summaryrefslogtreecommitdiff
path: root/src/crypto/x509/x509.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/x509/x509.go')
-rw-r--r--src/crypto/x509/x509.go1916
1 files changed, 1916 insertions, 0 deletions
diff --git a/src/crypto/x509/x509.go b/src/crypto/x509/x509.go
new file mode 100644
index 000000000..7a37b98e3
--- /dev/null
+++ b/src/crypto/x509/x509.go
@@ -0,0 +1,1916 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package x509 parses X.509-encoded keys and certificates.
+package x509
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/dsa"
+ "crypto/ecdsa"
+ "crypto/elliptic"
+ "crypto/rsa"
+ "crypto/sha1"
+ _ "crypto/sha256"
+ _ "crypto/sha512"
+ "crypto/x509/pkix"
+ "encoding/asn1"
+ "encoding/pem"
+ "errors"
+ "io"
+ "math/big"
+ "net"
+ "strconv"
+ "time"
+)
+
+// pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo
+// in RFC 3280.
+type pkixPublicKey struct {
+ Algo pkix.AlgorithmIdentifier
+ BitString asn1.BitString
+}
+
+// ParsePKIXPublicKey parses a DER encoded public key. These values are
+// typically found in PEM blocks with "BEGIN PUBLIC KEY".
+func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) {
+ var pki publicKeyInfo
+ if _, err = asn1.Unmarshal(derBytes, &pki); err != nil {
+ return
+ }
+ algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm)
+ if algo == UnknownPublicKeyAlgorithm {
+ return nil, errors.New("x509: unknown public key algorithm")
+ }
+ return parsePublicKey(algo, &pki)
+}
+
+func marshalPublicKey(pub interface{}) (publicKeyBytes []byte, publicKeyAlgorithm pkix.AlgorithmIdentifier, err error) {
+ switch pub := pub.(type) {
+ case *rsa.PublicKey:
+ publicKeyBytes, err = asn1.Marshal(rsaPublicKey{
+ N: pub.N,
+ E: pub.E,
+ })
+ publicKeyAlgorithm.Algorithm = oidPublicKeyRSA
+ // This is a NULL parameters value which is technically
+ // superfluous, but most other code includes it and, by
+ // doing this, we match their public key hashes.
+ publicKeyAlgorithm.Parameters = asn1.RawValue{
+ Tag: 5,
+ }
+ case *ecdsa.PublicKey:
+ publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
+ oid, ok := oidFromNamedCurve(pub.Curve)
+ if !ok {
+ return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported elliptic curve")
+ }
+ publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA
+ var paramBytes []byte
+ paramBytes, err = asn1.Marshal(oid)
+ if err != nil {
+ return
+ }
+ publicKeyAlgorithm.Parameters.FullBytes = paramBytes
+ default:
+ return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: only RSA and ECDSA public keys supported")
+ }
+
+ return publicKeyBytes, publicKeyAlgorithm, nil
+}
+
+// MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format.
+func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) {
+ var publicKeyBytes []byte
+ var publicKeyAlgorithm pkix.AlgorithmIdentifier
+ var err error
+
+ if publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(pub); err != nil {
+ return nil, err
+ }
+
+ pkix := pkixPublicKey{
+ Algo: publicKeyAlgorithm,
+ BitString: asn1.BitString{
+ Bytes: publicKeyBytes,
+ BitLength: 8 * len(publicKeyBytes),
+ },
+ }
+
+ ret, _ := asn1.Marshal(pkix)
+ return ret, nil
+}
+
+// These structures reflect the ASN.1 structure of X.509 certificates.:
+
+type certificate struct {
+ Raw asn1.RawContent
+ TBSCertificate tbsCertificate
+ SignatureAlgorithm pkix.AlgorithmIdentifier
+ SignatureValue asn1.BitString
+}
+
+type tbsCertificate struct {
+ Raw asn1.RawContent
+ Version int `asn1:"optional,explicit,default:1,tag:0"`
+ SerialNumber *big.Int
+ SignatureAlgorithm pkix.AlgorithmIdentifier
+ Issuer asn1.RawValue
+ Validity validity
+ Subject asn1.RawValue
+ PublicKey publicKeyInfo
+ UniqueId asn1.BitString `asn1:"optional,tag:1"`
+ SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"`
+ Extensions []pkix.Extension `asn1:"optional,explicit,tag:3"`
+}
+
+type dsaAlgorithmParameters struct {
+ P, Q, G *big.Int
+}
+
+type dsaSignature struct {
+ R, S *big.Int
+}
+
+type ecdsaSignature dsaSignature
+
+type validity struct {
+ NotBefore, NotAfter time.Time
+}
+
+type publicKeyInfo struct {
+ Raw asn1.RawContent
+ Algorithm pkix.AlgorithmIdentifier
+ PublicKey asn1.BitString
+}
+
+// RFC 5280, 4.2.1.1
+type authKeyId struct {
+ Id []byte `asn1:"optional,tag:0"`
+}
+
+type SignatureAlgorithm int
+
+const (
+ UnknownSignatureAlgorithm SignatureAlgorithm = iota
+ MD2WithRSA
+ MD5WithRSA
+ SHA1WithRSA
+ SHA256WithRSA
+ SHA384WithRSA
+ SHA512WithRSA
+ DSAWithSHA1
+ DSAWithSHA256
+ ECDSAWithSHA1
+ ECDSAWithSHA256
+ ECDSAWithSHA384
+ ECDSAWithSHA512
+)
+
+type PublicKeyAlgorithm int
+
+const (
+ UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
+ RSA
+ DSA
+ ECDSA
+)
+
+// OIDs for signature algorithms
+//
+// pkcs-1 OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
+//
+//
+// RFC 3279 2.2.1 RSA Signature Algorithms
+//
+// md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
+//
+// md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
+//
+// sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
+//
+// dsaWithSha1 OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 }
+//
+// RFC 3279 2.2.3 ECDSA Signature Algorithm
+//
+// ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) ansi-x962(10045)
+// signatures(4) ecdsa-with-SHA1(1)}
+//
+//
+// RFC 4055 5 PKCS #1 Version 1.5
+//
+// sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }
+//
+// sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }
+//
+// sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }
+//
+//
+// RFC 5758 3.1 DSA Signature Algorithms
+//
+// dsaWithSha256 OBJECT IDENTIFIER ::= {
+// joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
+// csor(3) algorithms(4) id-dsa-with-sha2(3) 2}
+//
+// RFC 5758 3.2 ECDSA Signature Algorithm
+//
+// ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
+// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }
+//
+// ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
+// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }
+//
+// ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
+// us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }
+
+var (
+ oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
+ oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
+ oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
+ oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
+ oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
+ oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
+ oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
+ oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2}
+ oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
+ oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
+ oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
+ oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
+)
+
+var signatureAlgorithmDetails = []struct {
+ algo SignatureAlgorithm
+ oid asn1.ObjectIdentifier
+ pubKeyAlgo PublicKeyAlgorithm
+ hash crypto.Hash
+}{
+ {MD2WithRSA, oidSignatureMD2WithRSA, RSA, crypto.Hash(0) /* no value for MD2 */},
+ {MD5WithRSA, oidSignatureMD5WithRSA, RSA, crypto.MD5},
+ {SHA1WithRSA, oidSignatureSHA1WithRSA, RSA, crypto.SHA1},
+ {SHA256WithRSA, oidSignatureSHA256WithRSA, RSA, crypto.SHA256},
+ {SHA384WithRSA, oidSignatureSHA384WithRSA, RSA, crypto.SHA384},
+ {SHA512WithRSA, oidSignatureSHA512WithRSA, RSA, crypto.SHA512},
+ {DSAWithSHA1, oidSignatureDSAWithSHA1, DSA, crypto.SHA1},
+ {DSAWithSHA256, oidSignatureDSAWithSHA256, DSA, crypto.SHA256},
+ {ECDSAWithSHA1, oidSignatureECDSAWithSHA1, ECDSA, crypto.SHA1},
+ {ECDSAWithSHA256, oidSignatureECDSAWithSHA256, ECDSA, crypto.SHA256},
+ {ECDSAWithSHA384, oidSignatureECDSAWithSHA384, ECDSA, crypto.SHA384},
