summaryrefslogtreecommitdiff
path: root/src/crypto/tls/key_agreement.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/tls/key_agreement.go')
-rw-r--r--src/crypto/tls/key_agreement.go413
1 files changed, 413 insertions, 0 deletions
diff --git a/src/crypto/tls/key_agreement.go b/src/crypto/tls/key_agreement.go
new file mode 100644
index 000000000..0974fc6e0
--- /dev/null
+++ b/src/crypto/tls/key_agreement.go
@@ -0,0 +1,413 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package tls
+
+import (
+ "crypto"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/md5"
+ "crypto/rsa"
+ "crypto/sha1"
+ "crypto/sha256"
+ "crypto/x509"
+ "encoding/asn1"
+ "errors"
+ "io"
+ "math/big"
+)
+
+var errClientKeyExchange = errors.New("tls: invalid ClientKeyExchange message")
+var errServerKeyExchange = errors.New("tls: invalid ServerKeyExchange message")
+
+// rsaKeyAgreement implements the standard TLS key agreement where the client
+// encrypts the pre-master secret to the server's public key.
+type rsaKeyAgreement struct{}
+
+func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
+ return nil, nil
+}
+
+func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
+ preMasterSecret := make([]byte, 48)
+ _, err := io.ReadFull(config.rand(), preMasterSecret[2:])
+ if err != nil {
+ return nil, err
+ }
+
+ if len(ckx.ciphertext) < 2 {
+ return nil, errClientKeyExchange
+ }
+
+ ciphertext := ckx.ciphertext
+ if version != VersionSSL30 {
+ ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
+ if ciphertextLen != len(ckx.ciphertext)-2 {
+ return nil, errClientKeyExchange
+ }
+ ciphertext = ckx.ciphertext[2:]
+ }
+
+ err = rsa.DecryptPKCS1v15SessionKey(config.rand(), cert.PrivateKey.(*rsa.PrivateKey), ciphertext, preMasterSecret)
+ if err != nil {
+ return nil, err
+ }
+ // We don't check the version number in the premaster secret. For one,
+ // by checking it, we would leak information about the validity of the
+ // encrypted pre-master secret. Secondly, it provides only a small
+ // benefit against a downgrade attack and some implementations send the
+ // wrong version anyway. See the discussion at the end of section
+ // 7.4.7.1 of RFC 4346.
+ return preMasterSecret, nil
+}
+
+func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
+ return errors.New("tls: unexpected ServerKeyExchange")
+}
+
+func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
+ preMasterSecret := make([]byte, 48)
+ preMasterSecret[0] = byte(clientHello.vers >> 8)
+ preMasterSecret[1] = byte(clientHello.vers)
+ _, err := io.ReadFull(config.rand(), preMasterSecret[2:])
+ if err != nil {
+ return nil, nil, err
+ }
+
+ encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), preMasterSecret)
+ if err != nil {
+ return nil, nil, err
+ }
+ ckx := new(clientKeyExchangeMsg)
+ ckx.ciphertext = make([]byte, len(encrypted)+2)
+ ckx.ciphertext[0] = byte(len(encrypted) >> 8)
+ ckx.ciphertext[1] = byte(len(encrypted))
+ copy(ckx.ciphertext[2:], encrypted)
+ return preMasterSecret, ckx, nil
+}
+
+// sha1Hash calculates a SHA1 hash over the given byte slices.
+func sha1Hash(slices [][]byte) []byte {
+ hsha1 := sha1.New()
+ for _, slice := range slices {
+ hsha1.Write(slice)
+ }
+ return hsha1.Sum(nil)
+}
+
+// md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
+// concatenation of an MD5 and SHA1 hash.
+func md5SHA1Hash(slices [][]byte) []byte {
+ md5sha1 := make([]byte, md5.Size+sha1.Size)
+ hmd5 := md5.New()
+ for _, slice := range slices {
+ hmd5.Write(slice)
+ }
+ copy(md5sha1, hmd5.Sum(nil))
+ copy(md5sha1[md5.Size:], sha1Hash(slices))
+ return md5sha1
+}
+
+// sha256Hash implements TLS 1.2's hash function.
+func sha256Hash(slices [][]byte) []byte {
+ h := sha256.New()
+ for _, slice := range slices {
+ h.Write(slice)
+ }
+ return h.Sum(nil)
+}
+
+// hashForServerKeyExchange hashes the given slices and returns their digest
+// and the identifier of the hash function used. The hashFunc argument is only
+// used for >= TLS 1.2 and precisely identifies the hash function to use.
