summaryrefslogtreecommitdiff
path: root/src/compress/flate
diff options
context:
space:
mode:
Diffstat (limited to 'src/compress/flate')
-rw-r--r--src/compress/flate/copy.go32
-rw-r--r--src/compress/flate/copy_test.go54
-rw-r--r--src/compress/flate/deflate.go571
-rw-r--r--src/compress/flate/deflate_test.go490
-rw-r--r--src/compress/flate/fixedhuff.go78
-rw-r--r--src/compress/flate/flate_test.go62
-rw-r--r--src/compress/flate/gen.go190
-rw-r--r--src/compress/flate/huffman_bit_writer.go517
-rw-r--r--src/compress/flate/huffman_code.go323
-rw-r--r--src/compress/flate/inflate.go739
-rw-r--r--src/compress/flate/inflate_test.go39
-rw-r--r--src/compress/flate/reader_test.go96
-rw-r--r--src/compress/flate/reverse_bits.go48
-rw-r--r--src/compress/flate/token.go102
-rw-r--r--src/compress/flate/writer_test.go60
15 files changed, 3401 insertions, 0 deletions
diff --git a/src/compress/flate/copy.go b/src/compress/flate/copy.go
new file mode 100644
index 000000000..a3200a8f4
--- /dev/null
+++ b/src/compress/flate/copy.go
@@ -0,0 +1,32 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// forwardCopy is like the built-in copy function except that it always goes
+// forward from the start, even if the dst and src overlap.
+// It is equivalent to:
+// for i := 0; i < n; i++ {
+// mem[dst+i] = mem[src+i]
+// }
+func forwardCopy(mem []byte, dst, src, n int) {
+ if dst <= src {
+ copy(mem[dst:dst+n], mem[src:src+n])
+ return
+ }
+ for {
+ if dst >= src+n {
+ copy(mem[dst:dst+n], mem[src:src+n])
+ return
+ }
+ // There is some forward overlap. The destination
+ // will be filled with a repeated pattern of mem[src:src+k].
+ // We copy one instance of the pattern here, then repeat.
+ // Each time around this loop k will double.
+ k := dst - src
+ copy(mem[dst:dst+k], mem[src:src+k])
+ n -= k
+ dst += k
+ }
+}
diff --git a/src/compress/flate/copy_test.go b/src/compress/flate/copy_test.go
new file mode 100644
index 000000000..2011b1547
--- /dev/null
+++ b/src/compress/flate/copy_test.go
@@ -0,0 +1,54 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "testing"
+)
+
+func TestForwardCopy(t *testing.T) {
+ testCases := []struct {
+ dst0, dst1 int
+ src0, src1 int
+ want string
+ }{
+ {0, 9, 0, 9, "012345678"},
+ {0, 5, 4, 9, "45678"},
+ {4, 9, 0, 5, "01230"},
+ {1, 6, 3, 8, "34567"},
+ {3, 8, 1, 6, "12121"},
+ {0, 9, 3, 6, "345"},
+ {3, 6, 0, 9, "012"},
+ {1, 6, 0, 9, "00000"},
+ {0, 4, 7, 8, "7"},
+ {0, 1, 6, 8, "6"},
+ {4, 4, 6, 9, ""},
+ {2, 8, 6, 6, ""},
+ {0, 0, 0, 0, ""},
+ }
+ for _, tc := range testCases {
+ b := []byte("0123456789")
+ n := tc.dst1 - tc.dst0
+ if tc.src1-tc.src0 < n {
+ n = tc.src1 - tc.src0
+ }
+ forwardCopy(b, tc.dst0, tc.src0, n)
+ got := string(b[tc.dst0 : tc.dst0+n])
+ if got != tc.want {
+ t.Errorf("dst=b[%d:%d], src=b[%d:%d]: got %q, want %q",
+ tc.dst0, tc.dst1, tc.src0, tc.src1, got, tc.want)
+ }
+ // Check that the bytes outside of dst[:n] were not modified.
+ for i, x := range b {
+ if i >= tc.dst0 && i < tc.dst0+n {
+ continue
+ }
+ if int(x) != '0'+i {
+ t.Errorf("dst=b[%d:%d], src=b[%d:%d]: copy overrun at b[%d]: got '%c', want '%c'",
+ tc.dst0, tc.dst1, tc.src0, tc.src1, i, x, '0'+i)
+ }
+ }
+ }
+}
diff --git a/src/compress/flate/deflate.go b/src/compress/flate/deflate.go
new file mode 100644
index 000000000..8c79df0c6
--- /dev/null
+++ b/src/compress/flate/deflate.go
@@ -0,0 +1,571 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "fmt"
+ "io"
+ "math"
+)
+
+const (
+ NoCompression = 0
+ BestSpeed = 1
+ fastCompression = 3
+ BestCompression = 9
+ DefaultCompression = -1
+ logWindowSize = 15
+ windowSize = 1 << logWindowSize
+ windowMask = windowSize - 1
+ logMaxOffsetSize = 15 // Standard DEFLATE
+ minMatchLength = 3 // The smallest match that the compressor looks for
+ maxMatchLength = 258 // The longest match for the compressor
+ minOffsetSize = 1 // The shortest offset that makes any sense
+
+ // The maximum number of tokens we put into a single flat block, just too
+ // stop things from getting too large.
+ maxFlateBlockTokens = 1 << 14
+ maxStoreBlockSize = 65535
+ hashBits = 17
+ hashSize = 1 << hashBits
+ hashMask = (1 << hashBits) - 1
+ hashShift = (hashBits + minMatchLength - 1) / minMatchLength
+ maxHashOffset = 1 << 24
+
+ skipNever = math.MaxInt32
+)
+
+type compressionLevel struct {
+ good, lazy, nice, chain, fastSkipHashing int
+}
+
+var levels = []compressionLevel{
+ {}, // 0
+ // For levels 1-3 we don't bother trying with lazy matches
+ {3, 0, 8, 4, 4},
+ {3, 0, 16, 8, 5},
+ {3, 0, 32, 32, 6},
+ // Levels 4-9 use increasingly more lazy matching
+ // and increasingly stringent conditions for "good enough".
+ {4, 4, 16, 16, skipNever},
+ {8, 16, 32, 32, skipNever},
+ {8, 16, 128, 128, skipNever},
+ {8, 32, 128, 256, skipNever},
+ {32, 128, 258, 1024, skipNever},
+ {32, 258, 258, 4096, skipNever},
+}
+
+type compressor struct {
+ compressionLevel
+
+ w *huffmanBitWriter
+
+ // compression algorithm
+ fill func(*compressor, []byte) int // copy data to window
+ step func(*compressor) // process window
+ sync bool // requesting flush
+
+ // Input hash chains
+ // hashHead[hashValue] contains the largest inputIndex with the specified hash value
+ // If hashHead[hashValue] is within the current window, then
+ // hashPrev[hashHead[hashValue] & windowMask] contains the previous index
+ // with the same hash value.
+ chainHead int
+ hashHead []int
+ hashPrev []int
+ hashOffset int
+
+ // input window: unprocessed data is window[index:windowEnd]
+ index int
+ window []byte
+ windowEnd int
+ blockStart int // window index where current tokens start
+ byteAvailable bool // if true, still need to process window[index-1].
+
+ // queued output tokens
+ tokens []token
+
+ // deflate state
+ length int
+ offset int
+ hash int
+ maxInsertIndex int
+ err error
+}
+
+func (d *compressor) fillDeflate(b []byte) int {
+ if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
+ // shift the window by windowSize
+ copy(d.window, d.window[windowSize:2*windowSize])
+ d.index -= windowSize
+ d.windowEnd -= windowSize
+ if d.blockStart >= windowSize {
+ d.blockStart -= windowSize
+ } else {
+ d.blockStart = math.MaxInt32
+ }
+ d.hashOffset += windowSize
+ if d.hashOffset > maxHashOffset {
+ delta := d.hashOffset - 1
+ d.hashOffset -= delta
+ d.chainHead -= delta
+ for i, v := range d.hashPrev {
+ if v > delta {
+ d.hashPrev[i] -= delta
+ } else {
+ d.hashPrev[i] = 0
+ }
+ }
+ for i, v := range d.hashHead {
+ if v > delta {
+ d.hashHead[i] -= delta
+ } else {
+ d.hashHead[i] = 0
+ }
+ }
+ }
+ }
+ n := copy(d.window[d.windowEnd:], b)
+ d.windowEnd += n
+ return n
+}
+
+func (d *compressor) writeBlock(tokens []token, index int, eof bool) error {
+ if index > 0 || eof {
+ var window []byte
+ if d.blockStart <= index {
+ window = d.window[d.blockStart:index]
+ }
+ d.blockStart = index
+ d.w.writeBlock(tokens, eof, window)
+ return d.w.err
+ }
+ return nil
+}
+
+// Try to find a match starting at index whose length is greater than prevSize.
+// We only look at chainCount possibilities before giving up.
+func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
+ minMatchLook := maxMatchLength
+ if lookahead < minMatchLook {
+ minMatchLook = lookahead
+ }
+
+ win := d.window[0 : pos+minMatchLook]
+
+ // We quit when we get a match that's at least nice long
+ nice := len(win) - pos
+ if d.nice < nice {
+ nice = d.nice
+ }
+
+ // If we've got a match that's good enough, only look in 1/4 the chain.
+ tries := d.chain
+ length = prevLength
+ if length >= d.good {
+ tries >>= 2
+ }
+
+ w0 := win[pos]
+ w1 := win[pos+1]
+ wEnd := win[pos+length]
+ minIndex := pos - windowSize
+
+ for i := prevHead; tries > 0; tries-- {
+ if w0 == win[i] && w1 == win[i+1] && wEnd == win[i+length] {
+ // The hash function ensures that if win[i] and win[i+1] match, win[i+2] matches
+
+ n := 3
+ for pos+n < len(win) && win[i+n] == win[pos+n] {
+ n++
+ }
+ if n > length && (n > 3 || pos-i <= 4096) {
+ length = n
+ offset = pos - i
+ ok = true
+ if n >= nice {
+ // The match is good enough that we don't try to find a better one.
+ break
+ }
+ wEnd = win[pos+n]
+ }
+ }
+ if i == minIndex {
+ // hashPrev[i & windowMask] has already been overwritten, so stop now.
+ break
+ }
+ if i = d.hashPrev[i&windowMask] - d.hashOffset; i < minIndex || i < 0 {
+ break
+ }
+ }
+ return
+}
+
+func (d *compressor) writeStoredBlock(buf []byte) error {
+ if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
+ return d.w.err
+ }
+ d.w.writeBytes(buf)
+ return d.w.err
+}
+
+func (d *compressor) initDeflate() {
+ d.hashHead = make([]int, hashSize)
+ d.hashPrev = make([]int, windowSize)
+ d.window = make([]byte, 2*windowSize)
+ d.hashOffset = 1
+ d.tokens = make([]token, 0, maxFlateBlockTokens+1)
+ d.length = minMatchLength - 1
+ d.offset = 0
+ d.byteAvailable = false
+ d.index = 0
+ d.hash = 0
+ d.chainHead = -1
+}
+
+func (d *compressor) deflate() {
+ if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
+ return
+ }
+
+ d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
+ if d.index < d.maxInsertIndex {
+ d.hash = int(d.window[d.index])<<hashShift + int(d.window[d.index+1])
+ }
+
+Loop:
+ for {
+ if d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ lookahead := d.windowEnd - d.index
+ if lookahead < minMatchLength+maxMatchLength {
+ if !d.sync {
+ break Loop
+ }
+ if d.index > d.windowEnd {
+ panic("index > windowEnd")
+ }
+ if lookahead == 0 {
+ // Flush current output block if any.
+ if d.byteAvailable {
+ // There is still one pending token that needs to be flushed
+ d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
+ d.byteAvailable = false
+ }
+ if len(d.tokens) > 0 {
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens = d.tokens[:0]
+ }
+ break Loop
+ }
+ }
+ if d.index < d.maxInsertIndex {
+ // Update the hash
+ d.hash = (d.hash<<hashShift + int(d.window[d.index+2])) & hashMask
+ d.chainHead = d.hashHead[d.hash]
+ d.hashPrev[d.index&windowMask] = d.chainHead
+ d.hashHead[d.hash] = d.index + d.hashOffset
+ }
+ prevLength := d.length
+ prevOffset := d.offset
+ d.length = minMatchLength - 1
+ d.offset = 0
+ minIndex := d.index - windowSize
+ if minIndex < 0 {
+ minIndex = 0
+ }
+
+ if d.chainHead-d.hashOffset >= minIndex &&
+ (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
+ d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
+ if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
+ d.length = newLength
+ d.offset = newOffset
+ }
+ }
+ if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
+ d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
+ // There was a match at the previous step, and the current match is
+ // not better. Output the previous match.
+ if d.fastSkipHashing != skipNever {
+ d.tokens = append(d.tokens, matchToken(uint32(d.length-minMatchLength), uint32(d.offset-minOffsetSize)))
+ } else {
+ d.tokens = append(d.tokens, matchToken(uint32(prevLength-minMatchLength), uint32(prevOffset-minOffsetSize)))
+ }
+ // Insert in the hash table all strings up to the end of the match.
+ // index and index-1 are already inserted. If there is not enough
+ // lookahead, the last two strings are not inserted into the hash
+ // table.
+ if d.length <= d.fastSkipHashing {
+ var newIndex int
+ if d.fastSkipHashing != skipNever {
+ newIndex = d.index + d.length
+ } else {
+ newIndex = d.index + prevLength - 1
+ }
+ for d.index++; d.index < newIndex; d.index++ {
+ if d.index < d.maxInsertIndex {
+ d.hash = (d.hash<<hashShift + int(d.window[d.index+2])) & hashMask
+ // Get previous value with the same hash.
+ // Our chain should point to the previous value.
+ d.hashPrev[d.index&windowMask] = d.hashHead[d.hash]
+ // Set the head of the hash chain to us.
+ d.hashHead[d.hash] = d.index + d.hashOffset
+ }
+ }
+ if d.fastSkipHashing == skipNever {
+ d.byteAvailable = false
+ d.length = minMatchLength - 1
+ }
+ } else {
+ // For matches this long, we don't bother inserting each individual
+ // item into the table.
