_E64(v)
+ case 'f':
+ p.fmt.fmt_f64(v)
+ case 'g', 'v':
+ p.fmt.fmt_g64(v)
+ case 'G':
+ p.fmt.fmt_G64(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) {
+ switch verb {
+ case 'e', 'E', 'f', 'F', 'g', 'G':
+ p.fmt.fmt_c64(v, verb)
+ case 'v':
+ p.fmt.fmt_c64(v, 'g')
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) {
+ switch verb {
+ case 'e', 'E', 'f', 'F', 'g', 'G':
+ p.fmt.fmt_c128(v, verb)
+ case 'v':
+ p.fmt.fmt_c128(v, 'g')
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) {
+ switch verb {
+ case 'v':
+ if goSyntax {
+ p.fmt.fmt_q(v)
+ } else {
+ p.fmt.fmt_s(v)
+ }
+ case 's':
+ p.fmt.fmt_s(v)
+ case 'x':
+ p.fmt.fmt_sx(v)
+ case 'X':
+ p.fmt.fmt_sX(v)
+ case 'q':
+ p.fmt.fmt_q(v)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) {
+ if verb == 'v' || verb == 'd' {
+ if goSyntax {
+ p.buf.Write(bytesBytes)
+ } else {
+ p.buf.WriteByte('[')
+ }
+ for i, c := range v {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ return
+ }
+ s := string(v)
+ switch verb {
+ case 's':
+ p.fmt.fmt_s(s)
+ case 'x':
+ p.fmt.fmt_sx(s)
+ case 'X':
+ p.fmt.fmt_sX(s)
+ case 'q':
+ p.fmt.fmt_q(s)
+ default:
+ p.badVerb(verb, value)
+ }
+}
+
+func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) {
+ var u uintptr
+ switch value.Kind() {
+ case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
+ u = value.Pointer()
+ default:
+ p.badVerb(verb, field)
+ return
+ }
+ if goSyntax {
+ p.add('(')
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.add(')')
+ p.add('(')
+ if u == 0 {
+ p.buf.Write(nilBytes)
+ } else {
+ p.fmt0x64(uint64(u), true)
+ }
+ p.add(')')
+ } else {
+ p.fmt0x64(uint64(u), !p.fmt.sharp)
+ }
+}
+
+var (
+ intBits = reflect.Typeof(0).Bits()
+ floatBits = reflect.Typeof(0.0).Bits()
+ complexBits = reflect.Typeof(1i).Bits()
+ uintptrBits = reflect.Typeof(uintptr(0)).Bits()
+)
+
+func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) {
+ if field == nil {
+ if verb == 'T' || verb == 'v' {
+ p.buf.Write(nilAngleBytes)
+ } else {
+ p.badVerb(verb, field)
+ }
+ return false
+ }
+
+ // Special processing considerations.
+ // %T (the value's type) and %p (its address) are special; we always do them first.
+ switch verb {
+ case 'T':
+ p.printField(reflect.Typeof(field).String(), 's', false, false, 0)
+ return false
+ case 'p':
+ p.fmtPointer(field, reflect.NewValue(field), verb, goSyntax)
+ return false
+ }
+ // Is it a Formatter?
+ if formatter, ok := field.(Formatter); ok {
+ formatter.Format(p, verb)
+ return false // this value is not a string
+
+ }
+ // Must not touch flags before Formatter looks at them.
+ if plus {
+ p.fmt.plus = false
+ }
+ // If we're doing Go syntax and the field knows how to supply it, take care of it now.
+ if goSyntax {
+ p.fmt.sharp = false
+ if stringer, ok := field.(GoStringer); ok {
+ // Print the result of GoString unadorned.
+ p.fmtString(stringer.GoString(), 's', false, field)
+ return false // this value is not a string
+ }
+ } else {
+ // Is it a Stringer?
+ if stringer, ok := field.(Stringer); ok {
+ p.printField(stringer.String(), verb, plus, false, depth)
+ return false // this value is not a string
+ }
+ }
+
+ // Some types can be done without reflection.