+func hashForServerKeyExchange(sigType, hashFunc uint8, version uint16, slices ...[]byte) ([]byte, crypto.Hash, error) {
+ if version >= VersionTLS12 {
+ switch hashFunc {
+ case hashSHA256:
+ return sha256Hash(slices), crypto.SHA256, nil
+ case hashSHA1:
+ return sha1Hash(slices), crypto.SHA1, nil
+ default:
+ return nil, crypto.Hash(0), errors.New("tls: unknown hash function used by peer")
+ }
+ }
+ if sigType == signatureECDSA {
+ return sha1Hash(slices), crypto.SHA1, nil
+ }
+ return md5SHA1Hash(slices), crypto.MD5SHA1, nil
+}
+
+// pickTLS12HashForSignature returns a TLS 1.2 hash identifier for signing a
+// ServerKeyExchange given the signature type being used and the client's
+// advertised list of supported signature and hash combinations.
+func pickTLS12HashForSignature(sigType uint8, clientSignatureAndHashes []signatureAndHash) (uint8, error) {
+ if len(clientSignatureAndHashes) == 0 {
+ // If the client didn't specify any signature_algorithms
+ // extension then we can assume that it supports SHA1. See
+ // http://tools.ietf.org/html/rfc5246#section-7.4.1.4.1
+ return hashSHA1, nil
+ }
+
+ for _, sigAndHash := range clientSignatureAndHashes {
+ if sigAndHash.signature != sigType {
+ continue
+ }
+ switch sigAndHash.hash {
+ case hashSHA1, hashSHA256:
+ return sigAndHash.hash, nil
+ }
+ }
+
+ return 0, errors.New("tls: client doesn't support any common hash functions")
+}
+
+func curveForCurveID(id CurveID) (elliptic.Curve, bool) {
+ switch id {
+ case CurveP256:
+ return elliptic.P256(), true
+ case CurveP384:
+ return elliptic.P384(), true
+ case CurveP521:
+ return elliptic.P521(), true
+ default:
+ return nil, false
+ }
+
+}
+
+// ecdheRSAKeyAgreement implements a TLS key agreement where the server
+// generates a ephemeral EC public/private key pair and signs it. The
+// pre-master secret is then calculated using ECDH. The signature may
+// either be ECDSA or RSA.
+type ecdheKeyAgreement struct {
+ version uint16
+ sigType uint8
+ privateKey []byte
+ curve elliptic.Curve
+ x, y *big.Int
+}
+
+func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
+ var curveid CurveID
+ preferredCurves := config.curvePreferences()
+
+NextCandidate:
+ for _, candidate := range preferredCurves {
+ for _, c := range clientHello.supportedCurves {
+ if candidate == c {
+ curveid = c
+ break NextCandidate
+ }
+ }
+ }
+
+ if curveid == 0 {
+ return nil, errors.New("tls: no supported elliptic curves offered")
+ }
+
+ var ok bool
+ if ka.curve, ok = curveForCurveID(curveid); !ok {
+ return nil, errors.New("tls: preferredCurves includes unsupported curve")
+ }
+
+ var x, y *big.Int
+ var err error
+ ka.privateKey, x, y, err = elliptic.GenerateKey(ka.curve, config.rand())
+ if err != nil {
+ return nil, err
+ }
+ ecdhePublic := elliptic.Marshal(ka.curve, x, y)
+
+ // http://tools.ietf.org/html/rfc4492#section-5.4
+ serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
+ serverECDHParams[0] = 3 // named curve
+ serverECDHParams[1] = byte(curveid >> 8)
+ serverECDHParams[2] = byte(curveid)
+ serverECDHParams[3] = byte(len(ecdhePublic))
+ copy(serverECDHParams[4:], ecdhePublic)
+
+ var tls12HashId uint8
+ if ka.version >= VersionTLS12 {
+ if tls12HashId, err = pickTLS12HashForSignature(ka.sigType, clientHello.signatureAndHashes); err != nil {
+ return nil, err
+ }
+ }
+
+ digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, hello.random, serverECDHParams)
+ if err != nil {
+ return nil, err
+ }
+ var sig []byte
+ switch ka.sigType {
+ case signatureECDSA:
+ privKey, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
+ if !ok {
+ return nil, errors.New("ECDHE ECDSA requires an ECDSA server private key")
+ }
+ r, s, err := ecdsa.Sign(config.rand(), privKey, digest)
+ if err != nil {
+ return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
+ }
+ sig, err = asn1.Marshal(ecdsaSignature{r, s})
+ case signatureRSA:
+ privKey, ok := cert.PrivateKey.(*rsa.PrivateKey)
+ if !ok {
+ return nil, errors.New("ECDHE RSA requires a RSA server private key")
+ }
+ sig, err = rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest)
+ if err != nil {
+ return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