+ d.index += d.length
+ if d.index < d.maxInsertIndex {
+ d.hash = (int(d.window[d.index])<<hashShift + int(d.window[d.index+1]))
+ }
+ }
+ if len(d.tokens) == maxFlateBlockTokens {
+ // The block includes the current character
+ if d.err = d.writeBlock(d.tokens, d.index, false); d.err != nil {
+ return
+ }
+ d.tokens = d.tokens[:0]
+ }
+ } else {
+ if d.fastSkipHashing != skipNever || d.byteAvailable {
+ i := d.index - 1
+ if d.fastSkipHashing != skipNever {
+ i = d.index
+ }
+ d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
+ if len(d.tokens) == maxFlateBlockTokens {
+ if d.err = d.writeBlock(d.tokens, i+1, false); d.err != nil {
+ return
+ }
+ d.tokens = d.tokens[:0]
+ }
+ }
+ d.index++
+ if d.fastSkipHashing == skipNever {
+ d.byteAvailable = true
+ }
+ }
+ }
+}
+
+func (d *compressor) fillStore(b []byte) int {
+ n := copy(d.window[d.windowEnd:], b)
+ d.windowEnd += n
+ return n
+}
+
+func (d *compressor) store() {
+ if d.windowEnd > 0 {
+ d.err = d.writeStoredBlock(d.window[:d.windowEnd])
+ }
+ d.windowEnd = 0
+}
+
+func (d *compressor) write(b []byte) (n int, err error) {
+ n = len(b)
+ b = b[d.fill(d, b):]
+ for len(b) > 0 {
+ d.step(d)
+ b = b[d.fill(d, b):]
+ }
+ return n, d.err
+}
+
+func (d *compressor) syncFlush() error {
+ d.sync = true
+ d.step(d)
+ if d.err == nil {
+ d.w.writeStoredHeader(0, false)
+ d.w.flush()
+ d.err = d.w.err
+ }
+ d.sync = false
+ return d.err
+}
+
+func (d *compressor) init(w io.Writer, level int) (err error) {
+ d.w = newHuffmanBitWriter(w)
+
+ switch {
+ case level == NoCompression:
+ d.window = make([]byte, maxStoreBlockSize)
+ d.fill = (*compressor).fillStore
+ d.step = (*compressor).store
+ case level == DefaultCompression:
+ level = 6
+ fallthrough
+ case 1 <= level && level <= 9:
+ d.compressionLevel = levels[level]
+ d.initDeflate()
+ d.fill = (*compressor).fillDeflate
+ d.step = (*compressor).deflate
+ default:
+ return fmt.Errorf("flate: invalid compression level %d: want value in range [-1, 9]", level)
+ }
+ return nil
+}
+
+var zeroes [32]int
+var bzeroes [256]byte
+
+func (d *compressor) reset(w io.Writer) {
+ d.w.reset(w)
+ d.sync = false
+ d.err = nil
+ switch d.compressionLevel.chain {
+ case 0:
+ // level was NoCompression.
+ for i := range d.window {
+ d.window[i] = 0
+ }
+ d.windowEnd = 0
+ default:
+ d.chainHead = -1
+ for s := d.hashHead; len(s) > 0; {
+ n := copy(s, zeroes[:])
+ s = s[n:]
+ }
+ for s := d.hashPrev; len(s) > 0; s = s[len(zeroes):] {
+ copy(s, zeroes[:])
+ }
+ d.hashOffset = 1
+
+ d.index, d.windowEnd = 0, 0
+ for s := d.window; len(s) > 0; {
+ n := copy(s, bzeroes[:])
+ s = s[n:]
+ }
+ d.blockStart, d.byteAvailable = 0, false
+
+ d.tokens = d.tokens[:maxFlateBlockTokens+1]
+ for i := 0; i <= maxFlateBlockTokens; i++ {
+ d.tokens[i] = 0
+ }
+ d.tokens = d.tokens[:0]
+ d.length = minMatchLength - 1
+ d.offset = 0
+ d.hash = 0
+ d.maxInsertIndex = 0
+ }
+}
+
+func (d *compressor) close() error {
+ d.sync = true
+ d.step(d)
+ if d.err != nil {
+ return d.err
+ }
+ if d.w.writeStoredHeader(0, true); d.w.err != nil {
+ return d.w.err
+ }
+ d.w.flush()
+ return d.w.err
+}
+
+// NewWriter returns a new Writer compressing data at the given level.
+// Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression);
+// higher levels typically run slower but compress more. Level 0
+// (NoCompression) does not attempt any compression; it only adds the
+// necessary DEFLATE framing. Level -1 (DefaultCompression) uses the default
+// compression level.
+//
+// If level is in the range [-1, 9] then the error returned will be nil.
+// Otherwise the error returned will be non-nil.
+func NewWriter(w io.Writer, level int) (*Writer, error) {
+ var dw Writer
+ if err := dw.d.init(w, level); err != nil {
+ return nil, err
+ }
+ return &dw, nil
+}
+
+// NewWriterDict is like NewWriter but initializes the new
+// Writer with a preset dictionary. The returned Writer behaves
+// as if the dictionary had been written to it without producing
+// any compressed output. The compressed data written to w
+// can only be decompressed by a Reader initialized with the
+// same dictionary.
+func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
+ dw := &dictWriter{w, false}
+ zw, err := NewWriter(dw, level)
+ if err != nil {
+ return nil, err
+ }
+ zw.Write(dict)
+ zw.Flush()
+ dw.enabled = true
+ zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
+ return zw, err
+}
+
+type dictWriter struct {
+ w io.Writer
+ enabled bool
+}
+
+func (w *dictWriter) Write(b []byte) (n int, err error) {
+ if w.enabled {
+ return w.w.Write(b)
+ }
+ return len(b), nil
+}
+
+// A Writer takes data written to it and writes the compressed
+// form of that data to an underlying writer (see NewWriter).
+type Writer struct {
+ d compressor
+ dict []byte
+}
+
+// Write writes data to w, which will eventually write the
+// compressed form of data to its underlying writer.
+func (w *Writer) Write(data []byte) (n int, err error) {
+ return w.d.write(data)
+}
+
+// Flush flushes any pending compressed data to the underlying writer.
+// It is useful mainly in compressed network protocols, to ensure that
+// a remote reader has enough data to reconstruct a packet.
+// Flush does not return until the data has been written.
+// If the underlying writer returns an error, Flush returns that error.
+//
+// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
+func (w *Writer) Flush() error {
+ // For more about flushing:
+ // http://www.bolet.org/~pornin/deflate-flush.html
+ return w.d.syncFlush()
+}
+
+// Close flushes and closes the writer.
+func (w *Writer) Close() error {
+ return w.d.close()
+}
+
+// Reset discards the writer's state and makes it equivalent to
+// the result of NewWriter or NewWriterDict called with dst
+// and w's level and dictionary.
+func (w *Writer) Reset(dst io.Writer) {
+ if dw, ok := w.d.w.w.(*dictWriter); ok {
+ // w was created with NewWriterDict
+ dw.w = dst
+ w.d.reset(dw)
+ dw.enabled = false
+ w.Write(w.dict)
+ w.Flush()
+ dw.enabled = true
+ } else {
+ // w was created with NewWriter
+ w.d.reset(dst)
+ }
+}
diff --git a/src/compress/flate/deflate_test.go b/src/compress/flate/deflate_test.go
new file mode 100644
index 000000000..730234c38
--- /dev/null
+++ b/src/compress/flate/deflate_test.go
@@ -0,0 +1,490 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "bytes"
+ "fmt"
+ "io"
+ "io/ioutil"
+ "reflect"
+ "sync"
+ "testing"
+)
+
+type deflateTest struct {
+ in []byte
+ level int
+ out []byte
+}
+
+type deflateInflateTest struct {
+ in []byte
+}
+
+type reverseBitsTest struct {
+ in uint16
+ bitCount uint8
+ out uint16
+}
+
+var deflateTests = []*deflateTest{
+ {[]byte{}, 0, []byte{1, 0, 0, 255, 255}},
+ {[]byte{0x11}, -1, []byte{18, 4, 4, 0, 0, 255, 255}},
+ {[]byte{0x11}, DefaultCompression, []byte{18, 4, 4, 0, 0, 255, 255}},
+ {[]byte{0x11}, 4, []byte{18, 4, 4, 0, 0, 255, 255}},
+
+ {[]byte{0x11}, 0, []byte{0, 1, 0, 254, 255, 17, 1, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x12}, 0, []byte{0, 2, 0, 253, 255, 17, 18, 1, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}, 0,
+ []byte{0, 8, 0, 247, 255, 17, 17, 17, 17, 17, 17, 17, 17, 1, 0, 0, 255, 255},
+ },
+ {[]byte{}, 1, []byte{1, 0, 0, 255, 255}},
+ {[]byte{0x11}, 1, []byte{18, 4, 4, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x12}, 1, []byte{18, 20, 2, 4, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}, 1, []byte{18, 132, 2, 64, 0, 0, 0, 255, 255}},
+ {[]byte{}, 9, []byte{1, 0, 0, 255, 255}},
+ {[]byte{0x11}, 9, []byte{18, 4, 4, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x12}, 9, []byte{18, 20, 2, 4, 0, 0, 255, 255}},
+ {[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}, 9, []byte{18, 132, 2, 64, 0, 0, 0, 255, 255}},
+}
+
+var deflateInflateTests = []*deflateInflateTest{
+ {[]byte{}},
+ {[]byte{0x11}},
+ {[]byte{0x11, 0x12}},
+ {[]byte{0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11}},
+ {[]byte{0x11, 0x10, 0x13, 0x41, 0x21, 0x21, 0x41, 0x13, 0x87, 0x78, 0x13}},
+ {largeDataChunk()},
+}
+
+var reverseBitsTests = []*reverseBitsTest{
+ {1, 1, 1},
+ {1, 2, 2},
+ {1, 3, 4},
+ {1, 4, 8},
+ {1, 5, 16},
+ {17, 5, 17},
+ {257, 9, 257},
+ {29, 5, 23},
+}
+
+func largeDataChunk() []byte {
+ result := make([]byte, 100000)
+ for i := range result {
+ result[i] = byte(i * i & 0xFF)
+ }
+ return result
+}
+
+func TestDeflate(t *testing.T) {
+ for _, h := range deflateTests {
+ var buf bytes.Buffer
+ w, err := NewWriter(&buf, h.level)
+ if err != nil {
+ t.Errorf("NewWriter: %v", err)
+ continue
+ }
+ w.Write(h.in)
+ w.Close()
+ if !bytes.Equal(buf.Bytes(), h.out) {
+ t.Errorf("Deflate(%d, %x) = %x, want %x", h.level, h.in, buf.Bytes(), h.out)
+ }
+ }
+}
+
+// A sparseReader returns a stream consisting of 0s followed by 1<<16 1s.
+// This tests missing hash references in a very large input.
+type sparseReader struct {
+ l int64
+ cur int64
+}
+
+func (r *sparseReader) Read(b []byte) (n int, err error) {
+ if r.cur >= r.l {
+ return 0, io.EOF
+ }
+ n = len(b)
+ cur := r.cur + int64(n)
+ if cur > r.l {
+ n -= int(cur - r.l)
+ cur = r.l
+ }
+ for i := range b[0:n] {
+ if r.cur+int64(i) >= r.l-1<<16 {
+ b[i] = 1
+ } else {
+ b[i] = 0
+ }
+ }
+ r.cur = cur
+ return
+}
+
+func TestVeryLongSparseChunk(t *testing.T) {
+ if testing.Short() {
+ t.Skip("skipping sparse chunk during short test")
+ }
+ w, err := NewWriter(ioutil.Discard, 1)
+ if err != nil {
+ t.Errorf("NewWriter: %v", err)
+ return
+ }
+ if _, err = io.Copy(w, &sparseReader{l: 23E8}); err != nil {
+ t.Errorf("Compress failed: %v", err)
+ return
+ }
+}
+
+type syncBuffer struct {
+ buf bytes.Buffer
+ mu sync.RWMutex
+ closed bool
+ ready chan bool
+}
+
+func newSyncBuffer() *syncBuffer {
+ return &syncBuffer{ready: make(chan bool, 1)}
+}
+
+func (b *syncBuffer) Read(p []byte) (n int, err error) {
+ for {
+ b.mu.RLock()
+ n, err = b.buf.Read(p)
+ b.mu.RUnlock()
+ if n > 0 || b.closed {
+ return
+ }
+ <-b.ready
+ }
+}
+
+func (b *syncBuffer) signal() {
+ select {
+ case b.ready <- true:
+ default:
+ }
+}
+
+func (b *syncBuffer) Write(p []byte) (n int, err error) {
+ n, err = b.buf.Write(p)
+ b.signal()
+ return
+}
+
+func (b *syncBuffer) WriteMode() {
+ b.mu.Lock()
+}
+
+func (b *syncBuffer) ReadMode() {
+ b.mu.Unlock()
+ b.signal()
+}
+
+func (b *syncBuffer) Close() error {
+ b.closed = true
+ b.signal()
+ return nil
+}
+
+func testSync(t *testing.T, level int, input []byte, name string) {
+ if len(input) == 0 {
+ return
+ }
+
+ t.Logf("--testSync %d, %d, %s", level, len(input), name)
+ buf := newSyncBuffer()
+ buf1 := new(bytes.Buffer)
+ buf.WriteMode()
+ w, err := NewWriter(io.MultiWriter(buf, buf1), level)
+ if err != nil {
+ t.Errorf("NewWriter: %v", err)
+ return
+ }
+ r := NewReader(buf)
+
+ // Write half the input and read back.