+ {ECDSAWithSHA512, oidSignatureECDSAWithSHA512, ECDSA, crypto.SHA512},
+}
+
+func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) SignatureAlgorithm {
+ for _, details := range signatureAlgorithmDetails {
+ if oid.Equal(details.oid) {
+ return details.algo
+ }
+ }
+ return UnknownSignatureAlgorithm
+}
+
+// RFC 3279, 2.3 Public Key Algorithms
+//
+// pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
+// rsadsi(113549) pkcs(1) 1 }
+//
+// rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 }
+//
+// id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
+// x9-57(10040) x9cm(4) 1 }
+//
+// RFC 5480, 2.1.1 Unrestricted Algorithm Identifier and Parameters
+//
+// id-ecPublicKey OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
+var (
+ oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
+ oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
+ oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
+)
+
+func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm {
+ switch {
+ case oid.Equal(oidPublicKeyRSA):
+ return RSA
+ case oid.Equal(oidPublicKeyDSA):
+ return DSA
+ case oid.Equal(oidPublicKeyECDSA):
+ return ECDSA
+ }
+ return UnknownPublicKeyAlgorithm
+}
+
+// RFC 5480, 2.1.1.1. Named Curve
+//
+// secp224r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 33 }
+//
+// secp256r1 OBJECT IDENTIFIER ::= {
+// iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
+// prime(1) 7 }
+//
+// secp384r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 34 }
+//
+// secp521r1 OBJECT IDENTIFIER ::= {
+// iso(1) identified-organization(3) certicom(132) curve(0) 35 }
+//
+// NB: secp256r1 is equivalent to prime256v1
+var (
+ oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
+ oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
+ oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
+ oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
+)
+
+func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve {
+ switch {
+ case oid.Equal(oidNamedCurveP224):
+ return elliptic.P224()
+ case oid.Equal(oidNamedCurveP256):
+ return elliptic.P256()
+ case oid.Equal(oidNamedCurveP384):
+ return elliptic.P384()
+ case oid.Equal(oidNamedCurveP521):
+ return elliptic.P521()
+ }
+ return nil
+}
+
+func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
+ switch curve {
+ case elliptic.P224():
+ return oidNamedCurveP224, true
+ case elliptic.P256():
+ return oidNamedCurveP256, true
+ case elliptic.P384():
+ return oidNamedCurveP384, true
+ case elliptic.P521():
+ return oidNamedCurveP521, true
+ }
+
+ return nil, false
+}
+
+// KeyUsage represents the set of actions that are valid for a given key. It's
+// a bitmap of the KeyUsage* constants.
+type KeyUsage int
+
+const (
+ KeyUsageDigitalSignature KeyUsage = 1 << iota
+ KeyUsageContentCommitment
+ KeyUsageKeyEncipherment
+ KeyUsageDataEncipherment
+ KeyUsageKeyAgreement
+ KeyUsageCertSign
+ KeyUsageCRLSign
+ KeyUsageEncipherOnly
+ KeyUsageDecipherOnly
+)
+
+// RFC 5280, 4.2.1.12 Extended Key Usage
+//
+// anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
+//
+// id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
+//
+// id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 }
+// id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 }
+// id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 }
+// id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 }
+// id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 }
+// id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 }
+var (
+ oidExtKeyUsageAny = asn1.ObjectIdentifier{2, 5, 29, 37, 0}
+ oidExtKeyUsageServerAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1}
+ oidExtKeyUsageClientAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2}
+ oidExtKeyUsageCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3}
+ oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4}
+ oidExtKeyUsageIPSECEndSystem = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 5}
+ oidExtKeyUsageIPSECTunnel = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 6}
+ oidExtKeyUsageIPSECUser = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 7}
+ oidExtKeyUsageTimeStamping = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8}
+ oidExtKeyUsageOCSPSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9}
+ oidExtKeyUsageMicrosoftServerGatedCrypto = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 10, 3, 3}
+ oidExtKeyUsageNetscapeServerGatedCrypto = asn1.ObjectIdentifier{2, 16, 840, 1, 113730, 4, 1}
+)
+
+// ExtKeyUsage represents an extended set of actions that are valid for a given key.
+// Each of the ExtKeyUsage* constants define a unique action.
+type ExtKeyUsage int
+
+const (
+ ExtKeyUsageAny ExtKeyUsage = iota
+ ExtKeyUsageServerAuth
+ ExtKeyUsageClientAuth
+ ExtKeyUsageCodeSigning
+ ExtKeyUsageEmailProtection
+ ExtKeyUsageIPSECEndSystem
+ ExtKeyUsageIPSECTunnel
+ ExtKeyUsageIPSECUser
+ ExtKeyUsageTimeStamping
+ ExtKeyUsageOCSPSigning
+ ExtKeyUsageMicrosoftServerGatedCrypto
+ ExtKeyUsageNetscapeServerGatedCrypto
+)
+
+// extKeyUsageOIDs contains the mapping between an ExtKeyUsage and its OID.
+var extKeyUsageOIDs = []struct {
+ extKeyUsage ExtKeyUsage
+ oid asn1.ObjectIdentifier
+}{
+ {ExtKeyUsageAny, oidExtKeyUsageAny},
+ {ExtKeyUsageServerAuth, oidExtKeyUsageServerAuth},
+ {ExtKeyUsageClientAuth, oidExtKeyUsageClientAuth},
+ {ExtKeyUsageCodeSigning, oidExtKeyUsageCodeSigning},
+ {ExtKeyUsageEmailProtection, oidExtKeyUsageEmailProtection},
+ {ExtKeyUsageIPSECEndSystem, oidExtKeyUsageIPSECEndSystem},
+ {ExtKeyUsageIPSECTunnel, oidExtKeyUsageIPSECTunnel},
+ {ExtKeyUsageIPSECUser, oidExtKeyUsageIPSECUser},
+ {ExtKeyUsageTimeStamping, oidExtKeyUsageTimeStamping},
+ {ExtKeyUsageOCSPSigning, oidExtKeyUsageOCSPSigning},
+ {ExtKeyUsageMicrosoftServerGatedCrypto, oidExtKeyUsageMicrosoftServerGatedCrypto},
+ {ExtKeyUsageNetscapeServerGatedCrypto, oidExtKeyUsageNetscapeServerGatedCrypto},
+}
+
+func extKeyUsageFromOID(oid asn1.ObjectIdentifier) (eku ExtKeyUsage, ok bool) {
+ for _, pair := range extKeyUsageOIDs {
+ if oid.Equal(pair.oid) {
+ return pair.extKeyUsage, true
+ }
+ }
+ return
+}
+
+func oidFromExtKeyUsage(eku ExtKeyUsage) (oid asn1.ObjectIdentifier, ok bool) {
+ for _, pair := range extKeyUsageOIDs {
+ if eku == pair.extKeyUsage {
+ return pair.oid, true
+ }
+ }
+ return
+}
+
+// A Certificate represents an X.509 certificate.
+type Certificate struct {
+ Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature).
+ RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content.
+ RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
+ RawSubject []byte // DER encoded Subject
+ RawIssuer []byte // DER encoded Issuer
+
+ Signature []byte
+ SignatureAlgorithm SignatureAlgorithm
+
+ PublicKeyAlgorithm PublicKeyAlgorithm
+ PublicKey interface{}
+
+ Version int
+ SerialNumber *big.Int
+ Issuer pkix.Name
+ Subject pkix.Name
+ NotBefore, NotAfter time.Time // Validity bounds.
+ KeyUsage KeyUsage
+
+ // Extensions contains raw X.509 extensions. When parsing certificates,
+ // this can be used to extract non-critical extensions that are not
+ // parsed by this package. When marshaling certificates, the Extensions
+ // field is ignored, see ExtraExtensions.
+ Extensions []pkix.Extension
+
+ // ExtraExtensions contains extensions to be copied, raw, into any
+ // marshaled certificates. Values override any extensions that would
+ // otherwise be produced based on the other fields. The ExtraExtensions
+ // field is not populated when parsing certificates, see Extensions.
+ ExtraExtensions []pkix.Extension
+
+ ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages.
+ UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package.