+ switch f := field.(type) {
+ case bool:
+ p.fmtBool(f, verb, field)
+ return false
+ case float32:
+ p.fmtFloat32(f, verb, field)
+ return false
+ case float64:
+ p.fmtFloat64(f, verb, field)
+ return false
+ case complex64:
+ p.fmtComplex64(complex64(f), verb, field)
+ return false
+ case complex128:
+ p.fmtComplex128(f, verb, field)
+ return false
+ case int:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int8:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int16:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int32:
+ p.fmtInt64(int64(f), verb, field)
+ return false
+ case int64:
+ p.fmtInt64(f, verb, field)
+ return false
+ case uint:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint8:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint16:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint32:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case uint64:
+ p.fmtUint64(f, verb, goSyntax, field)
+ return false
+ case uintptr:
+ p.fmtUint64(uint64(f), verb, goSyntax, field)
+ return false
+ case string:
+ p.fmtString(f, verb, goSyntax, field)
+ return verb == 's' || verb == 'v'
+ case []byte:
+ p.fmtBytes(f, verb, goSyntax, depth, field)
+ return verb == 's'
+ }
+
+ // Need to use reflection
+ value := reflect.NewValue(field)
+
+BigSwitch:
+ switch f := value; f.Kind() {
+ case reflect.Bool:
+ p.fmtBool(f.Bool(), verb, field)
+ case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
+ p.fmtInt64(f.Int(), verb, field)
+ case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
+ p.fmtUint64(uint64(f.Uint()), verb, goSyntax, field)
+ case reflect.Float32, reflect.Float64:
+ if f.Type().Size() == 4 {
+ p.fmtFloat32(float32(f.Float()), verb, field)
+ } else {
+ p.fmtFloat64(float64(f.Float()), verb, field)
+ }
+ case reflect.Complex64, reflect.Complex128:
+ if f.Type().Size() == 8 {
+ p.fmtComplex64(complex64(f.Complex()), verb, field)
+ } else {
+ p.fmtComplex128(complex128(f.Complex()), verb, field)
+ }
+ case reflect.String:
+ p.fmtString(f.String(), verb, goSyntax, field)
+ case reflect.Map:
+ if goSyntax {
+ p.buf.WriteString(f.Type().String())
+ p.buf.WriteByte('{')
+ } else {
+ p.buf.Write(mapBytes)
+ }
+ keys := f.MapKeys()
+ for i, key := range keys {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(key.Interface(), verb, plus, goSyntax, depth+1)
+ p.buf.WriteByte(':')
+ p.printField(f.MapIndex(key).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ case reflect.Struct:
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ }
+ p.add('{')
+ v := f
+ t := v.Type()
+ for i := 0; i < v.NumField(); i++ {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ if plus || goSyntax {
+ if f := t.Field(i); f.Name != "" {
+ p.buf.WriteString(f.Name)
+ p.buf.WriteByte(':')
+ }
+ }
+ p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ p.buf.WriteByte('}')
+ case reflect.Interface:
+ value := f.Elem()
+ if !value.IsValid() {
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.Write(nilParenBytes)
+ } else {
+ p.buf.Write(nilAngleBytes)
+ }
+ } else {
+ return p.printField(value.Interface(), verb, plus, goSyntax, depth+1)
+ }
+ case reflect.Array, reflect.Slice:
+ // Byte slices are special.
+ if f.Type().Elem().Kind() == reflect.Uint8 {
+ // We know it's a slice of bytes, but we also know it does not have static type
+ // []byte, or it would have been caught above. Therefore we cannot convert
+ // it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have
+ // that type, and we can't write an expression of the right type and do a
+ // conversion because we don't have a static way to write the right type.
+ // So we build a slice by hand. This is a rare case but it would be nice
+ // if reflection could help a little more.
+ bytes := make([]byte, f.Len())
+ for i := range bytes {
+ bytes[i] = byte(f.Index(i).Uint())
+ }
+ p.fmtBytes(bytes, verb, goSyntax, depth, field)
+ return verb == 's'
+ }
+ if goSyntax {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte('{')
+ } else {
+ p.buf.WriteByte('[')
+ }
+ for i := 0; i < f.Len(); i++ {
+ if i > 0 {
+ if goSyntax {
+ p.buf.Write(commaSpaceBytes)
+ } else {
+ p.buf.WriteByte(' ')
+ }
+ }
+ p.printField(f.Index(i).Interface(), verb, plus, goSyntax, depth+1)
+ }
+ if goSyntax {
+ p.buf.WriteByte('}')
+ } else {
+ p.buf.WriteByte(']')
+ }
+ case reflect.Ptr:
+ v := f.Pointer()
+ // pointer to array or slice or struct? ok at top level
+ // but not embedded (avoid loops)
+ if v != 0 && depth == 0 {
+ switch a := f.Elem(); a.Kind() {
+ case reflect.Array, reflect.Slice:
+ p.buf.WriteByte('&')
+ p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
+ break BigSwitch
+ case reflect.Struct:
+ p.buf.WriteByte('&')
+ p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
+ break BigSwitch
+ }
+ }
+ if goSyntax {
+ p.buf.WriteByte('(')
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte(')')
+ p.buf.WriteByte('(')
+ if v == 0 {
+ p.buf.Write(nilBytes)
+ } else {
+ p.fmt0x64(uint64(v), true)
+ }
+ p.buf.WriteByte(')')
+ break
+ }
+ if v == 0 {
+ p.buf.Write(nilAngleBytes)
+ break
+ }
+ p.fmt0x64(uint64(v), true)
+ case reflect.Chan, reflect.Func, reflect.UnsafePointer:
+ p.fmtPointer(field, value, verb, goSyntax)
+ default:
+ p.unknownType(f)
+ }
+ return false
+}
+
+// intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int.