+ for i := 0; i < 2; i++ {
+ var lo, hi int
+ if i == 0 {
+ lo, hi = 0, (len(input)+1)/2
+ } else {
+ lo, hi = (len(input)+1)/2, len(input)
+ }
+ t.Logf("#%d: write %d-%d", i, lo, hi)
+ if _, err := w.Write(input[lo:hi]); err != nil {
+ t.Errorf("testSync: write: %v", err)
+ return
+ }
+ if i == 0 {
+ if err := w.Flush(); err != nil {
+ t.Errorf("testSync: flush: %v", err)
+ return
+ }
+ } else {
+ if err := w.Close(); err != nil {
+ t.Errorf("testSync: close: %v", err)
+ }
+ }
+ buf.ReadMode()
+ out := make([]byte, hi-lo+1)
+ m, err := io.ReadAtLeast(r, out, hi-lo)
+ t.Logf("#%d: read %d", i, m)
+ if m != hi-lo || err != nil {
+ t.Errorf("testSync/%d (%d, %d, %s): read %d: %d, %v (%d left)", i, level, len(input), name, hi-lo, m, err, buf.buf.Len())
+ return
+ }
+ if !bytes.Equal(input[lo:hi], out[:hi-lo]) {
+ t.Errorf("testSync/%d: read wrong bytes: %x vs %x", i, input[lo:hi], out[:hi-lo])
+ return
+ }
+ // This test originally checked that after reading
+ // the first half of the input, there was nothing left
+ // in the read buffer (buf.buf.Len() != 0) but that is
+ // not necessarily the case: the write Flush may emit
+ // some extra framing bits that are not necessary
+ // to process to obtain the first half of the uncompressed
+ // data. The test ran correctly most of the time, because
+ // the background goroutine had usually read even
+ // those extra bits by now, but it's not a useful thing to
+ // check.
+ buf.WriteMode()
+ }
+ buf.ReadMode()
+ out := make([]byte, 10)
+ if n, err := r.Read(out); n > 0 || err != io.EOF {
+ t.Errorf("testSync (%d, %d, %s): final Read: %d, %v (hex: %x)", level, len(input), name, n, err, out[0:n])
+ }
+ if buf.buf.Len() != 0 {
+ t.Errorf("testSync (%d, %d, %s): extra data at end", level, len(input), name)
+ }
+ r.Close()
+
+ // stream should work for ordinary reader too
+ r = NewReader(buf1)
+ out, err = ioutil.ReadAll(r)
+ if err != nil {
+ t.Errorf("testSync: read: %s", err)
+ return
+ }
+ r.Close()
+ if !bytes.Equal(input, out) {
+ t.Errorf("testSync: decompress(compress(data)) != data: level=%d input=%s", level, name)
+ }
+}
+
+func testToFromWithLevelAndLimit(t *testing.T, level int, input []byte, name string, limit int) {
+ var buffer bytes.Buffer
+ w, err := NewWriter(&buffer, level)
+ if err != nil {
+ t.Errorf("NewWriter: %v", err)
+ return
+ }
+ w.Write(input)
+ w.Close()
+ if limit > 0 && buffer.Len() > limit {
+ t.Errorf("level: %d, len(compress(data)) = %d > limit = %d", level, buffer.Len(), limit)
+ return
+ }
+ r := NewReader(&buffer)
+ out, err := ioutil.ReadAll(r)
+ if err != nil {
+ t.Errorf("read: %s", err)
+ return
+ }
+ r.Close()
+ if !bytes.Equal(input, out) {
+ t.Errorf("decompress(compress(data)) != data: level=%d input=%s", level, name)
+ return
+ }
+ testSync(t, level, input, name)
+}
+
+func testToFromWithLimit(t *testing.T, input []byte, name string, limit [10]int) {
+ for i := 0; i < 10; i++ {
+ testToFromWithLevelAndLimit(t, i, input, name, limit[i])
+ }
+}
+
+func TestDeflateInflate(t *testing.T) {
+ for i, h := range deflateInflateTests {
+ testToFromWithLimit(t, h.in, fmt.Sprintf("#%d", i), [10]int{})
+ }
+}
+
+func TestReverseBits(t *testing.T) {
+ for _, h := range reverseBitsTests {
+ if v := reverseBits(h.in, h.bitCount); v != h.out {
+ t.Errorf("reverseBits(%v,%v) = %v, want %v",
+ h.in, h.bitCount, v, h.out)
+ }
+ }
+}
+
+type deflateInflateStringTest struct {
+ filename string
+ label string
+ limit [10]int
+}
+
+var deflateInflateStringTests = []deflateInflateStringTest{
+ {
+ "../testdata/e.txt",
+ "2.718281828...",
+ [...]int{100018, 50650, 50960, 51150, 50930, 50790, 50790, 50790, 50790, 50790},
+ },
+ {
+ "../testdata/Mark.Twain-Tom.Sawyer.txt",
+ "Mark.Twain-Tom.Sawyer",
+ [...]int{407330, 187598, 180361, 172974, 169160, 163476, 160936, 160506, 160295, 160295},
+ },
+}
+
+func TestDeflateInflateString(t *testing.T) {
+ for _, test := range deflateInflateStringTests {
+ gold, err := ioutil.ReadFile(test.filename)
+ if err != nil {
+ t.Error(err)
+ }
+ testToFromWithLimit(t, gold, test.label, test.limit)
+ if testing.Short() {
+ break
+ }
+ }
+}
+
+func TestReaderDict(t *testing.T) {
+ const (
+ dict = "hello world"
+ text = "hello again world"
+ )
+ var b bytes.Buffer
+ w, err := NewWriter(&b, 5)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+ w.Write([]byte(dict))
+ w.Flush()
+ b.Reset()
+ w.Write([]byte(text))
+ w.Close()
+
+ r := NewReaderDict(&b, []byte(dict))
+ data, err := ioutil.ReadAll(r)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if string(data) != "hello again world" {
+ t.Fatalf("read returned %q want %q", string(data), text)
+ }
+}
+
+func TestWriterDict(t *testing.T) {
+ const (
+ dict = "hello world"
+ text = "hello again world"
+ )
+ var b bytes.Buffer
+ w, err := NewWriter(&b, 5)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+ w.Write([]byte(dict))
+ w.Flush()
+ b.Reset()
+ w.Write([]byte(text))
+ w.Close()
+
+ var b1 bytes.Buffer
+ w, _ = NewWriterDict(&b1, 5, []byte(dict))
+ w.Write([]byte(text))
+ w.Close()
+
+ if !bytes.Equal(b1.Bytes(), b.Bytes()) {
+ t.Fatalf("writer wrote %q want %q", b1.Bytes(), b.Bytes())
+ }
+}
+
+// See http://code.google.com/p/go/issues/detail?id=2508
+func TestRegression2508(t *testing.T) {
+ if testing.Short() {
+ t.Logf("test disabled with -short")
+ return
+ }
+ w, err := NewWriter(ioutil.Discard, 1)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+ buf := make([]byte, 1024)
+ for i := 0; i < 131072; i++ {
+ if _, err := w.Write(buf); err != nil {
+ t.Fatalf("writer failed: %v", err)
+ }
+ }
+ w.Close()
+}
+
+func TestWriterReset(t *testing.T) {
+ for level := 0; level <= 9; level++ {
+ if testing.Short() && level > 1 {
+ break
+ }
+ w, err := NewWriter(ioutil.Discard, level)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+ buf := []byte("hello world")
+ for i := 0; i < 1024; i++ {
+ w.Write(buf)
+ }
+ w.Reset(ioutil.Discard)
+
+ wref, err := NewWriter(ioutil.Discard, level)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+
+ // DeepEqual doesn't compare functions.
+ w.d.fill, wref.d.fill = nil, nil
+ w.d.step, wref.d.step = nil, nil
+ if !reflect.DeepEqual(w, wref) {
+ t.Errorf("level %d Writer not reset after Reset", level)
+ }
+ }
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriter(w, NoCompression) })
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriter(w, DefaultCompression) })
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriter(w, BestCompression) })
+ dict := []byte("we are the world")
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriterDict(w, NoCompression, dict) })
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriterDict(w, DefaultCompression, dict) })
+ testResetOutput(t, func(w io.Writer) (*Writer, error) { return NewWriterDict(w, BestCompression, dict) })
+}
+
+func testResetOutput(t *testing.T, newWriter func(w io.Writer) (*Writer, error)) {
+ buf := new(bytes.Buffer)
+ w, err := newWriter(buf)
+ if err != nil {
+ t.Fatalf("NewWriter: %v", err)
+ }
+ b := []byte("hello world")
+ for i := 0; i < 1024; i++ {
+ w.Write(b)
+ }
+ w.Close()
+ out1 := buf.String()
+
+ buf2 := new(bytes.Buffer)
+ w.Reset(buf2)
+ for i := 0; i < 1024; i++ {
+ w.Write(b)
+ }
+ w.Close()
+ out2 := buf2.String()
+
+ if out1 != out2 {
+ t.Errorf("got %q, expected %q", out2, out1)
+ }
+ t.Logf("got %d bytes", len(out1))
+}
diff --git a/src/compress/flate/fixedhuff.go b/src/compress/flate/fixedhuff.go
new file mode 100644
index 000000000..7df8b9a29
--- /dev/null
+++ b/src/compress/flate/fixedhuff.go
@@ -0,0 +1,78 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+// autogenerated by go run gen.go -output fixedhuff.go, DO NOT EDIT
+
+var fixedHuffmanDecoder = huffmanDecoder{
+ 7,
+ [huffmanNumChunks]uint32{
+ 0x1007, 0x0508, 0x0108, 0x1188, 0x1107, 0x0708, 0x0308, 0x0c09,
+ 0x1087, 0x0608, 0x0208, 0x0a09, 0x0008, 0x0808, 0x0408, 0x0e09,
+ 0x1047, 0x0588, 0x0188, 0x0909, 0x1147, 0x0788, 0x0388, 0x0d09,
+ 0x10c7, 0x0688, 0x0288, 0x0b09, 0x0088, 0x0888, 0x0488, 0x0f09,
+ 0x1027, 0x0548, 0x0148, 0x11c8, 0x1127, 0x0748, 0x0348, 0x0c89,
+ 0x10a7, 0x0648, 0x0248, 0x0a89, 0x0048, 0x0848, 0x0448, 0x0e89,
+ 0x1067, 0x05c8, 0x01c8, 0x0989, 0x1167, 0x07c8, 0x03c8, 0x0d89,
+ 0x10e7, 0x06c8, 0x02c8, 0x0b89, 0x00c8, 0x08c8, 0x04c8, 0x0f89,
+ 0x1017, 0x0528, 0x0128, 0x11a8, 0x1117, 0x0728, 0x0328, 0x0c49,
+ 0x1097, 0x0628, 0x0228, 0x0a49, 0x0028, 0x0828, 0x0428, 0x0e49,
+ 0x1057, 0x05a8, 0x01a8, 0x0949, 0x1157, 0x07a8, 0x03a8, 0x0d49,
+ 0x10d7, 0x06a8, 0x02a8, 0x0b49, 0x00a8, 0x08a8, 0x04a8, 0x0f49,
+ 0x1037, 0x0568, 0x0168, 0x11e8, 0x1137, 0x0768, 0x0368, 0x0cc9,
+ 0x10b7, 0x0668, 0x0268, 0x0ac9, 0x0068, 0x0868, 0x0468, 0x0ec9,
+ 0x1077, 0x05e8, 0x01e8, 0x09c9, 0x1177, 0x07e8, 0x03e8, 0x0dc9,
+ 0x10f7, 0x06e8, 0x02e8, 0x0bc9, 0x00e8, 0x08e8, 0x04e8, 0x0fc9,
+ 0x1007, 0x0518, 0x0118, 0x1198, 0x1107, 0x0718, 0x0318, 0x0c29,
+ 0x1087, 0x0618, 0x0218, 0x0a29, 0x0018, 0x0818, 0x0418, 0x0e29,
+ 0x1047, 0x0598, 0x0198, 0x0929, 0x1147, 0x0798, 0x0398, 0x0d29,
+ 0x10c7, 0x0698, 0x0298, 0x0b29, 0x0098, 0x0898, 0x0498, 0x0f29,
+ 0x1027, 0x0558, 0x0158, 0x11d8, 0x1127, 0x0758, 0x0358, 0x0ca9,
+ 0x10a7, 0x0658, 0x0258, 0x0aa9, 0x0058, 0x0858, 0x0458, 0x0ea9,
+ 0x1067, 0x05d8, 0x01d8, 0x09a9, 0x1167, 0x07d8, 0x03d8, 0x0da9,
+ 0x10e7, 0x06d8, 0x02d8, 0x0ba9, 0x00d8, 0x08d8, 0x04d8, 0x0fa9,
+ 0x1017, 0x0538, 0x0138, 0x11b8, 0x1117, 0x0738, 0x0338, 0x0c69,
+ 0x1097, 0x0638, 0x0238, 0x0a69, 0x0038, 0x0838, 0x0438, 0x0e69,
+ 0x1057, 0x05b8, 0x01b8, 0x0969, 0x1157, 0x07b8, 0x03b8, 0x0d69,
+ 0x10d7, 0x06b8, 0x02b8, 0x0b69, 0x00b8, 0x08b8, 0x04b8, 0x0f69,
+ 0x1037, 0x0578, 0x0178, 0x11f8, 0x1137, 0x0778, 0x0378, 0x0ce9,
+ 0x10b7, 0x0678, 0x0278, 0x0ae9, 0x0078, 0x0878, 0x0478, 0x0ee9,
+ 0x1077, 0x05f8, 0x01f8, 0x09e9, 0x1177, 0x07f8, 0x03f8, 0x0de9,
+ 0x10f7, 0x06f8, 0x02f8, 0x0be9, 0x00f8, 0x08f8, 0x04f8, 0x0fe9,
+ 0x1007, 0x0508, 0x0108, 0x1188, 0x1107, 0x0708, 0x0308, 0x0c19,
+ 0x1087, 0x0608, 0x0208, 0x0a19, 0x0008, 0x0808, 0x0408, 0x0e19,
+ 0x1047, 0x0588, 0x0188, 0x0919, 0x1147, 0x0788, 0x0388, 0x0d19,
+ 0x10c7, 0x0688, 0x0288, 0x0b19, 0x0088, 0x0888, 0x0488, 0x0f19,
+ 0x1027, 0x0548, 0x0148, 0x11c8, 0x1127, 0x0748, 0x0348, 0x0c99,
+ 0x10a7, 0x0648, 0x0248, 0x0a99, 0x0048, 0x0848, 0x0448, 0x0e99,
+ 0x1067, 0x05c8, 0x01c8, 0x0999, 0x1167, 0x07c8, 0x03c8, 0x0d99,
+ 0x10e7, 0x06c8, 0x02c8, 0x0b99, 0x00c8, 0x08c8, 0x04c8, 0x0f99,
+ 0x1017, 0x0528, 0x0128, 0x11a8, 0x1117, 0x0728, 0x0328, 0x0c59,
+ 0x1097, 0x0628, 0x0228, 0x0a59, 0x0028, 0x0828, 0x0428, 0x0e59,
+ 0x1057, 0x05a8, 0x01a8, 0x0959, 0x1157, 0x07a8, 0x03a8, 0x0d59,
+ 0x10d7, 0x06a8, 0x02a8, 0x0b59, 0x00a8, 0x08a8, 0x04a8, 0x0f59,
+ 0x1037, 0x0568, 0x0168, 0x11e8, 0x1137, 0x0768, 0x0368, 0x0cd9,
+ 0x10b7, 0x0668, 0x0268, 0x0ad9, 0x0068, 0x0868, 0x0468, 0x0ed9,
+ 0x1077, 0x05e8, 0x01e8, 0x09d9, 0x1177, 0x07e8, 0x03e8, 0x0dd9,
+ 0x10f7, 0x06e8, 0x02e8, 0x0bd9, 0x00e8, 0x08e8, 0x04e8, 0x0fd9,
+ 0x1007, 0x0518, 0x0118, 0x1198, 0x1107, 0x0718, 0x0318, 0x0c39,
+ 0x1087, 0x0618, 0x0218, 0x0a39, 0x0018, 0x0818, 0x0418, 0x0e39,
+ 0x1047, 0x0598, 0x0198, 0x0939, 0x1147, 0x0798, 0x0398, 0x0d39,
+ 0x10c7, 0x0698, 0x0298, 0x0b39, 0x0098, 0x0898, 0x0498, 0x0f39,
+ 0x1027, 0x0558, 0x0158, 0x11d8, 0x1127, 0x0758, 0x0358, 0x0cb9,
+ 0x10a7, 0x0658, 0x0258, 0x0ab9, 0x0058, 0x0858, 0x0458, 0x0eb9,
+ 0x1067, 0x05d8, 0x01d8, 0x09b9, 0x1167, 0x07d8, 0x03d8, 0x0db9,
+ 0x10e7, 0x06d8, 0x02d8, 0x0bb9, 0x00d8, 0x08d8, 0x04d8, 0x0fb9,
+ 0x1017, 0x0538, 0x0138, 0x11b8, 0x1117, 0x0738, 0x0338, 0x0c79,
+ 0x1097, 0x0638, 0x0238, 0x0a79, 0x0038, 0x0838, 0x0438, 0x0e79,
+ 0x1057, 0x05b8, 0x01b8, 0x0979, 0x1157, 0x07b8, 0x03b8, 0x0d79,
+ 0x10d7, 0x06b8, 0x02b8, 0x0b79, 0x00b8, 0x08b8, 0x04b8, 0x0f79,
+ 0x1037, 0x0578, 0x0178, 0x11f8, 0x1137, 0x0778, 0x0378, 0x0cf9,
+ 0x10b7, 0x0678, 0x0278, 0x0af9, 0x0078, 0x0878, 0x0478, 0x0ef9,
+ 0x1077, 0x05f8, 0x01f8, 0x09f9, 0x1177, 0x07f8, 0x03f8, 0x0df9,
+ 0x10f7, 0x06f8, 0x02f8, 0x0bf9, 0x00f8, 0x08f8, 0x04f8, 0x0ff9,
+ },
+ nil, 0,
+}
diff --git a/src/compress/flate/flate_test.go b/src/compress/flate/flate_test.go
new file mode 100644
index 000000000..068766323
--- /dev/null
+++ b/src/compress/flate/flate_test.go
@@ -0,0 +1,62 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This test tests some internals of the flate package.