+
+ BasicConstraintsValid bool // if true then the next two fields are valid.
+ IsCA bool
+ MaxPathLen int
+ // MaxPathLenZero indicates that BasicConstraintsValid==true and
+ // MaxPathLen==0 should be interpreted as an actual maximum path length
+ // of zero. Otherwise, that combination is interpreted as MaxPathLen
+ // not being set.
+ MaxPathLenZero bool
+
+ SubjectKeyId []byte
+ AuthorityKeyId []byte
+
+ // RFC 5280, 4.2.2.1 (Authority Information Access)
+ OCSPServer []string
+ IssuingCertificateURL []string
+
+ // Subject Alternate Name values
+ DNSNames []string
+ EmailAddresses []string
+ IPAddresses []net.IP
+
+ // Name constraints
+ PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical.
+ PermittedDNSDomains []string
+
+ // CRL Distribution Points
+ CRLDistributionPoints []string
+
+ PolicyIdentifiers []asn1.ObjectIdentifier
+}
+
+// ErrUnsupportedAlgorithm results from attempting to perform an operation that
+// involves algorithms that are not currently implemented.
+var ErrUnsupportedAlgorithm = errors.New("x509: cannot verify signature: algorithm unimplemented")
+
+// ConstraintViolationError results when a requested usage is not permitted by
+// a certificate. For example: checking a signature when the public key isn't a
+// certificate signing key.
+type ConstraintViolationError struct{}
+
+func (ConstraintViolationError) Error() string {
+ return "x509: invalid signature: parent certificate cannot sign this kind of certificate"
+}
+
+func (c *Certificate) Equal(other *Certificate) bool {
+ return bytes.Equal(c.Raw, other.Raw)
+}
+
+// Entrust have a broken root certificate (CN=Entrust.net Certification
+// Authority (2048)) which isn't marked as a CA certificate and is thus invalid
+// according to PKIX.
+// We recognise this certificate by its SubjectPublicKeyInfo and exempt it
+// from the Basic Constraints requirement.
+// See http://www.entrust.net/knowledge-base/technote.cfm?tn=7869
+//
+// TODO(agl): remove this hack once their reissued root is sufficiently
+// widespread.
+var entrustBrokenSPKI = []byte{
+ 0x30, 0x82, 0x01, 0x22, 0x30, 0x0d, 0x06, 0x09,
+ 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,
+ 0x01, 0x05, 0x00, 0x03, 0x82, 0x01, 0x0f, 0x00,
+ 0x30, 0x82, 0x01, 0x0a, 0x02, 0x82, 0x01, 0x01,
+ 0x00, 0x97, 0xa3, 0x2d, 0x3c, 0x9e, 0xde, 0x05,
+ 0xda, 0x13, 0xc2, 0x11, 0x8d, 0x9d, 0x8e, 0xe3,
+ 0x7f, 0xc7, 0x4b, 0x7e, 0x5a, 0x9f, 0xb3, 0xff,
+ 0x62, 0xab, 0x73, 0xc8, 0x28, 0x6b, 0xba, 0x10,
+ 0x64, 0x82, 0x87, 0x13, 0xcd, 0x57, 0x18, 0xff,
+ 0x28, 0xce, 0xc0, 0xe6, 0x0e, 0x06, 0x91, 0x50,
+ 0x29, 0x83, 0xd1, 0xf2, 0xc3, 0x2a, 0xdb, 0xd8,
+ 0xdb, 0x4e, 0x04, 0xcc, 0x00, 0xeb, 0x8b, 0xb6,
+ 0x96, 0xdc, 0xbc, 0xaa, 0xfa, 0x52, 0x77, 0x04,
+ 0xc1, 0xdb, 0x19, 0xe4, 0xae, 0x9c, 0xfd, 0x3c,
+ 0x8b, 0x03, 0xef, 0x4d, 0xbc, 0x1a, 0x03, 0x65,
+ 0xf9, 0xc1, 0xb1, 0x3f, 0x72, 0x86, 0xf2, 0x38,
+ 0xaa, 0x19, 0xae, 0x10, 0x88, 0x78, 0x28, 0xda,
+ 0x75, 0xc3, 0x3d, 0x02, 0x82, 0x02, 0x9c, 0xb9,
+ 0xc1, 0x65, 0x77, 0x76, 0x24, 0x4c, 0x98, 0xf7,
+ 0x6d, 0x31, 0x38, 0xfb, 0xdb, 0xfe, 0xdb, 0x37,
+ 0x02, 0x76, 0xa1, 0x18, 0x97, 0xa6, 0xcc, 0xde,
+ 0x20, 0x09, 0x49, 0x36, 0x24, 0x69, 0x42, 0xf6,
+ 0xe4, 0x37, 0x62, 0xf1, 0x59, 0x6d, 0xa9, 0x3c,
+ 0xed, 0x34, 0x9c, 0xa3, 0x8e, 0xdb, 0xdc, 0x3a,
+ 0xd7, 0xf7, 0x0a, 0x6f, 0xef, 0x2e, 0xd8, 0xd5,
+ 0x93, 0x5a, 0x7a, 0xed, 0x08, 0x49, 0x68, 0xe2,
+ 0x41, 0xe3, 0x5a, 0x90, 0xc1, 0x86, 0x55, 0xfc,
+ 0x51, 0x43, 0x9d, 0xe0, 0xb2, 0xc4, 0x67, 0xb4,
+ 0xcb, 0x32, 0x31, 0x25, 0xf0, 0x54, 0x9f, 0x4b,
+ 0xd1, 0x6f, 0xdb, 0xd4, 0xdd, 0xfc, 0xaf, 0x5e,
+ 0x6c, 0x78, 0x90, 0x95, 0xde, 0xca, 0x3a, 0x48,
+ 0xb9, 0x79, 0x3c, 0x9b, 0x19, 0xd6, 0x75, 0x05,
+ 0xa0, 0xf9, 0x88, 0xd7, 0xc1, 0xe8, 0xa5, 0x09,
+ 0xe4, 0x1a, 0x15, 0xdc, 0x87, 0x23, 0xaa, 0xb2,
+ 0x75, 0x8c, 0x63, 0x25, 0x87, 0xd8, 0xf8, 0x3d,
+ 0xa6, 0xc2, 0xcc, 0x66, 0xff, 0xa5, 0x66, 0x68,
+ 0x55, 0x02, 0x03, 0x01, 0x00, 0x01,
+}
+
+// CheckSignatureFrom verifies that the signature on c is a valid signature
+// from parent.
+func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err error) {
+ // RFC 5280, 4.2.1.9:
+ // "If the basic constraints extension is not present in a version 3
+ // certificate, or the extension is present but the cA boolean is not
+ // asserted, then the certified public key MUST NOT be used to verify
+ // certificate signatures."
+ // (except for Entrust, see comment above entrustBrokenSPKI)
+ if (parent.Version == 3 && !parent.BasicConstraintsValid ||
+ parent.BasicConstraintsValid && !parent.IsCA) &&
+ !bytes.Equal(c.RawSubjectPublicKeyInfo, entrustBrokenSPKI) {
+ return ConstraintViolationError{}
+ }
+
+ if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 {
+ return ConstraintViolationError{}
+ }
+
+ if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
+ return ErrUnsupportedAlgorithm
+ }
+
+ // TODO(agl): don't ignore the path length constraint.
+
+ return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature)
+}
+
+// CheckSignature verifies that signature is a valid signature over signed from
+// c's public key.
