summaryrefslogtreecommitdiff
path: root/src/crypto/cipher/gcm.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/cipher/gcm.go')
-rw-r--r--src/crypto/cipher/gcm.go343
1 files changed, 343 insertions, 0 deletions
diff --git a/src/crypto/cipher/gcm.go b/src/crypto/cipher/gcm.go
new file mode 100644
index 000000000..bdafd85fc
--- /dev/null
+++ b/src/crypto/cipher/gcm.go
@@ -0,0 +1,343 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package cipher
+
+import (
+ "crypto/subtle"
+ "errors"
+)
+
+// AEAD is a cipher mode providing authenticated encryption with associated
+// data.
+type AEAD interface {
+ // NonceSize returns the size of the nonce that must be passed to Seal
+ // and Open.
+ NonceSize() int
+
+ // Overhead returns the maximum difference between the lengths of a
+ // plaintext and ciphertext.
+ Overhead() int
+
+ // Seal encrypts and authenticates plaintext, authenticates the
+ // additional data and appends the result to dst, returning the updated
+ // slice. The nonce must be NonceSize() bytes long and unique for all
+ // time, for a given key.
+ //
+ // The plaintext and dst may alias exactly or not at all.
+ Seal(dst, nonce, plaintext, data []byte) []byte
+
+ // Open decrypts and authenticates ciphertext, authenticates the
+ // additional data and, if successful, appends the resulting plaintext
+ // to dst, returning the updated slice. The nonce must be NonceSize()
+ // bytes long and both it and the additional data must match the
+ // value passed to Seal.
+ //
+ // The ciphertext and dst may alias exactly or not at all.
+ Open(dst, nonce, ciphertext, data []byte) ([]byte, error)
+}
+
+// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM
+// standard and make getUint64 suitable for marshaling these values, the bits
+// are stored backwards. For example:
+// the coefficient of x⁰ can be obtained by v.low >> 63.
+// the coefficient of x⁶³ can be obtained by v.low & 1.
+// the coefficient of x⁶⁴ can be obtained by v.high >> 63.
+// the coefficient of x¹²⁷ can be obtained by v.high & 1.
+type gcmFieldElement struct {
+ low, high uint64
+}
+
+// gcm represents a Galois Counter Mode with a specific key. See
+// http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
+type gcm struct {
+ cipher Block
+ // productTable contains the first sixteen powers of the key, H.
+ // However, they are in bit reversed order. See NewGCM.
+ productTable [16]gcmFieldElement
+}
+
+// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode.
+func NewGCM(cipher Block) (AEAD, error) {
+ if cipher.BlockSize() != gcmBlockSize {
+ return nil, errors.New("cipher: NewGCM requires 128-bit block cipher")
+ }
+
+ var key [gcmBlockSize]byte
+ cipher.Encrypt(key[:], key[:])
+
+ g := &gcm{cipher: cipher}
+
+ // We precompute 16 multiples of |key|. However, when we do lookups
+ // into this table we'll be using bits from a field element and
+ // therefore the bits will be in the reverse order. So normally one
+ // would expect, say, 4*key to be in index 4 of the table but due to
+ // this bit ordering it will actually be in index 0010 (base 2) = 2.
+ x := gcmFieldElement{
+ getUint64(key[:8]),
+ getUint64(key[8:]),
+ }
+ g.productTable[reverseBits(1)] = x
+
+ for i := 2; i < 16; i += 2 {
+ g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)])
+ g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x)
+ }
+
+ return g, nil
+}
+
+const (
+ gcmBlockSize = 16
+ gcmTagSize = 16
+ gcmNonceSize = 12
+)
+
+func (*gcm) NonceSize() int {
+ return gcmNonceSize
+}
+
+func (*gcm) Overhead() int {
+ return gcmTagSize
+}
+
+func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte {
+ if len(nonce) != gcmNonceSize {
+ panic("cipher: incorrect nonce length given to GCM")
+ }
+
+ ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize)
+
+ // See GCM spec, section 7.1.
+ var counter, tagMask [gcmBlockSize]byte
+ copy(counter[:], nonce)
+ counter[gcmBlockSize-1] = 1
+
+ g.cipher.Encrypt(tagMask[:], counter[:])
+ gcmInc32(&counter)
+
+ g.counterCrypt(out, plaintext, &counter)
+ g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask)
+
+ return ret
+}
+
+var errOpen = errors.New("cipher: message authentication failed")
+
+func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) {
+ if len(nonce) != gcmNonceSize {
+ panic("cipher: incorrect nonce length given to GCM")
+ }
+
+ if len(ciphertext) < gcmTagSize {
+ return nil, errOpen
+ }
+ tag := ciphertext[len(ciphertext)-gcmTagSize:]
+ ciphertext = ciphertext[:len(ciphertext)-gcmTagSize]
+
+ // See GCM spec, section 7.1.
+ var counter, tagMask [gcmBlockSize]byte
+ copy(counter[:], nonce)
+ counter[gcmBlockSize-1] = 1
+
+ g.cipher.Encrypt(tagMask[:], counter[:])
+ gcmInc32(&counter)
+
+ var expectedTag [gcmTagSize]byte
+ g.auth(expectedTag[:], ciphertext, data, &tagMask)
+
+ if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 {
+ return nil, errOpen
+ }
+
+ ret, out := sliceForAppend(dst, len(ciphertext))
+ g.counterCrypt(out, ciphertext, &counter)
+
+ return ret, nil
+}
+
+// reverseBits reverses the order of the bits of 4-bit number in i.
+func reverseBits(i int) int {
+ i = ((i << 2) & 0xc) | ((i >> 2) & 0x3)
+ i = ((i << 1) & 0xa) | ((i >> 1) & 0x5)
+ return i
+}
+
+// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum.