+// The tests in package compress/gzip serve as the
+// end-to-end test of the decompressor.
+
+package flate
+
+import (
+ "bytes"
+ "testing"
+)
+
+func TestUncompressedSource(t *testing.T) {
+ decoder := NewReader(bytes.NewReader([]byte{0x01, 0x01, 0x00, 0xfe, 0xff, 0x11}))
+ output := make([]byte, 1)
+ n, error := decoder.Read(output)
+ if n != 1 || error != nil {
+ t.Fatalf("decoder.Read() = %d, %v, want 1, nil", n, error)
+ }
+ if output[0] != 0x11 {
+ t.Errorf("output[0] = %x, want 0x11", output[0])
+ }
+}
+
+// The following test should not panic.
+func TestIssue5915(t *testing.T) {
+ bits := []int{4, 0, 0, 6, 4, 3, 2, 3, 3, 4, 4, 5, 0, 0, 0, 0, 5, 5, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 6, 0, 11, 0, 8, 0, 6, 6, 10, 8}
+ h := new(huffmanDecoder)
+ ok := h.init(bits)
+ if ok == true {
+ t.Fatalf("Given sequence of bits is bad, and should not succeed.")
+ }
+}
+
+// The following test should not panic.
+func TestIssue5962(t *testing.T) {
+ bits := []int{4, 0, 0, 6, 4, 3, 2, 3, 3, 4, 4, 5, 0, 0, 0, 0,
+ 5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11}
+ h := new(huffmanDecoder)
+ ok := h.init(bits)
+ if ok == true {
+ t.Fatalf("Given sequence of bits is bad, and should not succeed.")
+ }
+}
+
+// The following test should not panic.
+func TestIssue6255(t *testing.T) {
+ bits1 := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11}
+ bits2 := []int{11, 13}
+ h := new(huffmanDecoder)
+ if !h.init(bits1) {
+ t.Fatalf("Given sequence of bits is good and should succeed.")
+ }
+ if h.init(bits2) {
+ t.Fatalf("Given sequence of bits is bad and should not succeed.")
+ }
+}
diff --git a/src/compress/flate/gen.go b/src/compress/flate/gen.go
new file mode 100644
index 000000000..6288ecddd
--- /dev/null
+++ b/src/compress/flate/gen.go
@@ -0,0 +1,190 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build ignore
+
+// This program generates fixedhuff.go
+// Invoke as
+//
+// go run gen.go -output fixedhuff.go
+
+package main
+
+import (
+ "bytes"
+ "flag"
+ "fmt"
+ "go/format"
+ "io/ioutil"
+ "log"
+)
+
+var filename = flag.String("output", "fixedhuff.go", "output file name")
+
+const maxCodeLen = 16
+
+// Note: the definition of the huffmanDecoder struct is copied from
+// inflate.go, as it is private to the implementation.
+
+// chunk & 15 is number of bits
+// chunk >> 4 is value, including table link
+
+const (
+ huffmanChunkBits = 9
+ huffmanNumChunks = 1 << huffmanChunkBits
+ huffmanCountMask = 15
+ huffmanValueShift = 4
+)
+
+type huffmanDecoder struct {
+ min int // the minimum code length
+ chunks [huffmanNumChunks]uint32 // chunks as described above
+ links [][]uint32 // overflow links
+ linkMask uint32 // mask the width of the link table
+}
+
+// Initialize Huffman decoding tables from array of code lengths.
+func (h *huffmanDecoder) init(bits []int) bool {
+ // Count number of codes of each length,
+ // compute min and max length.
+ var count [maxCodeLen]int
+ var min, max int
+ for _, n := range bits {
+ if n == 0 {
+ continue
+ }
+ if min == 0 || n < min {
+ min = n
+ }
+ if n > max {
+ max = n
+ }
+ count[n]++
+ }
+ if max == 0 {
+ return false
+ }
+
+ h.min = min
+ var linkBits uint
+ var numLinks int
+ if max > huffmanChunkBits {
+ linkBits = uint(max) - huffmanChunkBits
+ numLinks = 1 << linkBits
+ h.linkMask = uint32(numLinks - 1)
+ }
+ code := 0
+ var nextcode [maxCodeLen]int
+ for i := min; i <= max; i++ {
+ if i == huffmanChunkBits+1 {
+ // create link tables
+ link := code >> 1
+ h.links = make([][]uint32, huffmanNumChunks-link)
+ for j := uint(link); j < huffmanNumChunks; j++ {
+ reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
+ reverse >>= uint(16 - huffmanChunkBits)
+ off := j - uint(link)
+ h.chunks[reverse] = uint32(off<<huffmanValueShift + uint(i))
+ h.links[off] = make([]uint32, 1<<linkBits)
+ }
+ }
+ n := count[i]
+ nextcode[i] = code
+ code += n
+ code <<= 1
+ }
+
+ for i, n := range bits {
+ if n == 0 {
+ continue
+ }
+ code := nextcode[n]
+ nextcode[n]++
+ chunk := uint32(i<<huffmanValueShift | n)
+ reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
+ reverse >>= uint(16 - n)
+ if n <= huffmanChunkBits {
+ for off := reverse; off < huffmanNumChunks; off += 1 << uint(n) {
+ h.chunks[off] = chunk
+ }
+ } else {
+ linktab := h.links[h.chunks[reverse&(huffmanNumChunks-1)]>>huffmanValueShift]
+ reverse >>= huffmanChunkBits
+ for off := reverse; off < numLinks; off += 1 << uint(n-huffmanChunkBits) {
+ linktab[off] = chunk
+ }
+ }
+ }
+ return true
+}
+
+func main() {
+ flag.Parse()
+
+ var h huffmanDecoder
+ var bits [288]int
+ initReverseByte()
+ for i := 0; i < 144; i++ {
+ bits[i] = 8
+ }
+ for i := 144; i < 256; i++ {
+ bits[i] = 9
+ }
+ for i := 256; i < 280; i++ {
+ bits[i] = 7
+ }
+ for i := 280; i < 288; i++ {
+ bits[i] = 8
+ }
+ h.init(bits[:])
+
+ var buf bytes.Buffer
+
+ fmt.Fprintf(&buf, `// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.`+"\n\n")
+
+ fmt.Fprintln(&buf, "package flate")
+ fmt.Fprintln(&buf)
+ fmt.Fprintln(&buf, "// autogenerated by go run gen.go -output fixedhuff.go, DO NOT EDIT")
+ fmt.Fprintln(&buf)
+ fmt.Fprintln(&buf, "var fixedHuffmanDecoder = huffmanDecoder{")
+ fmt.Fprintf(&buf, "\t%d,\n", h.min)
+ fmt.Fprintln(&buf, "\t[huffmanNumChunks]uint32{")
+ for i := 0; i < huffmanNumChunks; i++ {
+ if i&7 == 0 {
+ fmt.Fprintf(&buf, "\t\t")
+ } else {
+ fmt.Fprintf(&buf, " ")
+ }
+ fmt.Fprintf(&buf, "0x%04x,", h.chunks[i])
+ if i&7 == 7 {
+ fmt.Fprintln(&buf)
+ }
+ }
+ fmt.Fprintln(&buf, "\t},")
+ fmt.Fprintln(&buf, "\tnil, 0,")
+ fmt.Fprintln(&buf, "}")
+
+ data, err := format.Source(buf.Bytes())
+ if err != nil {
+ log.Fatal(err)
+ }
+ err = ioutil.WriteFile(*filename, data, 0644)
+ if err != nil {
+ log.Fatal(err)
+ }
+}
+
+var reverseByte [256]byte
+
+func initReverseByte() {
+ for x := 0; x < 256; x++ {
+ var result byte
+ for i := uint(0); i < 8; i++ {
+ result |= byte(((x >> i) & 1) << (7 - i))
+ }
+ reverseByte[x] = result
+ }
+}
diff --git a/src/compress/flate/huffman_bit_writer.go b/src/compress/flate/huffman_bit_writer.go
new file mode 100644
index 000000000..b182a710b
--- /dev/null
+++ b/src/compress/flate/huffman_bit_writer.go
@@ -0,0 +1,517 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "io"
+ "math"
+)
+
+const (
+ // The largest offset code.
+ offsetCodeCount = 30
+
+ // The special code used to mark the end of a block.
+ endBlockMarker = 256
+
+ // The first length code.
+ lengthCodesStart = 257
+
+ // The number of codegen codes.
+ codegenCodeCount = 19
+ badCode = 255
+)
+
+// The number of extra bits needed by length code X - LENGTH_CODES_START.
+var lengthExtraBits = []int8{
+ /* 257 */ 0, 0, 0,
+ /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
+ /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
+ /* 280 */ 4, 5, 5, 5, 5, 0,
+}
+
+// The length indicated by length code X - LENGTH_CODES_START.
+var lengthBase = []uint32{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
+ 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
+ 64, 80, 96, 112, 128, 160, 192, 224, 255,
+}
+
+// offset code word extra bits.
+var offsetExtraBits = []int8{
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
+ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
+ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
+ /* extended window */
+ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
+}
+
+var offsetBase = []uint32{
+ /* normal deflate */
+ 0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
+ 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
+ 0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
+ 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
+ 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
+ 0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
+
+ /* extended window */
+ 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
+ 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
+ 0x100000, 0x180000, 0x200000, 0x300000,
+}
+
+// The odd order in which the codegen code sizes are written.
+var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
+
+type huffmanBitWriter struct {
+ w io.Writer
+ // Data waiting to be written is bytes[0:nbytes]
+ // and then the low nbits of bits.