+func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) {
+ var hashType crypto.Hash
+
+ switch algo {
+ case SHA1WithRSA, DSAWithSHA1, ECDSAWithSHA1:
+ hashType = crypto.SHA1
+ case SHA256WithRSA, DSAWithSHA256, ECDSAWithSHA256:
+ hashType = crypto.SHA256
+ case SHA384WithRSA, ECDSAWithSHA384:
+ hashType = crypto.SHA384
+ case SHA512WithRSA, ECDSAWithSHA512:
+ hashType = crypto.SHA512
+ default:
+ return ErrUnsupportedAlgorithm
+ }
+
+ if !hashType.Available() {
+ return ErrUnsupportedAlgorithm
+ }
+ h := hashType.New()
+
+ h.Write(signed)
+ digest := h.Sum(nil)
+
+ switch pub := c.PublicKey.(type) {
+ case *rsa.PublicKey:
+ return rsa.VerifyPKCS1v15(pub, hashType, digest, signature)
+ case *dsa.PublicKey:
+ dsaSig := new(dsaSignature)
+ if _, err := asn1.Unmarshal(signature, dsaSig); err != nil {
+ return err
+ }
+ if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 {
+ return errors.New("x509: DSA signature contained zero or negative values")
+ }
+ if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) {
+ return errors.New("x509: DSA verification failure")
+ }
+ return
+ case *ecdsa.PublicKey:
+ ecdsaSig := new(ecdsaSignature)
+ if _, err := asn1.Unmarshal(signature, ecdsaSig); err != nil {
+ return err
+ }
+ if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
+ return errors.New("x509: ECDSA signature contained zero or negative values")
+ }
+ if !ecdsa.Verify(pub, digest, ecdsaSig.R, ecdsaSig.S) {
+ return errors.New("x509: ECDSA verification failure")
+ }
+ return
+ }
+ return ErrUnsupportedAlgorithm
+}
+
+// CheckCRLSignature checks that the signature in crl is from c.
+func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err error) {
+ algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm)
+ return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign())
+}
+
+type UnhandledCriticalExtension struct{}
+
+func (h UnhandledCriticalExtension) Error() string {
+ return "x509: unhandled critical extension"
+}
+
+type basicConstraints struct {
+ IsCA bool `asn1:"optional"`
+ MaxPathLen int `asn1:"optional,default:-1"`
+}
+
+// RFC 5280 4.2.1.4
+type policyInformation struct {
+ Policy asn1.ObjectIdentifier
+ // policyQualifiers omitted
+}
+
+// RFC 5280, 4.2.1.10
+type nameConstraints struct {
+ Permitted []generalSubtree `asn1:"optional,tag:0"`
+ Excluded []generalSubtree `asn1:"optional,tag:1"`
+}
+
+type generalSubtree struct {
+ Name string `asn1:"tag:2,optional,ia5"`
+}
+
+// RFC 5280, 4.2.2.1
+type authorityInfoAccess struct {
+ Method asn1.ObjectIdentifier
+ Location asn1.RawValue
+}
+
+// RFC 5280, 4.2.1.14
+type distributionPoint struct {
+ DistributionPoint distributionPointName `asn1:"optional,tag:0"`
+ Reason asn1.BitString `asn1:"optional,tag:1"`
+ CRLIssuer asn1.RawValue `asn1:"optional,tag:2"`
+}
+
+type distributionPointName struct {
+ FullName asn1.RawValue `asn1:"optional,tag:0"`
+ RelativeName pkix.RDNSequence `asn1:"optional,tag:1"`
+}
+
+func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) {
+ asn1Data := keyData.PublicKey.RightAlign()
+ switch algo {
+ case RSA:
+ p := new(rsaPublicKey)
+ _, err := asn1.Unmarshal(asn1Data, p)
+ if err != nil {
+ return nil, err
+ }
+
+ if p.N.Sign() <= 0 {
+ return nil, errors.New("x509: RSA modulus is not a positive number")
+ }
+ if p.E <= 0 {
+ return nil, errors.New("x509: RSA public exponent is not a positive number")
+ }
+
+ pub := &rsa.PublicKey{
+ E: p.E,
+ N: p.N,
+ }
+ return pub, nil
+ case DSA:
+ var p *big.Int
+ _, err := asn1.Unmarshal(asn1Data, &p)
+ if err != nil {
+ return nil, err
+ }
+ paramsData := keyData.Algorithm.Parameters.FullBytes
+ params := new(dsaAlgorithmParameters)
+ _, err = asn1.Unmarshal(paramsData, params)
+ if err != nil {
+ return nil, err
+ }
+ if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 {
+ return nil, errors.New("x509: zero or negative DSA parameter")
+ }
+ pub := &dsa.PublicKey{
+ Parameters: dsa.Parameters{
+ P: params.P,
+ Q: params.Q,
+ G: params.G,
+ },
+ Y: p,
+ }
+ return pub, nil
+ case ECDSA:
+ paramsData := keyData.Algorithm.Parameters.FullBytes
+ namedCurveOID := new(asn1.ObjectIdentifier)
+ _, err := asn1.Unmarshal(paramsData, namedCurveOID)
+ if err != nil {
+ return nil, err
+ }
+ namedCurve := namedCurveFromOID(*namedCurveOID)
+ if namedCurve == nil {
+ return nil, errors.New("x509: unsupported elliptic curve")
+ }
+ x, y := elliptic.Unmarshal(namedCurve, asn1Data)
+ if x == nil {
+ return nil, errors.New("x509: failed to unmarshal elliptic curve point")
+ }
+ pub := &ecdsa.PublicKey{
+ Curve: namedCurve,
+ X: x,
+ Y: y,
+ }
+ return pub, nil
+ default:
+ return nil, nil
+ }
+}
+
+func parseSANExtension(value []byte) (dnsNames, emailAddresses []string, ipAddresses []net.IP, err error) {
+ // RFC 5280, 4.2.1.6
+
+ // SubjectAltName ::= GeneralNames
+ //
+ // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
+ //
+ // GeneralName ::= CHOICE {
+ // otherName [0] OtherName,
+ // rfc822Name [1] IA5String,
+ // dNSName [2] IA5String,
+ // x400Address [3] ORAddress,
+ // directoryName [4] Name,
+ // ediPartyName [5] EDIPartyName,
+ // uniformResourceIdentifier [6] IA5String,
+ // iPAddress [7] OCTET STRING,
+ // registeredID [8] OBJECT IDENTIFIER }
+ var seq asn1.RawValue
+ if _, err = asn1.Unmarshal(value, &seq); err != nil {
+ return
+ }
+ if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 {
+ err = asn1.StructuralError{Msg: "bad SAN sequence"}
+ return
+ }
+
+ rest := seq.Bytes
+ for len(rest) > 0 {
+ var v asn1.RawValue
+ rest, err = asn1.Unmarshal(rest, &v)
+ if err != nil {
+ return
+ }
+ switch v.Tag {
+ case 1:
+ emailAddresses = append(emailAddresses, string(v.Bytes))
+ case 2:
+ dnsNames = append(dnsNames, string(v.Bytes))
+ case 7:
+ switch len(v.Bytes) {
+ case net.IPv4len, net.IPv6len:
+ ipAddresses = append(ipAddresses, v.Bytes)
+ default:
+ err = errors.New("x509: certificate contained IP address of length " + strconv.Itoa(len(v.Bytes)))
+ return
+ }
+ }
+ }
+
+ return
+}
+
+func parseCertificate(in *certificate) (*Certificate, error) {
+ out := new(Certificate)
+ out.Raw = in.Raw
+ out.RawTBSCertificate = in.TBSCertificate.Raw
+ out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw
+ out.RawSubject = in.TBSCertificate.Subject.FullBytes
+ out.RawIssuer = in.TBSCertificate.Issuer.FullBytes
+
+ out.Signature = in.SignatureValue.RightAlign()
+ out.SignatureAlgorithm =
+ getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm)
+
+ out.PublicKeyAlgorithm =
+ getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm)
+ var err error
+ out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey)
+ if err != nil {
+ return nil, err
+ }
+
+ if in.TBSCertificate.SerialNumber.Sign() < 0 {
+ return nil, errors.New("x509: negative serial number")
+ }
+
+ out.Version = in.TBSCertificate.Version + 1
+ out.SerialNumber = in.TBSCertificate.SerialNumber
+
+ var issuer, subject pkix.RDNSequence
+ if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil {
+ return nil, err
+ }
+ if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil {
+ return nil, err
+ }
+
+ out.Issuer.FillFromRDNSequence(&issuer)
+ out.Subject.FillFromRDNSequence(&subject)
+
+ out.NotBefore = in.TBSCertificate.Validity.NotBefore
+ out.NotAfter = in.TBSCertificate.Validity.NotAfter
+
+ for _, e := range in.TBSCertificate.Extensions {
+ out.Extensions = append(out.Extensions, e)
+
+ if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 {
+ switch e.Id[3] {
+ case 15:
+ // RFC 5280, 4.2.1.3
+ var usageBits asn1.BitString
+ _, err := asn1.Unmarshal(e.Value, &usageBits)
+
+ if err == nil {
+ var usage int
+ for i := 0; i < 9; i++ {
+ if usageBits.At(i) != 0 {
+ usage |= 1 << uint(i)
+ }
+ }
+ out.KeyUsage = KeyUsage(usage)
+ continue
+ }
+ case 19:
+ // RFC 5280, 4.2.1.9
+ var constraints basicConstraints
+ _, err := asn1.Unmarshal(e.Value, &constraints)
+
+ if err == nil {
+ out.BasicConstraintsValid = true
+ out.IsCA = constraints.IsCA
+ out.MaxPathLen = constraints.MaxPathLen
+ out.MaxPathLenZero = out.MaxPathLen == 0
+ continue
+ }
+ case 17:
+ out.DNSNames, out.EmailAddresses, out.IPAddresses, err = parseSANExtension(e.Value)
+ if err != nil {
+ return nil, err
+ }
+
+ if len(out.DNSNames) > 0 || len(out.EmailAddresses) > 0 || len(out.IPAddresses) > 0 {
+ continue
+ }
+ // If we didn't parse any of the names then we
+ // fall through to the critical check below.
