summaryrefslogtreecommitdiff
path: root/src/crypto/rand/util.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/rand/util.go')
-rw-r--r--src/crypto/rand/util.go136
1 files changed, 136 insertions, 0 deletions
diff --git a/src/crypto/rand/util.go b/src/crypto/rand/util.go
new file mode 100644
index 000000000..5f7440785
--- /dev/null
+++ b/src/crypto/rand/util.go
@@ -0,0 +1,136 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rand
+
+import (
+ "errors"
+ "io"
+ "math/big"
+)
+
+// smallPrimes is a list of small, prime numbers that allows us to rapidly
+// exclude some fraction of composite candidates when searching for a random
+// prime. This list is truncated at the point where smallPrimesProduct exceeds
+// a uint64. It does not include two because we ensure that the candidates are
+// odd by construction.
+var smallPrimes = []uint8{
+ 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
+}
+
+// smallPrimesProduct is the product of the values in smallPrimes and allows us
+// to reduce a candidate prime by this number and then determine whether it's
+// coprime to all the elements of smallPrimes without further big.Int
+// operations.
+var smallPrimesProduct = new(big.Int).SetUint64(16294579238595022365)
+
+// Prime returns a number, p, of the given size, such that p is prime
+// with high probability.
+// Prime will return error for any error returned by rand.Read or if bits < 2.
+func Prime(rand io.Reader, bits int) (p *big.Int, err error) {
+ if bits < 2 {
+ err = errors.New("crypto/rand: prime size must be at least 2-bit")
+ return
+ }
+
+ b := uint(bits % 8)
+ if b == 0 {
+ b = 8
+ }
+
+ bytes := make([]byte, (bits+7)/8)
+ p = new(big.Int)
+
+ bigMod := new(big.Int)
+
+ for {
+ _, err = io.ReadFull(rand, bytes)
+ if err != nil {
+ return nil, err
+ }
+
+ // Clear bits in the first byte to make sure the candidate has a size <= bits.
+ bytes[0] &= uint8(int(1<<b) - 1)
+ // Don't let the value be too small, i.e, set the most significant two bits.
+ // Setting the top two bits, rather than just the top bit,
+ // means that when two of these values are multiplied together,
+ // the result isn't ever one bit short.
+ if b >= 2 {
+ bytes[0] |= 3 << (b - 2)
+ } else {
+ // Here b==1, because b cannot be zero.
+ bytes[0] |= 1
+ if len(bytes) > 1 {
+ bytes[1] |= 0x80
+ }
+ }
+ // Make the value odd since an even number this large certainly isn't prime.
+ bytes[len(bytes)-1] |= 1
+
+ p.SetBytes(bytes)
+
+ // Calculate the value mod the product of smallPrimes. If it's
+ // a multiple of any of these primes we add two until it isn't.
+ // The probability of overflowing is minimal and can be ignored
+ // because we still perform Miller-Rabin tests on the result.
+ bigMod.Mod(p, smallPrimesProduct)
+ mod := bigMod.Uint64()
+
+ NextDelta:
+ for delta := uint64(0); delta < 1<<20; delta += 2 {
+ m := mod + delta
+ for _, prime := range smallPrimes {
+ if m%uint64(prime) == 0 && (bits > 6 || m != uint64(prime)) {
+ continue NextDelta
+ }
+ }
+
+ if delta > 0 {
+ bigMod.SetUint64(delta)
+ p.Add(p, bigMod)
+ }
+ break
+ }
+
+ // There is a tiny possibility that, by adding delta, we caused
+ // the number to be one bit too long. Thus we check BitLen
+ // here.
+ if p.ProbablyPrime(20) && p.BitLen() == bits {
+ return
+ }
+ }
+}
+
+// Int returns a uniform random value in [0, max). It panics if max <= 0.
+func Int(rand io.Reader, max *big.Int) (n *big.Int, err error) {
+ if max.Sign() <= 0 {
+ panic("crypto/rand: argument to Int is <= 0")
+ }
+ k := (max.BitLen() + 7) / 8
+
+ // b is the number of bits in the most significant byte of max.
+ b := uint(max.BitLen() % 8)
+ if b == 0 {
+ b = 8
+ }
+
+ bytes := make([]byte, k)
+ n = new(big.Int)
+
+ for {
+ _, err = io.ReadFull(rand, bytes)
+ if err != nil {
+ return nil, err
+ }
+
+ // Clear bits in the first byte to increase the probability
+ // that the candidate is < max.
+ bytes[0] &= uint8(int(1<<b) - 1)
+
+ n.SetBytes(bytes)
+ if n.Cmp(max) < 0 {
+ return
+ }
+ }
+}