+ bits uint32
+ nbits uint32
+ bytes [64]byte
+ nbytes int
+ literalFreq []int32
+ offsetFreq []int32
+ codegen []uint8
+ codegenFreq []int32
+ literalEncoding *huffmanEncoder
+ offsetEncoding *huffmanEncoder
+ codegenEncoding *huffmanEncoder
+ err error
+}
+
+func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
+ return &huffmanBitWriter{
+ w: w,
+ literalFreq: make([]int32, maxLit),
+ offsetFreq: make([]int32, offsetCodeCount),
+ codegen: make([]uint8, maxLit+offsetCodeCount+1),
+ codegenFreq: make([]int32, codegenCodeCount),
+ literalEncoding: newHuffmanEncoder(maxLit),
+ offsetEncoding: newHuffmanEncoder(offsetCodeCount),
+ codegenEncoding: newHuffmanEncoder(codegenCodeCount),
+ }
+}
+
+func (w *huffmanBitWriter) reset(writer io.Writer) {
+ w.w = writer
+ w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
+ w.bytes = [64]byte{}
+ for i := range w.codegen {
+ w.codegen[i] = 0
+ }
+ for _, s := range [...][]int32{w.literalFreq, w.offsetFreq, w.codegenFreq} {
+ for i := range s {
+ s[i] = 0
+ }
+ }
+ for _, enc := range [...]*huffmanEncoder{
+ w.literalEncoding,
+ w.offsetEncoding,
+ w.codegenEncoding} {
+ for i := range enc.code {
+ enc.code[i] = 0
+ }
+ for i := range enc.codeBits {
+ enc.codeBits[i] = 0
+ }
+ }
+}
+
+func (w *huffmanBitWriter) flushBits() {
+ if w.err != nil {
+ w.nbits = 0
+ return
+ }
+ bits := w.bits
+ w.bits >>= 16
+ w.nbits -= 16
+ n := w.nbytes
+ w.bytes[n] = byte(bits)
+ w.bytes[n+1] = byte(bits >> 8)
+ if n += 2; n >= len(w.bytes) {
+ _, w.err = w.w.Write(w.bytes[0:])
+ n = 0
+ }
+ w.nbytes = n
+}
+
+func (w *huffmanBitWriter) flush() {
+ if w.err != nil {
+ w.nbits = 0
+ return
+ }
+ n := w.nbytes
+ if w.nbits > 8 {
+ w.bytes[n] = byte(w.bits)
+ w.bits >>= 8
+ w.nbits -= 8
+ n++
+ }
+ if w.nbits > 0 {
+ w.bytes[n] = byte(w.bits)
+ w.nbits = 0
+ n++
+ }
+ w.bits = 0
+ _, w.err = w.w.Write(w.bytes[0:n])
+ w.nbytes = 0
+}
+
+func (w *huffmanBitWriter) writeBits(b, nb int32) {
+ w.bits |= uint32(b) << w.nbits
+ if w.nbits += uint32(nb); w.nbits >= 16 {
+ w.flushBits()
+ }
+}
+
+func (w *huffmanBitWriter) writeBytes(bytes []byte) {
+ if w.err != nil {
+ return
+ }
+ n := w.nbytes
+ if w.nbits == 8 {
+ w.bytes[n] = byte(w.bits)
+ w.nbits = 0
+ n++
+ }
+ if w.nbits != 0 {
+ w.err = InternalError("writeBytes with unfinished bits")
+ return
+ }
+ if n != 0 {
+ _, w.err = w.w.Write(w.bytes[0:n])
+ if w.err != nil {
+ return
+ }
+ }
+ w.nbytes = 0
+ _, w.err = w.w.Write(bytes)
+}
+
+// RFC 1951 3.2.7 specifies a special run-length encoding for specifying
+// the literal and offset lengths arrays (which are concatenated into a single
+// array). This method generates that run-length encoding.
+//
+// The result is written into the codegen array, and the frequencies
+// of each code is written into the codegenFreq array.
+// Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
+// information. Code badCode is an end marker
+//
+// numLiterals The number of literals in literalEncoding
+// numOffsets The number of offsets in offsetEncoding
+func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int) {
+ for i := range w.codegenFreq {
+ w.codegenFreq[i] = 0
+ }
+ // Note that we are using codegen both as a temporary variable for holding
+ // a copy of the frequencies, and as the place where we put the result.
+ // This is fine because the output is always shorter than the input used
+ // so far.
+ codegen := w.codegen // cache
+ // Copy the concatenated code sizes to codegen. Put a marker at the end.
+ copy(codegen[0:numLiterals], w.literalEncoding.codeBits)
+ copy(codegen[numLiterals:numLiterals+numOffsets], w.offsetEncoding.codeBits)
+ codegen[numLiterals+numOffsets] = badCode
+
+ size := codegen[0]
+ count := 1
+ outIndex := 0
+ for inIndex := 1; size != badCode; inIndex++ {
+ // INVARIANT: We have seen "count" copies of size that have not yet
+ // had output generated for them.
+ nextSize := codegen[inIndex]
+ if nextSize == size {
+ count++
+ continue
+ }
+ // We need to generate codegen indicating "count" of size.
+ if size != 0 {
+ codegen[outIndex] = size
+ outIndex++
+ w.codegenFreq[size]++
+ count--
+ for count >= 3 {
+ n := 6
+ if n > count {
+ n = count
+ }
+ codegen[outIndex] = 16
+ outIndex++
+ codegen[outIndex] = uint8(n - 3)
+ outIndex++
+ w.codegenFreq[16]++
+ count -= n
+ }
+ } else {
+ for count >= 11 {
+ n := 138
+ if n > count {
+ n = count
+ }
+ codegen[outIndex] = 18
+ outIndex++
+ codegen[outIndex] = uint8(n - 11)
+ outIndex++
+ w.codegenFreq[18]++
+ count -= n
+ }
+ if count >= 3 {
+ // count >= 3 && count <= 10
+ codegen[outIndex] = 17
+ outIndex++
+ codegen[outIndex] = uint8(count - 3)
+ outIndex++
+ w.codegenFreq[17]++
+ count = 0
+ }
+ }
+ count--
+ for ; count >= 0; count-- {
+ codegen[outIndex] = size
+ outIndex++
+ w.codegenFreq[size]++
+ }
+ // Set up invariant for next time through the loop.
+ size = nextSize
+ count = 1
+ }
+ // Marker indicating the end of the codegen.
+ codegen[outIndex] = badCode
+}
+
+func (w *huffmanBitWriter) writeCode(code *huffmanEncoder, literal uint32) {
+ if w.err != nil {
+ return
+ }
+ w.writeBits(int32(code.code[literal]), int32(code.codeBits[literal]))
+}
+
+// Write the header of a dynamic Huffman block to the output stream.
+//
+// numLiterals The number of literals specified in codegen
+// numOffsets The number of offsets specified in codegen
+// numCodegens The number of codegens used in codegen
+func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
+ if w.err != nil {
+ return
+ }
+ var firstBits int32 = 4
+ if isEof {
+ firstBits = 5
+ }
+ w.writeBits(firstBits, 3)
+ w.writeBits(int32(numLiterals-257), 5)
+ w.writeBits(int32(numOffsets-1), 5)
+ w.writeBits(int32(numCodegens-4), 4)
+
+ for i := 0; i < numCodegens; i++ {
+ value := w.codegenEncoding.codeBits[codegenOrder[i]]
+ w.writeBits(int32(value), 3)
+ }
+
+ i := 0
+ for {
+ var codeWord int = int(w.codegen[i])
+ i++
+ if codeWord == badCode {
+ break
+ }
+ // The low byte contains the actual code to generate.
+ w.writeCode(w.codegenEncoding, uint32(codeWord))
+
+ switch codeWord {
+ case 16:
+ w.writeBits(int32(w.codegen[i]), 2)
+ i++
+ break
+ case 17:
+ w.writeBits(int32(w.codegen[i]), 3)
+ i++
+ break
+ case 18:
+ w.writeBits(int32(w.codegen[i]), 7)
+ i++
+ break
+ }
+ }
+}
+
+func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
+ if w.err != nil {
+ return
+ }
+ var flag int32
+ if isEof {
+ flag = 1
+ }
+ w.writeBits(flag, 3)
+ w.flush()
+ w.writeBits(int32(length), 16)
+ w.writeBits(int32(^uint16(length)), 16)
+}
+
+func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
+ if w.err != nil {
+ return
+ }
+ // Indicate that we are a fixed Huffman block
+ var value int32 = 2
+ if isEof {
+ value = 3
+ }
+ w.writeBits(value, 3)
+}
+
+func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
+ if w.err != nil {
+ return
+ }
+ for i := range w.literalFreq {
+ w.literalFreq[i] = 0
+ }
+ for i := range w.offsetFreq {
+ w.offsetFreq[i] = 0
+ }
+
+ n := len(tokens)
+ tokens = tokens[0 : n+1]
+ tokens[n] = endBlockMarker
+
+ for _, t := range tokens {
+ switch t.typ() {
+ case literalType:
+ w.literalFreq[t.literal()]++
+ case matchType:
+ length := t.length()
+ offset := t.offset()
+ w.literalFreq[lengthCodesStart+lengthCode(length)]++
+ w.offsetFreq[offsetCode(offset)]++
+ }
+ }
+
+ // get the number of literals
+ numLiterals := len(w.literalFreq)
+ for w.literalFreq[numLiterals-1] == 0 {
+ numLiterals--
+ }
+ // get the number of offsets
+ numOffsets := len(w.offsetFreq)
+ for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
+ numOffsets--
+ }
+ if numOffsets == 0 {
+ // We haven't found a single match. If we want to go with the dynamic encoding,
+ // we should count at least one offset to be sure that the offset huffman tree could be encoded.
+ w.offsetFreq[0] = 1
+ numOffsets = 1
+ }
+
+ w.literalEncoding.generate(w.literalFreq, 15)
+ w.offsetEncoding.generate(w.offsetFreq, 15)
+
+ storedBytes := 0
+ if input != nil {
+ storedBytes = len(input)
+ }
+ var extraBits int64
+ var storedSize int64 = math.MaxInt64
+ if storedBytes <= maxStoreBlockSize && input != nil {
+ storedSize = int64((storedBytes + 5) * 8)
+ // We only bother calculating the costs of the extra bits required by
+ // the length of offset fields (which will be the same for both fixed
+ // and dynamic encoding), if we need to compare those two encodings
+ // against stored encoding.
+ for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
+ // First eight length codes have extra size = 0.
+ extraBits += int64(w.literalFreq[lengthCode]) * int64(lengthExtraBits[lengthCode-lengthCodesStart])
+ }
+ for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
+ // First four offset codes have extra size = 0.
+ extraBits += int64(w.offsetFreq[offsetCode]) * int64(offsetExtraBits[offsetCode])
+ }
+ }
+
+ // Figure out smallest code.
+ // Fixed Huffman baseline.
+ var size = int64(3) +
+ fixedLiteralEncoding.bitLength(w.literalFreq) +
+ fixedOffsetEncoding.bitLength(w.offsetFreq) +
+ extraBits
+ var literalEncoding = fixedLiteralEncoding
+ var offsetEncoding = fixedOffsetEncoding
+
+ // Dynamic Huffman?
+ var numCodegens int
+
+ // Generate codegen and codegenFrequencies, which indicates how to encode
+ // the literalEncoding and the offsetEncoding.
+ w.generateCodegen(numLiterals, numOffsets)
+ w.codegenEncoding.generate(w.codegenFreq, 7)
+ numCodegens = len(w.codegenFreq)
+ for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
+ numCodegens--
+ }
+ dynamicHeader := int64(3+5+5+4+(3*numCodegens)) +
+ w.codegenEncoding.bitLength(w.codegenFreq) +
+ int64(extraBits) +
+ int64(w.codegenFreq[16]*2) +
+ int64(w.codegenFreq[17]*3) +
+ int64(w.codegenFreq[18]*7)
+ dynamicSize := dynamicHeader +
+ w.literalEncoding.bitLength(w.literalFreq) +
+ w.offsetEncoding.bitLength(w.offsetFreq)
+
+ if dynamicSize < size {
+ size = dynamicSize
+ literalEncoding = w.literalEncoding
+ offsetEncoding = w.offsetEncoding
+ }
+
+ // Stored bytes?
+ if storedSize < size {
+ w.writeStoredHeader(storedBytes, eof)
+ w.writeBytes(input[0:storedBytes])
+ return
+ }
+
+ // Huffman.
+ if literalEncoding == fixedLiteralEncoding {
+ w.writeFixedHeader(eof)
+ } else {
+ w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
+ }
+ for _, t := range tokens {
+ switch t.typ() {
+ case literalType:
+ w.writeCode(literalEncoding, t.literal())
+ break
+ case matchType:
+ // Write the length
+ length := t.length()
+ lengthCode := lengthCode(length)
+ w.writeCode(literalEncoding, lengthCode+lengthCodesStart)
+ extraLengthBits := int32(lengthExtraBits[lengthCode])
+ if extraLengthBits > 0 {
+ extraLength := int32(length - lengthBase[lengthCode])
+ w.writeBits(extraLength, extraLengthBits)
+ }
+ // Write the offset
+ offset := t.offset()
+ offsetCode := offsetCode(offset)
+ w.writeCode(offsetEncoding, offsetCode)
+ extraOffsetBits := int32(offsetExtraBits[offsetCode])
+ if extraOffsetBits > 0 {
+ extraOffset := int32(offset - offsetBase[offsetCode])
+ w.writeBits(extraOffset, extraOffsetBits)
+ }
+ break
+ default:
+ panic("unknown token type: " + string(t))
+ }
+ }
+}
diff --git a/src/compress/flate/huffman_code.go b/src/compress/flate/huffman_code.go
new file mode 100644
index 000000000..3b9fce466
--- /dev/null
+++ b/src/compress/flate/huffman_code.go
@@ -0,0 +1,323 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "math"
+ "sort"
+)
+
+type huffmanEncoder struct {
+ codeBits []uint8
+ code []uint16
+}
+
+type literalNode struct {
+ literal uint16
+ freq int32
+}
+
+// A levelInfo describes the state of the constructed tree for a given depth.
+type levelInfo struct {
+ // Our level. for better printing
+ level int32
+
+ // The frequency of the last node at this level
+ lastFreq int32
+
+ // The frequency of the next character to add to this level
+ nextCharFreq int32
+
+ // The frequency of the next pair (from level below) to add to this level.
+ // Only valid if the "needed" value of the next lower level is 0.