+
+ case 30:
+ // RFC 5280, 4.2.1.10
+
+ // NameConstraints ::= SEQUENCE {
+ // permittedSubtrees [0] GeneralSubtrees OPTIONAL,
+ // excludedSubtrees [1] GeneralSubtrees OPTIONAL }
+ //
+ // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree
+ //
+ // GeneralSubtree ::= SEQUENCE {
+ // base GeneralName,
+ // minimum [0] BaseDistance DEFAULT 0,
+ // maximum [1] BaseDistance OPTIONAL }
+ //
+ // BaseDistance ::= INTEGER (0..MAX)
+
+ var constraints nameConstraints
+ _, err := asn1.Unmarshal(e.Value, &constraints)
+ if err != nil {
+ return nil, err
+ }
+
+ if len(constraints.Excluded) > 0 && e.Critical {
+ return out, UnhandledCriticalExtension{}
+ }
+
+ for _, subtree := range constraints.Permitted {
+ if len(subtree.Name) == 0 {
+ if e.Critical {
+ return out, UnhandledCriticalExtension{}
+ }
+ continue
+ }
+ out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name)
+ }
+ continue
+
+ case 31:
+ // RFC 5280, 4.2.1.14
+
+ // CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
+ //
+ // DistributionPoint ::= SEQUENCE {
+ // distributionPoint [0] DistributionPointName OPTIONAL,
+ // reasons [1] ReasonFlags OPTIONAL,
+ // cRLIssuer [2] GeneralNames OPTIONAL }
+ //
+ // DistributionPointName ::= CHOICE {
+ // fullName [0] GeneralNames,
+ // nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
+
+ var cdp []distributionPoint
+ _, err := asn1.Unmarshal(e.Value, &cdp)
+ if err != nil {
+ return nil, err
+ }
+
+ for _, dp := range cdp {
+ var n asn1.RawValue
+ _, err = asn1.Unmarshal(dp.DistributionPoint.FullName.Bytes, &n)
+ if err != nil {
+ return nil, err
+ }
+
+ if n.Tag == 6 {
+ out.CRLDistributionPoints = append(out.CRLDistributionPoints, string(n.Bytes))
+ }
+ }
+ continue
+
+ case 35:
+ // RFC 5280, 4.2.1.1
+ var a authKeyId
+ _, err = asn1.Unmarshal(e.Value, &a)
+ if err != nil {
+ return nil, err
+ }
+ out.AuthorityKeyId = a.Id
+ continue
+
+ case 37:
+ // RFC 5280, 4.2.1.12. Extended Key Usage
+
+ // id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 }
+ //
+ // ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
+ //
+ // KeyPurposeId ::= OBJECT IDENTIFIER
+
+ var keyUsage []asn1.ObjectIdentifier
+ _, err = asn1.Unmarshal(e.Value, &keyUsage)
+ if err != nil {
+ return nil, err
+ }
+
+ for _, u := range keyUsage {
+ if extKeyUsage, ok := extKeyUsageFromOID(u); ok {
+ out.ExtKeyUsage = append(out.ExtKeyUsage, extKeyUsage)
+ } else {
+ out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u)
+ }
+ }
+
+ continue
+
+ case 14:
+ // RFC 5280, 4.2.1.2
+ var keyid []byte
+ _, err = asn1.Unmarshal(e.Value, &keyid)
+ if err != nil {
+ return nil, err
+ }
+ out.SubjectKeyId = keyid
+ continue
+
+ case 32:
+ // RFC 5280 4.2.1.4: Certificate Policies
+ var policies []policyInformation
+ if _, err = asn1.Unmarshal(e.Value, &policies); err != nil {
+ return nil, err
+ }
+ out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies))
+ for i, policy := range policies {
+ out.PolicyIdentifiers[i] = policy.Policy
+ }
+ }
+ } else if e.Id.Equal(oidExtensionAuthorityInfoAccess) {
+ // RFC 5280 4.2.2.1: Authority Information Access
+ var aia []authorityInfoAccess
+ if _, err = asn1.Unmarshal(e.Value, &aia); err != nil {
+ return nil, err
+ }
+
+ for _, v := range aia {
+ // GeneralName: uniformResourceIdentifier [6] IA5String
+ if v.Location.Tag != 6 {
+ continue
+ }
+ if v.Method.Equal(oidAuthorityInfoAccessOcsp) {
+ out.OCSPServer = append(out.OCSPServer, string(v.Location.Bytes))
+ } else if v.Method.Equal(oidAuthorityInfoAccessIssuers) {
+ out.IssuingCertificateURL = append(out.IssuingCertificateURL, string(v.Location.Bytes))
+ }
+ }
+ }
+
+ if e.Critical {
+ return out, UnhandledCriticalExtension{}
+ }
+ }
+
+ return out, nil
+}
+
+// ParseCertificate parses a single certificate from the given ASN.1 DER data.
+func ParseCertificate(asn1Data []byte) (*Certificate, error) {
+ var cert certificate
+ rest, err := asn1.Unmarshal(asn1Data, &cert)
+ if err != nil {
+ return nil, err
+ }
+ if len(rest) > 0 {
+ return nil, asn1.SyntaxError{Msg: "trailing data"}
+ }
+
+ return parseCertificate(&cert)
+}
+
+// ParseCertificates parses one or more certificates from the given ASN.1 DER
+// data. The certificates must be concatenated with no intermediate padding.
+func ParseCertificates(asn1Data []byte) ([]*Certificate, error) {
+ var v []*certificate
+
+ for len(asn1Data) > 0 {
+ cert := new(certificate)
+ var err error
+ asn1Data, err = asn1.Unmarshal(asn1Data, cert)
+ if err != nil {
+ return nil, err
+ }
+ v = append(v, cert)
+ }
+
+ ret := make([]*Certificate, len(v))
+ for i, ci := range v {
+ cert, err := parseCertificate(ci)
+ if err != nil {
+ return nil, err
+ }
+ ret[i] = cert
+ }
+
+ return ret, nil
+}
+
+func reverseBitsInAByte(in byte) byte {
+ b1 := in>>4 | in<<4
+ b2 := b1>>2&0x33 | b1<<2&0xcc
+ b3 := b2>>1&0x55 | b2<<1&0xaa
+ return b3
+}
+
+var (
+ oidExtensionSubjectKeyId = []int{2, 5, 29, 14}
+ oidExtensionKeyUsage = []int{2, 5, 29, 15}
+ oidExtensionExtendedKeyUsage = []int{2, 5, 29, 37}
+ oidExtensionAuthorityKeyId = []int{2, 5, 29, 35}
+ oidExtensionBasicConstraints = []int{2, 5, 29, 19}
+ oidExtensionSubjectAltName = []int{2, 5, 29, 17}
+ oidExtensionCertificatePolicies = []int{2, 5, 29, 32}
+ oidExtensionNameConstraints = []int{2, 5, 29, 30}
+ oidExtensionCRLDistributionPoints = []int{2, 5, 29, 31}
+ oidExtensionAuthorityInfoAccess = []int{1, 3, 6, 1, 5, 5, 7, 1, 1}
+)
+
+var (
+ oidAuthorityInfoAccessOcsp = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 1}
+ oidAuthorityInfoAccessIssuers = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 2}
+)
+
+// oidNotInExtensions returns whether an extension with the given oid exists in
+// extensions.