+func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) {
+ newi, newfieldnum = end, fieldnum
+ if i < end && fieldnum < len(a) {
+ num, isInt = a[fieldnum].(int)
+ newi, newfieldnum = i+1, fieldnum+1
+ }
+ return
+}
+
+func (p *pp) doPrintf(format string, a []interface{}) {
+ end := len(format)
+ fieldnum := 0 // we process one field per non-trivial format
+ for i := 0; i < end; {
+ lasti := i
+ for i < end && format[i] != '%' {
+ i++
+ }
+ if i > lasti {
+ p.buf.WriteString(format[lasti:i])
+ }
+ if i >= end {
+ // done processing format string
+ break
+ }
+
+ // Process one verb
+ i++
+ // flags and widths
+ p.fmt.clearflags()
+ F:
+ for ; i < end; i++ {
+ switch format[i] {
+ case '#':
+ p.fmt.sharp = true
+ case '0':
+ p.fmt.zero = true
+ case '+':
+ p.fmt.plus = true
+ case '-':
+ p.fmt.minus = true
+ case ' ':
+ p.fmt.space = true
+ default:
+ break F
+ }
+ }
+ // do we have width?
+ if i < end && format[i] == '*' {
+ p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum)
+ if !p.fmt.widPresent {
+ p.buf.Write(widthBytes)
+ }
+ } else {
+ p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
+ }
+ // do we have precision?
+ if i < end && format[i] == '.' {
+ if format[i+1] == '*' {
+ p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum)
+ if !p.fmt.precPresent {
+ p.buf.Write(precBytes)
+ }
+ } else {
+ p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
+ }
+ }
+ if i >= end {
+ p.buf.Write(noVerbBytes)
+ continue
+ }
+ c, w := utf8.DecodeRuneInString(format[i:])
+ i += w
+ // percent is special - absorbs no operand
+ if c == '%' {
+ p.buf.WriteByte('%') // We ignore width and prec.
+ continue
+ }
+ if fieldnum >= len(a) { // out of operands
+ p.buf.WriteByte('%')
+ p.add(c)
+ p.buf.Write(missingBytes)
+ continue
+ }
+ field := a[fieldnum]
+ fieldnum++
+
+ goSyntax := c == 'v' && p.fmt.sharp
+ plus := c == 'v' && p.fmt.plus
+ p.printField(field, c, plus, goSyntax, 0)
+ }
+
+ if fieldnum < len(a) {
+ p.buf.Write(extraBytes)
+ for ; fieldnum < len(a); fieldnum++ {
+ field := a[fieldnum]
+ if field != nil {
+ p.buf.WriteString(reflect.Typeof(field).String())
+ p.buf.WriteByte('=')
+ }
+ p.printField(field, 'v', false, false, 0)
+ if fieldnum+1 < len(a) {
+ p.buf.Write(commaSpaceBytes)
+ }
+ }
+ p.buf.WriteByte(')')
+ }
+}
+
+func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
+ prevString := false
+ for fieldnum := 0; fieldnum < len(a); fieldnum++ {
+ p.fmt.clearflags()
+ // always add spaces if we're doing println
+ field := a[fieldnum]
+ if fieldnum > 0 {
+ isString := field != nil && reflect.Typeof(field).Kind() == reflect.String
+ if addspace || !isString && !prevString {
+ p.buf.WriteByte(' ')
+ }
+ }
+ prevString = p.printField(field, 'v', false, false, 0)
+ }
+ if addnewline {
+ p.buf.WriteByte('\n')
+ }
+}