+ nextPairFreq int32
+
+ // The number of chains remaining to generate for this level before moving
+ // up to the next level
+ needed int32
+}
+
+func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
+
+func newHuffmanEncoder(size int) *huffmanEncoder {
+ return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
+}
+
+// Generates a HuffmanCode corresponding to the fixed literal table
+func generateFixedLiteralEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(maxLit)
+ codeBits := h.codeBits
+ code := h.code
+ var ch uint16
+ for ch = 0; ch < maxLit; ch++ {
+ var bits uint16
+ var size uint8
+ switch {
+ case ch < 144:
+ // size 8, 000110000 .. 10111111
+ bits = ch + 48
+ size = 8
+ break
+ case ch < 256:
+ // size 9, 110010000 .. 111111111
+ bits = ch + 400 - 144
+ size = 9
+ break
+ case ch < 280:
+ // size 7, 0000000 .. 0010111
+ bits = ch - 256
+ size = 7
+ break
+ default:
+ // size 8, 11000000 .. 11000111
+ bits = ch + 192 - 280
+ size = 8
+ }
+ codeBits[ch] = size
+ code[ch] = reverseBits(bits, size)
+ }
+ return h
+}
+
+func generateFixedOffsetEncoding() *huffmanEncoder {
+ h := newHuffmanEncoder(30)
+ codeBits := h.codeBits
+ code := h.code
+ for ch := uint16(0); ch < 30; ch++ {
+ codeBits[ch] = 5
+ code[ch] = reverseBits(ch, 5)
+ }
+ return h
+}
+
+var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
+var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
+
+func (h *huffmanEncoder) bitLength(freq []int32) int64 {
+ var total int64
+ for i, f := range freq {
+ if f != 0 {
+ total += int64(f) * int64(h.codeBits[i])
+ }
+ }
+ return total
+}
+
+const maxBitsLimit = 16
+
+// Return the number of literals assigned to each bit size in the Huffman encoding
+//
+// This method is only called when list.length >= 3
+// The cases of 0, 1, and 2 literals are handled by special case code.
+//
+// list An array of the literals with non-zero frequencies
+// and their associated frequencies. The array is in order of increasing
+// frequency, and has as its last element a special element with frequency
+// MaxInt32
+// maxBits The maximum number of bits that should be used to encode any literal.
+// Must be less than 16.
+// return An integer array in which array[i] indicates the number of literals
+// that should be encoded in i bits.
+func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
+ if maxBits >= maxBitsLimit {
+ panic("flate: maxBits too large")
+ }
+ n := int32(len(list))
+ list = list[0 : n+1]
+ list[n] = maxNode()
+
+ // The tree can't have greater depth than n - 1, no matter what. This
+ // saves a little bit of work in some small cases
+ if maxBits > n-1 {
+ maxBits = n - 1
+ }
+
+ // Create information about each of the levels.
+ // A bogus "Level 0" whose sole purpose is so that
+ // level1.prev.needed==0. This makes level1.nextPairFreq
+ // be a legitimate value that never gets chosen.
+ var levels [maxBitsLimit]levelInfo
+ // leafCounts[i] counts the number of literals at the left
+ // of ancestors of the rightmost node at level i.
+ // leafCounts[i][j] is the number of literals at the left
+ // of the level j ancestor.
+ var leafCounts [maxBitsLimit][maxBitsLimit]int32
+
+ for level := int32(1); level <= maxBits; level++ {
+ // For every level, the first two items are the first two characters.
+ // We initialize the levels as if we had already figured this out.
+ levels[level] = levelInfo{
+ level: level,
+ lastFreq: list[1].freq,
+ nextCharFreq: list[2].freq,
+ nextPairFreq: list[0].freq + list[1].freq,
+ }
+ leafCounts[level][level] = 2
+ if level == 1 {
+ levels[level].nextPairFreq = math.MaxInt32
+ }
+ }
+
+ // We need a total of 2*n - 2 items at top level and have already generated 2.
+ levels[maxBits].needed = 2*n - 4
+
+ level := maxBits
+ for {
+ l := &levels[level]
+ if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
+ // We've run out of both leafs and pairs.
+ // End all calculations for this level.
+ // To make sure we never come back to this level or any lower level,
+ // set nextPairFreq impossibly large.
+ l.needed = 0
+ levels[level+1].nextPairFreq = math.MaxInt32
+ level++
+ continue
+ }
+
+ prevFreq := l.lastFreq
+ if l.nextCharFreq < l.nextPairFreq {
+ // The next item on this row is a leaf node.
+ n := leafCounts[level][level] + 1
+ l.lastFreq = l.nextCharFreq
+ // Lower leafCounts are the same of the previous node.
+ leafCounts[level][level] = n
+ l.nextCharFreq = list[n].freq
+ } else {
+ // The next item on this row is a pair from the previous row.
+ // nextPairFreq isn't valid until we generate two
+ // more values in the level below
+ l.lastFreq = l.nextPairFreq
+ // Take leaf counts from the lower level, except counts[level] remains the same.
+ copy(leafCounts[level][:level], leafCounts[level-1][:level])
+ levels[l.level-1].needed = 2
+ }
+
+ if l.needed--; l.needed == 0 {
+ // We've done everything we need to do for this level.
+ // Continue calculating one level up. Fill in nextPairFreq
+ // of that level with the sum of the two nodes we've just calculated on
+ // this level.
+ if l.level == maxBits {
+ // All done!
+ break
+ }
+ levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq
+ level++
+ } else {
+ // If we stole from below, move down temporarily to replenish it.
+ for levels[level-1].needed > 0 {
+ level--
+ }
+ }
+ }
+
+ // Somethings is wrong if at the end, the top level is null or hasn't used
+ // all of the leaves.
+ if leafCounts[maxBits][maxBits] != n {
+ panic("leafCounts[maxBits][maxBits] != n")
+ }
+
+ bitCount := make([]int32, maxBits+1)
+ bits := 1
+ counts := &leafCounts[maxBits]
+ for level := maxBits; level > 0; level-- {
+ // chain.leafCount gives the number of literals requiring at least "bits"
+ // bits to encode.
+ bitCount[bits] = counts[level] - counts[level-1]
+ bits++
+ }
+ return bitCount
+}
+
+// Look at the leaves and assign them a bit count and an encoding as specified
+// in RFC 1951 3.2.2
+func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
+ code := uint16(0)
+ for n, bits := range bitCount {
+ code <<= 1
+ if n == 0 || bits == 0 {
+ continue
+ }
+ // The literals list[len(list)-bits] .. list[len(list)-bits]
+ // are encoded using "bits" bits, and get the values
+ // code, code + 1, .... The code values are
+ // assigned in literal order (not frequency order).
+ chunk := list[len(list)-int(bits):]
+ sortByLiteral(chunk)
+ for _, node := range chunk {
+ h.codeBits[node.literal] = uint8(n)
+ h.code[node.literal] = reverseBits(code, uint8(n))
+ code++
+ }
+ list = list[0 : len(list)-int(bits)]
+ }
+}
+
+// Update this Huffman Code object to be the minimum code for the specified frequency count.
+//
+// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
+// maxBits The maximum number of bits to use for any literal.
+func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
+ list := make([]literalNode, len(freq)+1)
+ // Number of non-zero literals
+ count := 0
+ // Set list to be the set of all non-zero literals and their frequencies
+ for i, f := range freq {
+ if f != 0 {
+ list[count] = literalNode{uint16(i), f}
+ count++
+ } else {
+ h.codeBits[i] = 0
+ }
+ }
+ // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
+ h.codeBits = h.codeBits[0:len(freq)]
+ list = list[0:count]
+ if count <= 2 {
+ // Handle the small cases here, because they are awkward for the general case code. With
+ // two or fewer literals, everything has bit length 1.
+ for i, node := range list {
+ // "list" is in order of increasing literal value.
+ h.codeBits[node.literal] = 1
+ h.code[node.literal] = uint16(i)
+ }
+ return
+ }
+ sortByFreq(list)
+
+ // Get the number of literals for each bit count
+ bitCount := h.bitCounts(list, maxBits)
+ // And do the assignment
+ h.assignEncodingAndSize(bitCount, list)
+}
+
+type literalNodeSorter struct {
+ a []literalNode
+ less func(i, j int) bool
+}
+
+func (s literalNodeSorter) Len() int { return len(s.a) }
+
+func (s literalNodeSorter) Less(i, j int) bool {
+ return s.less(i, j)
+}
+
+func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
+
+func sortByFreq(a []literalNode) {
+ s := &literalNodeSorter{a, func(i, j int) bool {
+ if a[i].freq == a[j].freq {
+ return a[i].literal < a[j].literal
+ }
+ return a[i].freq < a[j].freq
+ }}
+ sort.Sort(s)
+}
+
+func sortByLiteral(a []literalNode) {
+ s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
+ sort.Sort(s)
+}
diff --git a/src/compress/flate/inflate.go b/src/compress/flate/inflate.go
new file mode 100644
index 000000000..76519bbf4
--- /dev/null
+++ b/src/compress/flate/inflate.go
@@ -0,0 +1,739 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:generate go run gen.go -output fixedhuff.go
+
+// Package flate implements the DEFLATE compressed data format, described in
+// RFC 1951. The gzip and zlib packages implement access to DEFLATE-based file
+// formats.
+package flate
+
+import (
+ "bufio"
+ "io"
+ "strconv"
+)
+
+const (
+ maxCodeLen = 16 // max length of Huffman code
+ maxHist = 32768 // max history required
+ // The next three numbers come from the RFC, section 3.2.7.
+ maxLit = 286
+ maxDist = 32
+ numCodes = 19 // number of codes in Huffman meta-code
+)
+
+// A CorruptInputError reports the presence of corrupt input at a given offset.
+type CorruptInputError int64
+
+func (e CorruptInputError) Error() string {
+ return "flate: corrupt input before offset " + strconv.FormatInt(int64(e), 10)
+}
+
+// An InternalError reports an error in the flate code itself.
+type InternalError string
+
+func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
+
+// A ReadError reports an error encountered while reading input.
+type ReadError struct {
+ Offset int64 // byte offset where error occurred
+ Err error // error returned by underlying Read
+}
+
+func (e *ReadError) Error() string {
+ return "flate: read error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
+}
+
+// A WriteError reports an error encountered while writing output.
+type WriteError struct {
+ Offset int64 // byte offset where error occurred
+ Err error // error returned by underlying Write
+}
+
+func (e *WriteError) Error() string {
+ return "flate: write error at offset " + strconv.FormatInt(e.Offset, 10) + ": " + e.Err.Error()
+}
+
+// Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
+// to switch to a new underlying Reader. This permits reusing a ReadCloser
+// instead of allocating a new one.
+type Resetter interface {
+ // Reset discards any buffered data and resets the Resetter as if it was
+ // newly initialized with the given reader.
+ Reset(r io.Reader, dict []byte) error
+}
+
+// Note that much of the implementation of huffmanDecoder is also copied
+// into gen.go (in package main) for the purpose of precomputing the
+// fixed huffman tables so they can be included statically.
+
+// The data structure for decoding Huffman tables is based on that of
+// zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
+// For codes smaller than the table width, there are multiple entries
+// (each combination of trailing bits has the same value). For codes
+// larger than the table width, the table contains a link to an overflow
+// table. The width of each entry in the link table is the maximum code
+// size minus the chunk width.
+
+// Note that you can do a lookup in the table even without all bits
+// filled. Since the extra bits are zero, and the DEFLATE Huffman codes
+// have the property that shorter codes come before longer ones, the
+// bit length estimate in the result is a lower bound on the actual
+// number of bits.
+
+// chunk & 15 is number of bits
+// chunk >> 4 is value, including table link
+
+const (
+ huffmanChunkBits = 9
+ huffmanNumChunks = 1 << huffmanChunkBits
+ huffmanCountMask = 15
+ huffmanValueShift = 4
+)
+
+type huffmanDecoder struct {
+ min int // the minimum code length
+ chunks [huffmanNumChunks]uint32 // chunks as described above
+ links [][]uint32 // overflow links
+ linkMask uint32 // mask the width of the link table
+}
+
+// Initialize Huffman decoding tables from array of code lengths.
+func (h *huffmanDecoder) init(bits []int) bool {
+ if h.min != 0 {
+ *h = huffmanDecoder{}
+ }
+
+ // Count number of codes of each length,
+ // compute min and max length.
+ var count [maxCodeLen]int
+ var min, max int
+ for _, n := range bits {
+ if n == 0 {
+ continue
+ }
+ if min == 0 || n < min {
+ min = n
+ }
+ if n > max {
+ max = n
+ }
+ count[n]++
+ }
+ if max == 0 {
+ return false
+ }
+
+ h.min = min
+ var linkBits uint
+ var numLinks int
+ if max > huffmanChunkBits {
+ linkBits = uint(max) - huffmanChunkBits
+ numLinks = 1 << linkBits
+ h.linkMask = uint32(numLinks - 1)
+ }
+ code := 0
+ var nextcode [maxCodeLen]int
+ for i := min; i <= max; i++ {
+ if i == huffmanChunkBits+1 {
+ // create link tables
+ link := code >> 1
+ if huffmanNumChunks < link {
+ return false
+ }
+ h.links = make([][]uint32, huffmanNumChunks-link)
+ for j := uint(link); j < huffmanNumChunks; j++ {
+ reverse := int(reverseByte[j>>8]) | int(reverseByte[j&0xff])<<8
+ reverse >>= uint(16 - huffmanChunkBits)
+ off := j - uint(link)
+ h.chunks[reverse] = uint32(off<<huffmanValueShift + uint(i))
+ h.links[off] = make([]uint32, 1<<linkBits)
+ }
+ }
+ n := count[i]
+ nextcode[i] = code
+ code += n
+ code <<= 1
+ }
+
+ for i, n := range bits {
+ if n == 0 {
+ continue
+ }
+ code := nextcode[n]
+ nextcode[n]++
+ chunk := uint32(i<<huffmanValueShift | n)
+ reverse := int(reverseByte[code>>8]) | int(reverseByte[code&0xff])<<8
+ reverse >>= uint(16 - n)
+ if n <= huffmanChunkBits {
+ for off := reverse; off < huffmanNumChunks; off += 1 << uint(n) {
+ h.chunks[off] = chunk
+ }
+ } else {
+ value := h.chunks[reverse&(huffmanNumChunks-1)] >> huffmanValueShift
+ if value >= uint32(len(h.links)) {
+ return false
+ }
+ linktab := h.links[value]
+ reverse >>= huffmanChunkBits
+ for off := reverse; off < numLinks; off += 1 << uint(n-huffmanChunkBits) {
+ linktab[off] = chunk
+ }
+ }
+ }
+ return true
+}
+
+// The actual read interface needed by NewReader.