+func oidInExtensions(oid asn1.ObjectIdentifier, extensions []pkix.Extension) bool {
+ for _, e := range extensions {
+ if e.Id.Equal(oid) {
+ return true
+ }
+ }
+ return false
+}
+
+// marshalSANs marshals a list of addresses into a the contents of an X.509
+// SubjectAlternativeName extension.
+func marshalSANs(dnsNames, emailAddresses []string, ipAddresses []net.IP) (derBytes []byte, err error) {
+ var rawValues []asn1.RawValue
+ for _, name := range dnsNames {
+ rawValues = append(rawValues, asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)})
+ }
+ for _, email := range emailAddresses {
+ rawValues = append(rawValues, asn1.RawValue{Tag: 1, Class: 2, Bytes: []byte(email)})
+ }
+ for _, rawIP := range ipAddresses {
+ // If possible, we always want to encode IPv4 addresses in 4 bytes.
+ ip := rawIP.To4()
+ if ip == nil {
+ ip = rawIP
+ }
+ rawValues = append(rawValues, asn1.RawValue{Tag: 7, Class: 2, Bytes: ip})
+ }
+ return asn1.Marshal(rawValues)
+}
+
+func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) {
+ ret = make([]pkix.Extension, 10 /* maximum number of elements. */)
+ n := 0
+
+ if template.KeyUsage != 0 &&
+ !oidInExtensions(oidExtensionKeyUsage, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionKeyUsage
+ ret[n].Critical = true
+
+ var a [2]byte
+ a[0] = reverseBitsInAByte(byte(template.KeyUsage))
+ a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8))
+
+ l := 1
+ if a[1] != 0 {
+ l = 2
+ }
+
+ ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: a[0:l], BitLength: l * 8})
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if (len(template.ExtKeyUsage) > 0 || len(template.UnknownExtKeyUsage) > 0) &&
+ !oidInExtensions(oidExtensionExtendedKeyUsage, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionExtendedKeyUsage
+
+ var oids []asn1.ObjectIdentifier
+ for _, u := range template.ExtKeyUsage {
+ if oid, ok := oidFromExtKeyUsage(u); ok {
+ oids = append(oids, oid)
+ } else {
+ panic("internal error")
+ }
+ }
+
+ oids = append(oids, template.UnknownExtKeyUsage...)
+
+ ret[n].Value, err = asn1.Marshal(oids)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if template.BasicConstraintsValid && !oidInExtensions(oidExtensionBasicConstraints, template.ExtraExtensions) {
+ // Leaving MaxPathLen as zero indicates that no maximum path
+ // length is desired, unless MaxPathLenZero is set. A value of
+ // -1 causes encoding/asn1 to omit the value as desired.
+ maxPathLen := template.MaxPathLen
+ if maxPathLen == 0 && !template.MaxPathLenZero {
+ maxPathLen = -1
+ }
+ ret[n].Id = oidExtensionBasicConstraints
+ ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, maxPathLen})
+ ret[n].Critical = true
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if len(template.SubjectKeyId) > 0 && !oidInExtensions(oidExtensionSubjectKeyId, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionSubjectKeyId
+ ret[n].Value, err = asn1.Marshal(template.SubjectKeyId)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if len(template.AuthorityKeyId) > 0 && !oidInExtensions(oidExtensionAuthorityKeyId, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionAuthorityKeyId
+ ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId})
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if (len(template.OCSPServer) > 0 || len(template.IssuingCertificateURL) > 0) &&
+ !oidInExtensions(oidExtensionAuthorityInfoAccess, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionAuthorityInfoAccess
+ var aiaValues []authorityInfoAccess
+ for _, name := range template.OCSPServer {
+ aiaValues = append(aiaValues, authorityInfoAccess{
+ Method: oidAuthorityInfoAccessOcsp,
+ Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)},
+ })
+ }
+ for _, name := range template.IssuingCertificateURL {
+ aiaValues = append(aiaValues, authorityInfoAccess{
+ Method: oidAuthorityInfoAccessIssuers,
+ Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)},
+ })
+ }
+ ret[n].Value, err = asn1.Marshal(aiaValues)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0) &&
+ !oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionSubjectAltName
+ ret[n].Value, err = marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if len(template.PolicyIdentifiers) > 0 &&
+ !oidInExtensions(oidExtensionCertificatePolicies, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionCertificatePolicies
+ policies := make([]policyInformation, len(template.PolicyIdentifiers))
+ for i, policy := range template.PolicyIdentifiers {
+ policies[i].Policy = policy
+ }
+ ret[n].Value, err = asn1.Marshal(policies)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if len(template.PermittedDNSDomains) > 0 &&
+ !oidInExtensions(oidExtensionNameConstraints, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionNameConstraints
+ ret[n].Critical = template.PermittedDNSDomainsCritical
+
+ var out nameConstraints
+ out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains))
+ for i, permitted := range template.PermittedDNSDomains {
+ out.Permitted[i] = generalSubtree{Name: permitted}
+ }
+ ret[n].Value, err = asn1.Marshal(out)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ if len(template.CRLDistributionPoints) > 0 &&
+ !oidInExtensions(oidExtensionCRLDistributionPoints, template.ExtraExtensions) {
+ ret[n].Id = oidExtensionCRLDistributionPoints
+
+ var crlDp []distributionPoint
+ for _, name := range template.CRLDistributionPoints {
+ rawFullName, _ := asn1.Marshal(asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)})
+
+ dp := distributionPoint{
+ DistributionPoint: distributionPointName{
+ FullName: asn1.RawValue{Tag: 0, Class: 2, IsCompound: true, Bytes: rawFullName},
+ },
+ }
+ crlDp = append(crlDp, dp)
+ }
+
+ ret[n].Value, err = asn1.Marshal(crlDp)
+ if err != nil {
+ return
+ }
+ n++
+ }
+
+ // Adding another extension here? Remember to update the maximum number
+ // of elements in the make() at the top of the function.
+
+ return append(ret[:n], template.ExtraExtensions...), nil
+}
+
+func subjectBytes(cert *Certificate) ([]byte, error) {
+ if len(cert.RawSubject) > 0 {
+ return cert.RawSubject, nil
+ }
+
+ return asn1.Marshal(cert.Subject.ToRDNSequence())
+}
+
+// signingParamsForPrivateKey returns the parameters to use for signing with
+// priv. If requestedSigAlgo is not zero then it overrides the default
+// signature algorithm.
+func signingParamsForPrivateKey(priv interface{}, requestedSigAlgo SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
+ var pubType PublicKeyAlgorithm
+
+ switch priv := priv.(type) {
+ case *rsa.PrivateKey:
+ pubType = RSA
+ sigAlgo.Algorithm = oidSignatureSHA256WithRSA
+ hashFunc = crypto.SHA256
+
+ case *ecdsa.PrivateKey:
+ pubType = ECDSA
+
+ switch priv.Curve {
+ case elliptic.P224(), elliptic.P256():
+ hashFunc = crypto.SHA256
+ sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
+ case elliptic.P384():
+ hashFunc = crypto.SHA384
+ sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
+ case elliptic.P521():
+ hashFunc = crypto.SHA512
+ sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
+ default:
+ err = errors.New("x509: unknown elliptic curve")
+ }
+
+ default:
+ err = errors.New("x509: only RSA and ECDSA private keys supported")
+ }
+
+ if err != nil {
+ return
+ }
+
+ if requestedSigAlgo == 0 {
+ return
+ }
+
+ found := false
+ for _, details := range signatureAlgorithmDetails {
+ if details.algo == requestedSigAlgo {
+ if details.pubKeyAlgo != pubType {
+ err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
+ return
+ }
+ sigAlgo.Algorithm, hashFunc = details.oid, details.hash
+ if hashFunc == 0 {
+ err = errors.New("x509: cannot sign with hash function requested")
+ return
+ }
+ found = true
+ break
+ }
+ }
+
+ if !found {
+ err = errors.New("x509: unknown SignatureAlgorithm")
+ }
+
+ return
+}
+
+// CreateCertificate creates a new certificate based on a template. The
+// following members of template are used: SerialNumber, Subject, NotBefore,
+// NotAfter, KeyUsage, ExtKeyUsage, UnknownExtKeyUsage, BasicConstraintsValid,
+// IsCA, MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical,
+// PermittedDNSDomains, SignatureAlgorithm.