+ }
+ default:
+ return nil, errors.New("unknown ECDHE signature algorithm")
+ }
+
+ skx := new(serverKeyExchangeMsg)
+ sigAndHashLen := 0
+ if ka.version >= VersionTLS12 {
+ sigAndHashLen = 2
+ }
+ skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
+ copy(skx.key, serverECDHParams)
+ k := skx.key[len(serverECDHParams):]
+ if ka.version >= VersionTLS12 {
+ k[0] = tls12HashId
+ k[1] = ka.sigType
+ k = k[2:]
+ }
+ k[0] = byte(len(sig) >> 8)
+ k[1] = byte(len(sig))
+ copy(k[2:], sig)
+
+ return skx, nil
+}
+
+func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
+ if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
+ return nil, errClientKeyExchange
+ }
+ x, y := elliptic.Unmarshal(ka.curve, ckx.ciphertext[1:])
+ if x == nil {
+ return nil, errClientKeyExchange
+ }
+ if !ka.curve.IsOnCurve(x, y) {
+ return nil, errClientKeyExchange
+ }
+ x, _ = ka.curve.ScalarMult(x, y, ka.privateKey)
+ preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
+ xBytes := x.Bytes()
+ copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
+
+ return preMasterSecret, nil
+}
+
+func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
+ if len(skx.key) < 4 {
+ return errServerKeyExchange
+ }
+ if skx.key[0] != 3 { // named curve
+ return errors.New("tls: server selected unsupported curve")
+ }
+ curveid := CurveID(skx.key[1])<<8 | CurveID(skx.key[2])
+
+ var ok bool
+ if ka.curve, ok = curveForCurveID(curveid); !ok {
+ return errors.New("tls: server selected unsupported curve")
+ }
+
+ publicLen := int(skx.key[3])
+ if publicLen+4 > len(skx.key) {
+ return errServerKeyExchange
+ }
+ ka.x, ka.y = elliptic.Unmarshal(ka.curve, skx.key[4:4+publicLen])
+ if ka.x == nil {
+ return errServerKeyExchange
+ }
+ if !ka.curve.IsOnCurve(ka.x, ka.y) {
+ return errServerKeyExchange
+ }
+ serverECDHParams := skx.key[:4+publicLen]
+
+ sig := skx.key[4+publicLen:]
+ if len(sig) < 2 {
+ return errServerKeyExchange
+ }
+
+ var tls12HashId uint8
+ if ka.version >= VersionTLS12 {
+ // handle SignatureAndHashAlgorithm
+ var sigAndHash []uint8
+ sigAndHash, sig = sig[:2], sig[2:]
+ if sigAndHash[1] != ka.sigType {
+ return errServerKeyExchange
+ }
+ tls12HashId = sigAndHash[0]
+ if len(sig) < 2 {
+ return errServerKeyExchange
+ }
+ }
+ sigLen := int(sig[0])<<8 | int(sig[1])
+ if sigLen+2 != len(sig) {
+ return errServerKeyExchange
+ }
+ sig = sig[2:]
+
+ digest, hashFunc, err := hashForServerKeyExchange(ka.sigType, tls12HashId, ka.version, clientHello.random, serverHello.random, serverECDHParams)
+ if err != nil {
+ return err
+ }
+ switch ka.sigType {
+ case signatureECDSA:
+ pubKey, ok := cert.PublicKey.(*ecdsa.PublicKey)
+ if !ok {
+ return errors.New("ECDHE ECDSA requires a ECDSA server public key")
+ }
+ ecdsaSig := new(ecdsaSignature)
+ if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
+ return err
+ }
+ if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
+ return errors.New("ECDSA signature contained zero or negative values")
+ }
+ if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
+ return errors.New("ECDSA verification failure")
+ }
+ case signatureRSA:
+ pubKey, ok := cert.PublicKey.(*rsa.PublicKey)
+ if !ok {
+ return errors.New("ECDHE RSA requires a RSA server public key")
+ }
+ if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
+ return err
+ }
+ default:
+ return errors.New("unknown ECDHE signature algorithm")
+ }
+
+ return nil
+}
+
+func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
+ if ka.curve == nil {
+ return nil, nil, errors.New("missing ServerKeyExchange message")
+ }
+ priv, mx, my, err := elliptic.GenerateKey(ka.curve, config.rand())
+ if err != nil {
+ return nil, nil, err
+ }
+ x, _ := ka.curve.ScalarMult(ka.x, ka.y, priv)
+ preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
+ xBytes := x.Bytes()
+ copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
+
+ serialized := elliptic.Marshal(ka.curve, mx, my)
+
+ ckx := new(clientKeyExchangeMsg)
+ ckx.ciphertext = make([]byte, 1+len(serialized))
+ ckx.ciphertext[0] = byte(len(serialized))
+ copy(ckx.ciphertext[1:], serialized)
+
+ return preMasterSecret, ckx, nil
+}