+// If the passed in io.Reader does not also have ReadByte,
+// the NewReader will introduce its own buffering.
+type Reader interface {
+ io.Reader
+ io.ByteReader
+}
+
+// Decompress state.
+type decompressor struct {
+ // Input source.
+ r Reader
+ roffset int64
+ woffset int64
+
+ // Input bits, in top of b.
+ b uint32
+ nb uint
+
+ // Huffman decoders for literal/length, distance.
+ h1, h2 huffmanDecoder
+
+ // Length arrays used to define Huffman codes.
+ bits *[maxLit + maxDist]int
+ codebits *[numCodes]int
+
+ // Output history, buffer.
+ hist *[maxHist]byte
+ hp int // current output position in buffer
+ hw int // have written hist[0:hw] already
+ hfull bool // buffer has filled at least once
+
+ // Temporary buffer (avoids repeated allocation).
+ buf [4]byte
+
+ // Next step in the decompression,
+ // and decompression state.
+ step func(*decompressor)
+ final bool
+ err error
+ toRead []byte
+ hl, hd *huffmanDecoder
+ copyLen int
+ copyDist int
+}
+
+func (f *decompressor) nextBlock() {
+ if f.final {
+ if f.hw != f.hp {
+ f.flush((*decompressor).nextBlock)
+ return
+ }
+ f.err = io.EOF
+ return
+ }
+ for f.nb < 1+2 {
+ if f.err = f.moreBits(); f.err != nil {
+ return
+ }
+ }
+ f.final = f.b&1 == 1
+ f.b >>= 1
+ typ := f.b & 3
+ f.b >>= 2
+ f.nb -= 1 + 2
+ switch typ {
+ case 0:
+ f.dataBlock()
+ case 1:
+ // compressed, fixed Huffman tables
+ f.hl = &fixedHuffmanDecoder
+ f.hd = nil
+ f.huffmanBlock()
+ case 2:
+ // compressed, dynamic Huffman tables
+ if f.err = f.readHuffman(); f.err != nil {
+ break
+ }
+ f.hl = &f.h1
+ f.hd = &f.h2
+ f.huffmanBlock()
+ default:
+ // 3 is reserved.
+ f.err = CorruptInputError(f.roffset)
+ }
+}
+
+func (f *decompressor) Read(b []byte) (int, error) {
+ for {
+ if len(f.toRead) > 0 {
+ n := copy(b, f.toRead)
+ f.toRead = f.toRead[n:]
+ return n, nil
+ }
+ if f.err != nil {
+ return 0, f.err
+ }
+ f.step(f)
+ }
+}
+
+func (f *decompressor) Close() error {
+ if f.err == io.EOF {
+ return nil
+ }
+ return f.err
+}
+
+// RFC 1951 section 3.2.7.
+// Compression with dynamic Huffman codes
+
+var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
+
+func (f *decompressor) readHuffman() error {
+ // HLIT[5], HDIST[5], HCLEN[4].
+ for f.nb < 5+5+4 {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ nlit := int(f.b&0x1F) + 257
+ if nlit > maxLit {
+ return CorruptInputError(f.roffset)
+ }
+ f.b >>= 5
+ ndist := int(f.b&0x1F) + 1
+ // maxDist is 32, so ndist is always valid.
+ f.b >>= 5
+ nclen := int(f.b&0xF) + 4
+ // numCodes is 19, so nclen is always valid.
+ f.b >>= 4
+ f.nb -= 5 + 5 + 4
+
+ // (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
+ for i := 0; i < nclen; i++ {
+ for f.nb < 3 {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ f.codebits[codeOrder[i]] = int(f.b & 0x7)
+ f.b >>= 3
+ f.nb -= 3
+ }
+ for i := nclen; i < len(codeOrder); i++ {
+ f.codebits[codeOrder[i]] = 0
+ }
+ if !f.h1.init(f.codebits[0:]) {
+ return CorruptInputError(f.roffset)
+ }
+
+ // HLIT + 257 code lengths, HDIST + 1 code lengths,
+ // using the code length Huffman code.
+ for i, n := 0, nlit+ndist; i < n; {
+ x, err := f.huffSym(&f.h1)
+ if err != nil {
+ return err
+ }
+ if x < 16 {
+ // Actual length.
+ f.bits[i] = x
+ i++
+ continue
+ }
+ // Repeat previous length or zero.
+ var rep int
+ var nb uint
+ var b int
+ switch x {
+ default:
+ return InternalError("unexpected length code")
+ case 16:
+ rep = 3
+ nb = 2
+ if i == 0 {
+ return CorruptInputError(f.roffset)
+ }
+ b = f.bits[i-1]
+ case 17:
+ rep = 3
+ nb = 3
+ b = 0
+ case 18:
+ rep = 11
+ nb = 7
+ b = 0
+ }
+ for f.nb < nb {
+ if err := f.moreBits(); err != nil {
+ return err
+ }
+ }
+ rep += int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ if i+rep > n {
+ return CorruptInputError(f.roffset)
+ }
+ for j := 0; j < rep; j++ {
+ f.bits[i] = b
+ i++
+ }
+ }
+
+ if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
+ return CorruptInputError(f.roffset)
+ }
+
+ return nil
+}
+
+// Decode a single Huffman block from f.
+// hl and hd are the Huffman states for the lit/length values
+// and the distance values, respectively. If hd == nil, using the
+// fixed distance encoding associated with fixed Huffman blocks.
+func (f *decompressor) huffmanBlock() {
+ for {
+ v, err := f.huffSym(f.hl)
+ if err != nil {
+ f.err = err
+ return
+ }
+ var n uint // number of bits extra
+ var length int
+ switch {
+ case v < 256:
+ f.hist[f.hp] = byte(v)
+ f.hp++
+ if f.hp == len(f.hist) {
+ // After the flush, continue this loop.
+ f.flush((*decompressor).huffmanBlock)
+ return
+ }
+ continue
+ case v == 256:
+ // Done with huffman block; read next block.
+ f.step = (*decompressor).nextBlock
+ return
+ // otherwise, reference to older data
+ case v < 265:
+ length = v - (257 - 3)
+ n = 0
+ case v < 269:
+ length = v*2 - (265*2 - 11)
+ n = 1
+ case v < 273:
+ length = v*4 - (269*4 - 19)
+ n = 2
+ case v < 277:
+ length = v*8 - (273*8 - 35)
+ n = 3
+ case v < 281:
+ length = v*16 - (277*16 - 67)
+ n = 4
+ case v < 285:
+ length = v*32 - (281*32 - 131)
+ n = 5
+ default:
+ length = 258
+ n = 0
+ }
+ if n > 0 {
+ for f.nb < n {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ length += int(f.b & uint32(1<<n-1))
+ f.b >>= n
+ f.nb -= n
+ }
+
+ var dist int
+ if f.hd == nil {
+ for f.nb < 5 {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ dist = int(reverseByte[(f.b&0x1F)<<3])
+ f.b >>= 5
+ f.nb -= 5
+ } else {
+ if dist, err = f.huffSym(f.hd); err != nil {
+ f.err = err
+ return
+ }
+ }
+
+ switch {
+ case dist < 4:
+ dist++
+ case dist >= 30:
+ f.err = CorruptInputError(f.roffset)
+ return
+ default:
+ nb := uint(dist-2) >> 1
+ // have 1 bit in bottom of dist, need nb more.
+ extra := (dist & 1) << nb
+ for f.nb < nb {
+ if err = f.moreBits(); err != nil {
+ f.err = err
+ return
+ }
+ }
+ extra |= int(f.b & uint32(1<<nb-1))
+ f.b >>= nb
+ f.nb -= nb
+ dist = 1<<(nb+1) + 1 + extra
+ }
+
+ // Copy history[-dist:-dist+length] into output.
+ if dist > len(f.hist) {
+ f.err = InternalError("bad history distance")
+ return
+ }
+
+ // No check on length; encoding can be prescient.
+ if !f.hfull && dist > f.hp {
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ f.copyLen, f.copyDist = length, dist
+ if f.copyHist() {
+ return
+ }
+ }
+}
+
+// copyHist copies f.copyLen bytes from f.hist (f.copyDist bytes ago) to itself.
+// It reports whether the f.hist buffer is full.
+func (f *decompressor) copyHist() bool {
+ p := f.hp - f.copyDist
+ if p < 0 {
+ p += len(f.hist)
+ }
+ for f.copyLen > 0 {
+ n := f.copyLen
+ if x := len(f.hist) - f.hp; n > x {
+ n = x
+ }
+ if x := len(f.hist) - p; n > x {
+ n = x
+ }
+ forwardCopy(f.hist[:], f.hp, p, n)
+ p += n
+ f.hp += n
+ f.copyLen -= n
+ if f.hp == len(f.hist) {
+ // After flush continue copying out of history.
+ f.flush((*decompressor).copyHuff)
+ return true
+ }
+ if p == len(f.hist) {
+ p = 0
+ }
+ }
+ return false
+}
+
+func (f *decompressor) copyHuff() {
+ if f.copyHist() {
+ return
+ }
+ f.huffmanBlock()
+}
+
+// Copy a single uncompressed data block from input to output.
+func (f *decompressor) dataBlock() {
+ // Uncompressed.
+ // Discard current half-byte.
+ f.nb = 0
+ f.b = 0
+
+ // Length then ones-complement of length.
+ nr, err := io.ReadFull(f.r, f.buf[0:4])
+ f.roffset += int64(nr)
+ if err != nil {
+ f.err = &ReadError{f.roffset, err}
+ return
+ }
+ n := int(f.buf[0]) | int(f.buf[1])<<8
+ nn := int(f.buf[2]) | int(f.buf[3])<<8
+ if uint16(nn) != uint16(^n) {
+ f.err = CorruptInputError(f.roffset)
+ return
+ }
+
+ if n == 0 {
+ // 0-length block means sync
+ f.flush((*decompressor).nextBlock)
+ return
+ }
+
+ f.copyLen = n
+ f.copyData()
+}
+
+// copyData copies f.copyLen bytes from the underlying reader into f.hist.
+// It pauses for reads when f.hist is full.
+func (f *decompressor) copyData() {
+ n := f.copyLen
+ for n > 0 {
+ m := len(f.hist) - f.hp
+ if m > n {
+ m = n
+ }
+ m, err := io.ReadFull(f.r, f.hist[f.hp:f.hp+m])
+ f.roffset += int64(m)
+ if err != nil {
+ f.err = &ReadError{f.roffset, err}
+ return
+ }
+ n -= m
+ f.hp += m
+ if f.hp == len(f.hist) {
+ f.copyLen = n
+ f.flush((*decompressor).copyData)
+ return
+ }
+ }
+ f.step = (*decompressor).nextBlock
+}
+
+func (f *decompressor) setDict(dict []byte) {
+ if len(dict) > len(f.hist) {
+ // Will only remember the tail.
+ dict = dict[len(dict)-len(f.hist):]
+ }
+
+ f.hp = copy(f.hist[:], dict)
+ if f.hp == len(f.hist) {
+ f.hp = 0
+ f.hfull = true
+ }
+ f.hw = f.hp
+}
+
+func (f *decompressor) moreBits() error {
+ c, err := f.r.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ err = io.ErrUnexpectedEOF
+ }
+ return err
+ }
+ f.roffset++
+ f.b |= uint32(c) << f.nb
+ f.nb += 8
+ return nil
+}
+
+// Read the next Huffman-encoded symbol from f according to h.
+func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
+ n := uint(h.min)
+ for {
+ for f.nb < n {
+ if err := f.moreBits(); err != nil {
+ return 0, err
+ }
+ }
+ chunk := h.chunks[f.b&(huffmanNumChunks-1)]
+ n = uint(chunk & huffmanCountMask)
+ if n > huffmanChunkBits {
+ chunk = h.links[chunk>>huffmanValueShift][(f.b>>huffmanChunkBits)&h.linkMask]
+ n = uint(chunk & huffmanCountMask)
+ if n == 0 {
+ f.err = CorruptInputError(f.roffset)
+ return 0, f.err
+ }
+ }
+ if n <= f.nb {
+ f.b >>= n
+ f.nb -= n
+ return int(chunk >> huffmanValueShift), nil
+ }
+ }
+}
+
+// Flush any buffered output to the underlying writer.
+func (f *decompressor) flush(step func(*decompressor)) {
+ f.toRead = f.hist[f.hw:f.hp]
+ f.woffset += int64(f.hp - f.hw)
+ f.hw = f.hp
+ if f.hp == len(f.hist) {
+ f.hp = 0
+ f.hw = 0
+ f.hfull = true
+ }
+ f.step = step
+}
+
+func makeReader(r io.Reader) Reader {
+ if rr, ok := r.(Reader); ok {
+ return rr
+ }
+ return bufio.NewReader(r)
+}
+
+func (f *decompressor) Reset(r io.Reader, dict []byte) error {
+ *f = decompressor{
+ r: makeReader(r),
+ bits: f.bits,
+ codebits: f.codebits,
+ hist: f.hist,
+ step: (*decompressor).nextBlock,
+ }
+ if dict != nil {
+ f.setDict(dict)
+ }
+ return nil
+}
+
+// NewReader returns a new ReadCloser that can be used
+// to read the uncompressed version of r.
+// If r does not also implement io.ByteReader,
+// the decompressor may read more data than necessary from r.
+// It is the caller's responsibility to call Close on the ReadCloser
+// when finished reading.
+//
+// The ReadCloser returned by NewReader also implements Resetter.
+func NewReader(r io.Reader) io.ReadCloser {
+ var f decompressor
+ f.bits = new([maxLit + maxDist]int)
+ f.codebits = new([numCodes]int)
+ f.r = makeReader(r)
+ f.hist = new([maxHist]byte)
+ f.step = (*decompressor).nextBlock
+ return &f
+}
+
+// NewReaderDict is like NewReader but initializes the reader
+// with a preset dictionary. The returned Reader behaves as if
+// the uncompressed data stream started with the given dictionary,
+// which has already been read. NewReaderDict is typically used
+// to read data compressed by NewWriterDict.