+//
+// The certificate is signed by parent. If parent is equal to template then the
+// certificate is self-signed. The parameter pub is the public key of the
+// signee and priv is the private key of the signer.
+//
+// The returned slice is the certificate in DER encoding.
+//
+// The only supported key types are RSA and ECDSA (*rsa.PublicKey or
+// *ecdsa.PublicKey for pub, *rsa.PrivateKey or *ecdsa.PrivateKey for priv).
+func CreateCertificate(rand io.Reader, template, parent *Certificate, pub interface{}, priv interface{}) (cert []byte, err error) {
+ hashFunc, signatureAlgorithm, err := signingParamsForPrivateKey(priv, template.SignatureAlgorithm)
+ if err != nil {
+ return nil, err
+ }
+
+ publicKeyBytes, publicKeyAlgorithm, err := marshalPublicKey(pub)
+ if err != nil {
+ return nil, err
+ }
+
+ if err != nil {
+ return
+ }
+
+ if len(parent.SubjectKeyId) > 0 {
+ template.AuthorityKeyId = parent.SubjectKeyId
+ }
+
+ extensions, err := buildExtensions(template)
+ if err != nil {
+ return
+ }
+
+ asn1Issuer, err := subjectBytes(parent)
+ if err != nil {
+ return
+ }
+
+ asn1Subject, err := subjectBytes(template)
+ if err != nil {
+ return
+ }
+
+ encodedPublicKey := asn1.BitString{BitLength: len(publicKeyBytes) * 8, Bytes: publicKeyBytes}
+ c := tbsCertificate{
+ Version: 2,
+ SerialNumber: template.SerialNumber,
+ SignatureAlgorithm: signatureAlgorithm,
+ Issuer: asn1.RawValue{FullBytes: asn1Issuer},
+ Validity: validity{template.NotBefore.UTC(), template.NotAfter.UTC()},
+ Subject: asn1.RawValue{FullBytes: asn1Subject},
+ PublicKey: publicKeyInfo{nil, publicKeyAlgorithm, encodedPublicKey},
+ Extensions: extensions,
+ }
+
+ tbsCertContents, err := asn1.Marshal(c)
+ if err != nil {
+ return
+ }
+
+ c.Raw = tbsCertContents
+
+ h := hashFunc.New()
+ h.Write(tbsCertContents)
+ digest := h.Sum(nil)
+
+ var signature []byte
+
+ switch priv := priv.(type) {
+ case *rsa.PrivateKey:
+ signature, err = rsa.SignPKCS1v15(rand, priv, hashFunc, digest)
+ case *ecdsa.PrivateKey:
+ var r, s *big.Int
+ if r, s, err = ecdsa.Sign(rand, priv, digest); err == nil {
+ signature, err = asn1.Marshal(ecdsaSignature{r, s})
+ }
+ default:
+ panic("internal error")
+ }
+
+ if err != nil {
+ return
+ }
+
+ cert, err = asn1.Marshal(certificate{
+ nil,
+ c,
+ signatureAlgorithm,
+ asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
+ })
+ return
+}
+
+// pemCRLPrefix is the magic string that indicates that we have a PEM encoded
+// CRL.
+var pemCRLPrefix = []byte("-----BEGIN X509 CRL")
+
+// pemType is the type of a PEM encoded CRL.
+var pemType = "X509 CRL"
+
+// ParseCRL parses a CRL from the given bytes. It's often the case that PEM
+// encoded CRLs will appear where they should be DER encoded, so this function
+// will transparently handle PEM encoding as long as there isn't any leading
+// garbage.
+func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err error) {
+ if bytes.HasPrefix(crlBytes, pemCRLPrefix) {
+ block, _ := pem.Decode(crlBytes)
+ if block != nil && block.Type == pemType {
+ crlBytes = block.Bytes
+ }
+ }
+ return ParseDERCRL(crlBytes)
+}
+
+// ParseDERCRL parses a DER encoded CRL from the given bytes.
+func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) {
+ certList = new(pkix.CertificateList)
+ _, err = asn1.Unmarshal(derBytes, certList)
+ if err != nil {
+ certList = nil
+ }
+ return
+}
+
+// CreateCRL returns a DER encoded CRL, signed by this Certificate, that
+// contains the given list of revoked certificates.
+//
+// The only supported key type is RSA (*rsa.PrivateKey for priv).
+func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) {
+ rsaPriv, ok := priv.(*rsa.PrivateKey)
+ if !ok {
+ return nil, errors.New("x509: non-RSA private keys not supported")
+ }
+ tbsCertList := pkix.TBSCertificateList{
+ Version: 2,
+ Signature: pkix.AlgorithmIdentifier{
+ Algorithm: oidSignatureSHA1WithRSA,
+ },
+ Issuer: c.Subject.ToRDNSequence(),
+ ThisUpdate: now.UTC(),
+ NextUpdate: expiry.UTC(),
+ RevokedCertificates: revokedCerts,
+ }
+
+ tbsCertListContents, err := asn1.Marshal(tbsCertList)
+ if err != nil {
+ return
+ }
+
+ h := sha1.New()
+ h.Write(tbsCertListContents)
+ digest := h.Sum(nil)
+
+ signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest)
+ if err != nil {
+ return
+ }
+
+ return asn1.Marshal(pkix.CertificateList{
+ TBSCertList: tbsCertList,
+ SignatureAlgorithm: pkix.AlgorithmIdentifier{
+ Algorithm: oidSignatureSHA1WithRSA,
+ },
+ SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
+ })
+}
+
+// CertificateRequest represents a PKCS #10, certificate signature request.
+type CertificateRequest struct {
+ Raw []byte // Complete ASN.1 DER content (CSR, signature algorithm and signature).
+ RawTBSCertificateRequest []byte // Certificate request info part of raw ASN.1 DER content.
+ RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
+ RawSubject []byte // DER encoded Subject.
+
+ Version int
+ Signature []byte
+ SignatureAlgorithm SignatureAlgorithm
+
+ PublicKeyAlgorithm PublicKeyAlgorithm
+ PublicKey interface{}
+
+ Subject pkix.Name
+
+ // Attributes is a collection of attributes providing
+ // additional information about the subject of the certificate.
+ // See RFC 2986 section 4.1.
+ Attributes []pkix.AttributeTypeAndValueSET
+
+ // Extensions contains raw X.509 extensions. When parsing CSRs, this
+ // can be used to extract extensions that are not parsed by this
+ // package.
+ Extensions []pkix.Extension
+
+ // ExtraExtensions contains extensions to be copied, raw, into any
+ // marshaled CSR. Values override any extensions that would otherwise
+ // be produced based on the other fields but are overridden by any
+ // extensions specified in Attributes.
+ //
+ // The ExtraExtensions field is not populated when parsing CSRs, see
+ // Extensions.
+ ExtraExtensions []pkix.Extension
+
+ // Subject Alternate Name values.
+ DNSNames []string
+ EmailAddresses []string
+ IPAddresses []net.IP
+}
+
+// These structures reflect the ASN.1 structure of X.509 certificate
+// signature requests (see RFC 2986):
+
+type tbsCertificateRequest struct {
+ Raw asn1.RawContent
+ Version int
+ Subject asn1.RawValue
+ PublicKey publicKeyInfo
+ Attributes []pkix.AttributeTypeAndValueSET `asn1:"tag:0"`
+}
+
+type certificateRequest struct {
+ Raw asn1.RawContent
+ TBSCSR tbsCertificateRequest
+ SignatureAlgorithm pkix.AlgorithmIdentifier
+ SignatureValue asn1.BitString
+}
+
+// oidExtensionRequest is a PKCS#9 OBJECT IDENTIFIER that indicates requested
+// extensions in a CSR.