+func gcmAdd(x, y *gcmFieldElement) gcmFieldElement {
+ // Addition in a characteristic 2 field is just XOR.
+ return gcmFieldElement{x.low ^ y.low, x.high ^ y.high}
+}
+
+// gcmDouble returns the result of doubling an element of GF(2¹²⁸).
+func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) {
+ msbSet := x.high&1 == 1
+
+ // Because of the bit-ordering, doubling is actually a right shift.
+ double.high = x.high >> 1
+ double.high |= x.low << 63
+ double.low = x.low >> 1
+
+ // If the most-significant bit was set before shifting then it,
+ // conceptually, becomes a term of x^128. This is greater than the
+ // irreducible polynomial so the result has to be reduced. The
+ // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to
+ // eliminate the term at x^128 which also means subtracting the other
+ // four terms. In characteristic 2 fields, subtraction == addition ==
+ // XOR.
+ if msbSet {
+ double.low ^= 0xe100000000000000
+ }
+
+ return
+}
+
+var gcmReductionTable = []uint16{
+ 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0,
+ 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0,
+}
+
+// mul sets y to y*H, where H is the GCM key, fixed during NewGCM.
+func (g *gcm) mul(y *gcmFieldElement) {
+ var z gcmFieldElement
+
+ for i := 0; i < 2; i++ {
+ word := y.high
+ if i == 1 {
+ word = y.low
+ }
+
+ // Multiplication works by multiplying z by 16 and adding in
+ // one of the precomputed multiples of H.
+ for j := 0; j < 64; j += 4 {
+ msw := z.high & 0xf
+ z.high >>= 4
+ z.high |= z.low << 60
+ z.low >>= 4
+ z.low ^= uint64(gcmReductionTable[msw]) << 48
+
+ // the values in |table| are ordered for
+ // little-endian bit positions. See the comment
+ // in NewGCM.
+ t := &g.productTable[word&0xf]
+
+ z.low ^= t.low
+ z.high ^= t.high
+ word >>= 4
+ }
+ }
+
+ *y = z
+}
+
+// updateBlocks extends y with more polynomial terms from blocks, based on
+// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks.
+func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) {
+ for len(blocks) > 0 {
+ y.low ^= getUint64(blocks)
+ y.high ^= getUint64(blocks[8:])
+ g.mul(y)
+ blocks = blocks[gcmBlockSize:]
+ }
+}
+
+// update extends y with more polynomial terms from data. If data is not a
+// multiple of gcmBlockSize bytes long then the remainder is zero padded.
+func (g *gcm) update(y *gcmFieldElement, data []byte) {
+ fullBlocks := (len(data) >> 4) << 4
+ g.updateBlocks(y, data[:fullBlocks])
+
+ if len(data) != fullBlocks {
+ var partialBlock [gcmBlockSize]byte
+ copy(partialBlock[:], data[fullBlocks:])
+ g.updateBlocks(y, partialBlock[:])
+ }
+}
+
+// gcmInc32 treats the final four bytes of counterBlock as a big-endian value
+// and increments it.
+func gcmInc32(counterBlock *[16]byte) {
+ for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- {
+ counterBlock[i]++
+ if counterBlock[i] != 0 {
+ break
+ }
+ }
+}
+
+// sliceForAppend takes a slice and a requested number of bytes. It returns a
+// slice with the contents of the given slice followed by that many bytes and a
+// second slice that aliases into it and contains only the extra bytes. If the
+// original slice has sufficient capacity then no allocation is performed.
+func sliceForAppend(in []byte, n int) (head, tail []byte) {
+ if total := len(in) + n; cap(in) >= total {
+ head = in[:total]
+ } else {
+ head = make([]byte, total)
+ copy(head, in)
+ }
+ tail = head[len(in):]
+ return
+}
+
+// counterCrypt crypts in to out using g.cipher in counter mode.
+func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) {
+ var mask [gcmBlockSize]byte
+
+ for len(in) >= gcmBlockSize {
+ g.cipher.Encrypt(mask[:], counter[:])
+ gcmInc32(counter)
+
+ xorWords(out, in, mask[:])
+ out = out[gcmBlockSize:]
+ in = in[gcmBlockSize:]
+ }
+
+ if len(in) > 0 {
+ g.cipher.Encrypt(mask[:], counter[:])
+ gcmInc32(counter)
+ xorBytes(out, in, mask[:])
+ }
+}
+
+// auth calculates GHASH(ciphertext, additionalData), masks the result with
+// tagMask and writes the result to out.
+func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) {
+ var y gcmFieldElement
+ g.update(&y, additionalData)
+ g.update(&y, ciphertext)
+
+ y.low ^= uint64(len(additionalData)) * 8
+ y.high ^= uint64(len(ciphertext)) * 8
+
+ g.mul(&y)
+
+ putUint64(out, y.low)
+ putUint64(out[8:], y.high)
+
+ xorWords(out, out, tagMask[:])
+}
+
+func getUint64(data []byte) uint64 {
+ r := uint64(data[0])<<56 |
+ uint64(data[1])<<48 |
+ uint64(data[2])<<40 |
+ uint64(data[3])<<32 |
+ uint64(data[4])<<24 |
+ uint64(data[5])<<16 |
+ uint64(data[6])<<8 |
+ uint64(data[7])
+ return r
+}
+
+func putUint64(out []byte, v uint64) {
+ out[0] = byte(v >> 56)
+ out[1] = byte(v >> 48)
+ out[2] = byte(v >> 40)
+ out[3] = byte(v >> 32)
+ out[4] = byte(v >> 24)
+ out[5] = byte(v >> 16)
+ out[6] = byte(v >> 8)
+ out[7] = byte(v)
+}