+//
+// The ReadCloser returned by NewReader also implements Resetter.
+func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
+ var f decompressor
+ f.r = makeReader(r)
+ f.hist = new([maxHist]byte)
+ f.bits = new([maxLit + maxDist]int)
+ f.codebits = new([numCodes]int)
+ f.step = (*decompressor).nextBlock
+ f.setDict(dict)
+ return &f
+}
diff --git a/src/compress/flate/inflate_test.go b/src/compress/flate/inflate_test.go
new file mode 100644
index 000000000..9f25d30b3
--- /dev/null
+++ b/src/compress/flate/inflate_test.go
@@ -0,0 +1,39 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "bytes"
+ "io"
+ "testing"
+)
+
+func TestReset(t *testing.T) {
+ ss := []string{
+ "lorem ipsum izzle fo rizzle",
+ "the quick brown fox jumped over",
+ }
+
+ deflated := make([]bytes.Buffer, 2)
+ for i, s := range ss {
+ w, _ := NewWriter(&deflated[i], 1)
+ w.Write([]byte(s))
+ w.Close()
+ }
+
+ inflated := make([]bytes.Buffer, 2)
+
+ f := NewReader(&deflated[0])
+ io.Copy(&inflated[0], f)
+ f.(Resetter).Reset(&deflated[1], nil)
+ io.Copy(&inflated[1], f)
+ f.Close()
+
+ for i, s := range ss {
+ if s != inflated[i].String() {
+ t.Errorf("inflated[%d]:\ngot %q\nwant %q", i, inflated[i], s)
+ }
+ }
+}
diff --git a/src/compress/flate/reader_test.go b/src/compress/flate/reader_test.go
new file mode 100644
index 000000000..a62ef741d
--- /dev/null
+++ b/src/compress/flate/reader_test.go
@@ -0,0 +1,96 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "bytes"
+ "io"
+ "io/ioutil"
+ "runtime"
+ "strings"
+ "testing"
+)
+
+func TestNlitOutOfRange(t *testing.T) {
+ // Trying to decode this bogus flate data, which has a Huffman table
+ // with nlit=288, should not panic.
+ io.Copy(ioutil.Discard, NewReader(strings.NewReader(
+ "\xfc\xfe\x36\xe7\x5e\x1c\xef\xb3\x55\x58\x77\xb6\x56\xb5\x43\xf4"+
+ "\x6f\xf2\xd2\xe6\x3d\x99\xa0\x85\x8c\x48\xeb\xf8\xda\x83\x04\x2a"+
+ "\x75\xc4\xf8\x0f\x12\x11\xb9\xb4\x4b\x09\xa0\xbe\x8b\x91\x4c")))
+}
+
+const (
+ digits = iota
+ twain
+)
+
+var testfiles = []string{
+ // Digits is the digits of the irrational number e. Its decimal representation
+ // does not repeat, but there are only 10 possible digits, so it should be
+ // reasonably compressible.
+ digits: "../testdata/e.txt",
+ // Twain is Project Gutenberg's edition of Mark Twain's classic English novel.
+ twain: "../testdata/Mark.Twain-Tom.Sawyer.txt",
+}
+
+func benchmarkDecode(b *testing.B, testfile, level, n int) {
+ b.ReportAllocs()
+ b.StopTimer()
+ b.SetBytes(int64(n))
+ buf0, err := ioutil.ReadFile(testfiles[testfile])
+ if err != nil {
+ b.Fatal(err)
+ }
+ if len(buf0) == 0 {
+ b.Fatalf("test file %q has no data", testfiles[testfile])
+ }
+ compressed := new(bytes.Buffer)
+ w, err := NewWriter(compressed, level)
+ if err != nil {
+ b.Fatal(err)
+ }
+ for i := 0; i < n; i += len(buf0) {
+ if len(buf0) > n-i {
+ buf0 = buf0[:n-i]
+ }
+ io.Copy(w, bytes.NewReader(buf0))
+ }
+ w.Close()
+ buf1 := compressed.Bytes()
+ buf0, compressed, w = nil, nil, nil
+ runtime.GC()
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ io.Copy(ioutil.Discard, NewReader(bytes.NewReader(buf1)))
+ }
+}
+
+// These short names are so that gofmt doesn't break the BenchmarkXxx function
+// bodies below over multiple lines.
+const (
+ speed = BestSpeed
+ default_ = DefaultCompression
+ compress = BestCompression
+)
+
+func BenchmarkDecodeDigitsSpeed1e4(b *testing.B) { benchmarkDecode(b, digits, speed, 1e4) }
+func BenchmarkDecodeDigitsSpeed1e5(b *testing.B) { benchmarkDecode(b, digits, speed, 1e5) }
+func BenchmarkDecodeDigitsSpeed1e6(b *testing.B) { benchmarkDecode(b, digits, speed, 1e6) }
+func BenchmarkDecodeDigitsDefault1e4(b *testing.B) { benchmarkDecode(b, digits, default_, 1e4) }
+func BenchmarkDecodeDigitsDefault1e5(b *testing.B) { benchmarkDecode(b, digits, default_, 1e5) }
+func BenchmarkDecodeDigitsDefault1e6(b *testing.B) { benchmarkDecode(b, digits, default_, 1e6) }
+func BenchmarkDecodeDigitsCompress1e4(b *testing.B) { benchmarkDecode(b, digits, compress, 1e4) }
+func BenchmarkDecodeDigitsCompress1e5(b *testing.B) { benchmarkDecode(b, digits, compress, 1e5) }
+func BenchmarkDecodeDigitsCompress1e6(b *testing.B) { benchmarkDecode(b, digits, compress, 1e6) }
+func BenchmarkDecodeTwainSpeed1e4(b *testing.B) { benchmarkDecode(b, twain, speed, 1e4) }
+func BenchmarkDecodeTwainSpeed1e5(b *testing.B) { benchmarkDecode(b, twain, speed, 1e5) }
+func BenchmarkDecodeTwainSpeed1e6(b *testing.B) { benchmarkDecode(b, twain, speed, 1e6) }
+func BenchmarkDecodeTwainDefault1e4(b *testing.B) { benchmarkDecode(b, twain, default_, 1e4) }
+func BenchmarkDecodeTwainDefault1e5(b *testing.B) { benchmarkDecode(b, twain, default_, 1e5) }
+func BenchmarkDecodeTwainDefault1e6(b *testing.B) { benchmarkDecode(b, twain, default_, 1e6) }
+func BenchmarkDecodeTwainCompress1e4(b *testing.B) { benchmarkDecode(b, twain, compress, 1e4) }
+func BenchmarkDecodeTwainCompress1e5(b *testing.B) { benchmarkDecode(b, twain, compress, 1e5) }
+func BenchmarkDecodeTwainCompress1e6(b *testing.B) { benchmarkDecode(b, twain, compress, 1e6) }
diff --git a/src/compress/flate/reverse_bits.go b/src/compress/flate/reverse_bits.go
new file mode 100644
index 000000000..c1a02720d
--- /dev/null
+++ b/src/compress/flate/reverse_bits.go
@@ -0,0 +1,48 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+var reverseByte = [256]byte{
+ 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
+ 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
+ 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
+ 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
+ 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
+ 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
+ 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
+ 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
+ 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
+ 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
+ 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
+ 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
+ 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
+ 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
+ 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
+ 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
+ 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
+ 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
+ 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
+ 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
+ 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
+ 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
+ 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
+ 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
+ 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
+ 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
+ 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
+ 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
+ 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
+ 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
+ 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
+ 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
+}
+
+func reverseUint16(v uint16) uint16 {
+ return uint16(reverseByte[v>>8]) | uint16(reverseByte[v&0xFF])<<8
+}
+
+func reverseBits(number uint16, bitLength byte) uint16 {
+ return reverseUint16(number << uint8(16-bitLength))
+}
diff --git a/src/compress/flate/token.go b/src/compress/flate/token.go
new file mode 100644
index 000000000..4d4917687
--- /dev/null
+++ b/src/compress/flate/token.go
@@ -0,0 +1,102 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+const (
+ // 2 bits: type 0 = literal 1=EOF 2=Match 3=Unused
+ // 8 bits: xlength = length - MIN_MATCH_LENGTH
+ // 22 bits xoffset = offset - MIN_OFFSET_SIZE, or literal
+ lengthShift = 22
+ offsetMask = 1<<lengthShift - 1
+ typeMask = 3 << 30
+ literalType = 0 << 30
+ matchType = 1 << 30
+)
+
+// The length code for length X (MIN_MATCH_LENGTH <= X <= MAX_MATCH_LENGTH)
+// is lengthCodes[length - MIN_MATCH_LENGTH]
+var lengthCodes = [...]uint32{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 8,
+ 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,
+ 13, 13, 13, 13, 14, 14, 14, 14, 15, 15,
+ 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
+ 17, 17, 17, 17, 17, 17, 17, 17, 18, 18,
+ 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
+ 19, 19, 19, 19, 20, 20, 20, 20, 20, 20,
+ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
+ 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
+ 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
+ 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
+ 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
+ 23, 23, 23, 23, 23, 23, 23, 23, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
+ 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
+ 26, 26, 26, 26, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
+ 27, 27, 27, 27, 27, 28,
+}
+
+var offsetCodes = [...]uint32{
+ 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
+ 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
+ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
+ 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
+}
+
+type token uint32
+
+// Convert a literal into a literal token.
+func literalToken(literal uint32) token { return token(literalType + literal) }
+
+// Convert a < xlength, xoffset > pair into a match token.
+func matchToken(xlength uint32, xoffset uint32) token {
+ return token(matchType + xlength<<lengthShift + xoffset)
+}
+
+// Returns the type of a token
+func (t token) typ() uint32 { return uint32(t) & typeMask }
+
+// Returns the literal of a literal token
+func (t token) literal() uint32 { return uint32(t - literalType) }
+
+// Returns the extra offset of a match token
+func (t token) offset() uint32 { return uint32(t) & offsetMask }
+
+func (t token) length() uint32 { return uint32((t - matchType) >> lengthShift) }
+
+func lengthCode(len uint32) uint32 { return lengthCodes[len] }
+
+// Returns the offset code corresponding to a specific offset
+func offsetCode(off uint32) uint32 {
+ const n = uint32(len(offsetCodes))
+ switch {
+ case off < n:
+ return offsetCodes[off]
+ case off>>7 < n:
+ return offsetCodes[off>>7] + 14
+ default:
+ return offsetCodes[off>>14] + 28
+ }
+}
diff --git a/src/compress/flate/writer_test.go b/src/compress/flate/writer_test.go
new file mode 100644
index 000000000..58431774e
--- /dev/null
+++ b/src/compress/flate/writer_test.go
@@ -0,0 +1,60 @@
+// Copyright 2012 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package flate
+
+import (
+ "io/ioutil"
+ "runtime"
+ "testing"
+)
+
+func benchmarkEncoder(b *testing.B, testfile, level, n int) {
+ b.StopTimer()
+ b.SetBytes(int64(n))
+ buf0, err := ioutil.ReadFile(testfiles[testfile])
+ if err != nil {
+ b.Fatal(err)
+ }
+ if len(buf0) == 0 {
+ b.Fatalf("test file %q has no data", testfiles[testfile])
+ }
+ buf1 := make([]byte, n)
+ for i := 0; i < n; i += len(buf0) {
+ if len(buf0) > n-i {
+ buf0 = buf0[:n-i]
+ }
+ copy(buf1[i:], buf0)
+ }
+ buf0 = nil
+ runtime.GC()
+ b.StartTimer()
+ for i := 0; i < b.N; i++ {
+ w, err := NewWriter(ioutil.Discard, level)
+ if err != nil {
+ b.Fatal(err)
+ }
+ w.Write(buf1)
+ w.Close()
+ }
+}
+
+func BenchmarkEncodeDigitsSpeed1e4(b *testing.B) { benchmarkEncoder(b, digits, speed, 1e4) }
+func BenchmarkEncodeDigitsSpeed1e5(b *testing.B) { benchmarkEncoder(b, digits, speed, 1e5) }
+func BenchmarkEncodeDigitsSpeed1e6(b *testing.B) { benchmarkEncoder(b, digits, speed, 1e6) }
+func BenchmarkEncodeDigitsDefault1e4(b *testing.B) { benchmarkEncoder(b, digits, default_, 1e4) }
+func BenchmarkEncodeDigitsDefault1e5(b *testing.B) { benchmarkEncoder(b, digits, default_, 1e5) }
+func BenchmarkEncodeDigitsDefault1e6(b *testing.B) { benchmarkEncoder(b, digits, default_, 1e6) }
+func BenchmarkEncodeDigitsCompress1e4(b *testing.B) { benchmarkEncoder(b, digits, compress, 1e4) }
+func BenchmarkEncodeDigitsCompress1e5(b *testing.B) { benchmarkEncoder(b, digits, compress, 1e5) }
+func BenchmarkEncodeDigitsCompress1e6(b *testing.B) { benchmarkEncoder(b, digits, compress, 1e6) }
+func BenchmarkEncodeTwainSpeed1e4(b *testing.B) { benchmarkEncoder(b, twain, speed, 1e4) }
+func BenchmarkEncodeTwainSpeed1e5(b *testing.B) { benchmarkEncoder(b, twain, speed, 1e5) }
+func BenchmarkEncodeTwainSpeed1e6(b *testing.B) { benchmarkEncoder(b, twain, speed, 1e6) }
+func BenchmarkEncodeTwainDefault1e4(b *testing.B) { benchmarkEncoder(b, twain, default_, 1e4) }
+func BenchmarkEncodeTwainDefault1e5(b *testing.B) { benchmarkEncoder(b, twain, default_, 1e5) }
+func BenchmarkEncodeTwainDefault1e6(b *testing.B) { benchmarkEncoder(b, twain, default_, 1e6) }
+func BenchmarkEncodeTwainCompress1e4(b *testing.B) { benchmarkEncoder(b, twain, compress, 1e4) }
+func BenchmarkEncodeTwainCompress1e5(b *testing.B) { benchmarkEncoder(b, twain, compress, 1e5) }
+func BenchmarkEncodeTwainCompress1e6(b *testing.B) { benchmarkEncoder(b, twain, compress, 1e6) }