+var oidExtensionRequest = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 14}
+
+// CreateCertificateRequest creates a new certificate based on a template. The
+// following members of template are used: Subject, Attributes,
+// SignatureAlgorithm, Extensions, DNSNames, EmailAddresses, and IPAddresses.
+// The private key is the private key of the signer.
+//
+// The returned slice is the certificate request in DER encoding.
+//
+// The only supported key types are RSA (*rsa.PrivateKey) and ECDSA
+// (*ecdsa.PrivateKey).
+func CreateCertificateRequest(rand io.Reader, template *CertificateRequest, priv interface{}) (csr []byte, err error) {
+ hashFunc, sigAlgo, err := signingParamsForPrivateKey(priv, template.SignatureAlgorithm)
+ if err != nil {
+ return nil, err
+ }
+
+ var publicKeyBytes []byte
+ var publicKeyAlgorithm pkix.AlgorithmIdentifier
+
+ switch priv := priv.(type) {
+ case *rsa.PrivateKey:
+ publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(&priv.PublicKey)
+ case *ecdsa.PrivateKey:
+ publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(&priv.PublicKey)
+ default:
+ panic("internal error")
+ }
+
+ if err != nil {
+ return nil, err
+ }
+
+ var extensions []pkix.Extension
+
+ if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0) &&
+ !oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) {
+ sanBytes, err := marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses)
+ if err != nil {
+ return nil, err
+ }
+
+ extensions = append(extensions, pkix.Extension{
+ Id: oidExtensionSubjectAltName,
+ Value: sanBytes,
+ })
+ }
+
+ extensions = append(extensions, template.ExtraExtensions...)
+
+ var attributes []pkix.AttributeTypeAndValueSET
+ attributes = append(attributes, template.Attributes...)
+
+ if len(extensions) > 0 {
+ // specifiedExtensions contains all the extensions that we
+ // found specified via template.Attributes.
+ specifiedExtensions := make(map[string]bool)
+
+ for _, atvSet := range template.Attributes {
+ if !atvSet.Type.Equal(oidExtensionRequest) {
+ continue
+ }
+
+ for _, atvs := range atvSet.Value {
+ for _, atv := range atvs {
+ specifiedExtensions[atv.Type.String()] = true
+ }
+ }
+ }
+
+ atvs := make([]pkix.AttributeTypeAndValue, 0, len(extensions))
+ for _, e := range extensions {
+ if specifiedExtensions[e.Id.String()] {
+ // Attributes already contained a value for
+ // this extension and it takes priority.
+ continue
+ }
+
+ atvs = append(atvs, pkix.AttributeTypeAndValue{
+ // There is no place for the critical flag in a CSR.
+ Type: e.Id,
+ Value: e.Value,
+ })
+ }
+
+ // Append the extensions to an existing attribute if possible.
+ appended := false
+ for _, atvSet := range attributes {
+ if !atvSet.Type.Equal(oidExtensionRequest) || len(atvSet.Value) == 0 {
+ continue
+ }
+
+ atvSet.Value[0] = append(atvSet.Value[0], atvs...)
+ appended = true
+ break
+ }
+
+ // Otherwise, add a new attribute for the extensions.
+ if !appended {
+ attributes = append(attributes, pkix.AttributeTypeAndValueSET{
+ Type: oidExtensionRequest,
+ Value: [][]pkix.AttributeTypeAndValue{
+ atvs,
+ },
+ })
+ }
+ }
+
+ asn1Subject := template.RawSubject
+ if len(asn1Subject) == 0 {
+ asn1Subject, err = asn1.Marshal(template.Subject.ToRDNSequence())
+ if err != nil {
+ return
+ }
+ }
+
+ tbsCSR := tbsCertificateRequest{
+ Version: 0, // PKCS #10, RFC 2986
+ Subject: asn1.RawValue{FullBytes: asn1Subject},
+ PublicKey: publicKeyInfo{
+ Algorithm: publicKeyAlgorithm,
+ PublicKey: asn1.BitString{
+ Bytes: publicKeyBytes,
+ BitLength: len(publicKeyBytes) * 8,
+ },
+ },
+ Attributes: attributes,
+ }
+
+ tbsCSRContents, err := asn1.Marshal(tbsCSR)
+ if err != nil {
+ return
+ }
+ tbsCSR.Raw = tbsCSRContents
+
+ h := hashFunc.New()
+ h.Write(tbsCSRContents)
+ digest := h.Sum(nil)
+
+ var signature []byte
+ switch priv := priv.(type) {
+ case *rsa.PrivateKey:
+ signature, err = rsa.SignPKCS1v15(rand, priv, hashFunc, digest)
+ case *ecdsa.PrivateKey:
+ var r, s *big.Int
+ if r, s, err = ecdsa.Sign(rand, priv, digest); err == nil {
+ signature, err = asn1.Marshal(ecdsaSignature{r, s})
+ }
+ default:
+ panic("internal error")
+ }
+
+ if err != nil {
+ return
+ }
+
+ return asn1.Marshal(certificateRequest{
+ TBSCSR: tbsCSR,
+ SignatureAlgorithm: sigAlgo,
+ SignatureValue: asn1.BitString{
+ Bytes: signature,
+ BitLength: len(signature) * 8,
+ },
+ })
+}
+
+// ParseCertificateRequest parses a single certificate request from the
+// given ASN.1 DER data.
+func ParseCertificateRequest(asn1Data []byte) (*CertificateRequest, error) {
+ var csr certificateRequest
+
+ rest, err := asn1.Unmarshal(asn1Data, &csr)
+ if err != nil {
+ return nil, err
+ } else if len(rest) != 0 {
+ return nil, asn1.SyntaxError{Msg: "trailing data"}
+ }
+
+ return parseCertificateRequest(&csr)
+}
+
+func parseCertificateRequest(in *certificateRequest) (*CertificateRequest, error) {
+ out := &CertificateRequest{
+ Raw: in.Raw,
+ RawTBSCertificateRequest: in.TBSCSR.Raw,
+ RawSubjectPublicKeyInfo: in.TBSCSR.PublicKey.Raw,
+ RawSubject: in.TBSCSR.Subject.FullBytes,
+
+ Signature: in.SignatureValue.RightAlign(),
+ SignatureAlgorithm: getSignatureAlgorithmFromOID(in.SignatureAlgorithm.Algorithm),
+
+ PublicKeyAlgorithm: getPublicKeyAlgorithmFromOID(in.TBSCSR.PublicKey.Algorithm.Algorithm),
+
+ Version: in.TBSCSR.Version,
+ Attributes: in.TBSCSR.Attributes,
+ }
+
+ var err error
+ out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCSR.PublicKey)
+ if err != nil {
+ return nil, err
+ }
+
+ var subject pkix.RDNSequence
+ if _, err := asn1.Unmarshal(in.TBSCSR.Subject.FullBytes, &subject); err != nil {
+ return nil, err
+ }
+
+ out.Subject.FillFromRDNSequence(&subject)
+
+ var extensions []pkix.AttributeTypeAndValue
+
+ for _, atvSet := range in.TBSCSR.Attributes {
+ if !atvSet.Type.Equal(oidExtensionRequest) {
+ continue
+ }
+
+ for _, atvs := range atvSet.Value {
+ extensions = append(extensions, atvs...)
+ }
+ }
+
+ out.Extensions = make([]pkix.Extension, 0, len(extensions))
+
+ for _, e := range extensions {
+ value, ok := e.Value.([]byte)
+ if !ok {
+ return nil, errors.New("x509: extension attribute contained non-OCTET STRING data")
+ }
+
+ out.Extensions = append(out.Extensions, pkix.Extension{
+ Id: e.Type,
+ Value: value,
+ })
+
+ if len(e.Type) == 4 && e.Type[0] == 2 && e.Type[1] == 5 && e.Type[2] == 29 {
+ switch e.Type[3] {
+ case 17:
+ out.DNSNames, out.EmailAddresses, out.IPAddresses, err = parseSANExtension(value)
+ if err != nil {
+ return nil, err
+ }
+ }
+ }
+ }
+
+ return out, nil
+}