diff options
Diffstat (limited to 'src/lib/bignum.go')
-rwxr-xr-x | src/lib/bignum.go | 1257 |
1 files changed, 1257 insertions, 0 deletions
diff --git a/src/lib/bignum.go b/src/lib/bignum.go new file mode 100755 index 000000000..3670c3705 --- /dev/null +++ b/src/lib/bignum.go @@ -0,0 +1,1257 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package Bignum + +// A package for arbitrary precision arithmethic. +// It implements the following numeric types: +// +// - Natural unsigned integer numbers +// - Integer signed integer numbers +// - Rational rational numbers + + +// ---------------------------------------------------------------------------- +// Internal representation +// +// A natural number of the form +// +// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0] +// +// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n, +// with the digits x[i] as the array elements. +// +// A natural number is normalized if the array contains no leading 0 digits. +// During arithmetic operations, denormalized values may occur which are +// always normalized before returning the final result. The normalized +// representation of 0 is the empty array (length = 0). +// +// The operations for all other numeric types are implemented on top of +// the operations for natural numbers. +// +// The base B is chosen as large as possible on a given platform but there +// are a few constraints besides the size of the largest unsigned integer +// type available: +// +// 1) To improve conversion speed between strings and numbers, the base B +// is chosen such that division and multiplication by 10 (for decimal +// string representation) can be done without using extended-precision +// arithmetic. This makes addition, subtraction, and conversion routines +// twice as fast. It requires a "buffer" of 4 bits per operand digit. +// That is, the size of B must be 4 bits smaller then the size of the +// type (Digit) in which these operations are performed. Having this +// buffer also allows for trivial (single-bit) carry computation in +// addition and subtraction (optimization suggested by Ken Thompson). +// +// 2) Long division requires extended-precision (2-digit) division per digit. +// Instead of sacrificing the largest base type for all other operations, +// for division the operands are unpacked into "half-digits", and the +// results are packed again. For faster unpacking/packing, the base size +// in bits must be even. + +type ( + Digit uint64; + Digit2 uint32; // half-digits for division +) + + +const LogW = 64; +const LogH = 4; // bits for a hex digit (= "small" number) +const LogB = LogW - LogH; // largest bit-width available + + +const ( + // half-digits + W2 = LogB / 2; // width + B2 = 1 << W2; // base + M2 = B2 - 1; // mask + + // full digits + W = W2 * 2; // width + B = 1 << W; // base + M = B - 1; // mask +) + + +// ---------------------------------------------------------------------------- +// Support functions + +func assert(p bool) { + if !p { + panic("assert failed"); + } +} + + +func IsSmall(x Digit) bool { + return x < 1<<LogH; +} + + +export func Dump(x *[]Digit) { + print("[", len(x), "]"); + for i := len(x) - 1; i >= 0; i-- { + print(" ", x[i]); + } + println(); +} + + +// ---------------------------------------------------------------------------- +// Raw operations on sequences of digits +// +// Naming conventions +// +// c carry +// x, y operands +// z result +// n, m len(x), len(y) + + +func Add1(z, x *[]Digit, c Digit) Digit { + n := len(x); + for i := 0; i < n; i++ { + t := c + x[i]; + c, z[i] = t>>W, t&M + } + return c; +} + + +func Add(z, x, y *[]Digit) Digit { + var c Digit; + n := len(x); + for i := 0; i < n; i++ { + t := c + x[i] + y[i]; + c, z[i] = t>>W, t&M + } + return c; +} + + +func Sub1(z, x *[]Digit, c Digit) Digit { + n := len(x); + for i := 0; i < n; i++ { + t := c + x[i]; + c, z[i] = Digit(int64(t)>>W), t&M; // requires arithmetic shift! + } + return c; +} + + +func Sub(z, x, y *[]Digit) Digit { + var c Digit; + n := len(x); + for i := 0; i < n; i++ { + t := c + x[i] - y[i]; + c, z[i] = Digit(int64(t)>>W), t&M; // requires arithmetic shift! + } + return c; +} + + +// Returns c = x*y div B, z = x*y mod B. +func Mul11(x, y Digit) (Digit, Digit) { + // Split x and y into 2 sub-digits each, + // multiply the digits separately while avoiding overflow, + // and return the product as two separate digits. + + // This code also works for non-even bit widths W + // which is why there are separate constants below + // for half-digits. + const W2 = (W + 1)/2; + const DW = W2*2 - W; // 0 or 1 + const B2 = 1<<W2; + const M2 = B2 - 1; + + // split x and y into sub-digits + // x = (x1*B2 + x0) + // y = (y1*B2 + y0) + x1, x0 := x>>W2, x&M2; + y1, y0 := y>>W2, y&M2; + + // x*y = t2*B2^2 + t1*B2 + t0 + t0 := x0*y0; + t1 := x1*y0 + x0*y1; + t2 := x1*y1; + + // compute the result digits but avoid overflow + // z = z1*B + z0 = x*y + z0 := (t1<<W2 + t0)&M; + z1 := t2<<DW + (t1 + t0>>W2)>>(W-W2); + + return z1, z0; +} + + +func Mul(z, x, y *[]Digit) { + n := len(x); + m := len(y); + for j := 0; j < m; j++ { + d := y[j]; + if d != 0 { + c := Digit(0); + for i := 0; i < n; i++ { + // z[i+j] += c + x[i]*d; + z1, z0 := Mul11(x[i], d); + t := c + z[i+j] + z0; + c, z[i+j] = t>>W, t&M; + c += z1; + } + z[n+j] = c; + } + } +} + + +func Shl(z, x *[]Digit, s uint) Digit { + assert(s <= W); + n := len(x); + var c Digit; + for i := 0; i < n; i++ { + c, z[i] = x[i] >> (W-s), x[i] << s & M | c; + } + return c; +} + + +func Shr(z, x *[]Digit, s uint) Digit { + assert(s <= W); + n := len(x); + var c Digit; + for i := n - 1; i >= 0; i-- { + c, z[i] = x[i] << (W-s) & M, x[i] >> s | c; + } + return c; +} + + +func And1(z, x *[]Digit, y Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] & y; + } +} + + +func And(z, x, y *[]Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] & y[i]; + } +} + + +func Or1(z, x *[]Digit, y Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] | y; + } +} + + +func Or(z, x, y *[]Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] | y[i]; + } +} + + +func Xor1(z, x *[]Digit, y Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] ^ y; + } +} + + +func Xor(z, x, y *[]Digit) { + for i := len(x) - 1; i >= 0; i-- { + z[i] = x[i] ^ y[i]; + } +} + + +// ---------------------------------------------------------------------------- +// Natural numbers + + +export type Natural []Digit; + +var ( + NatZero *Natural = &Natural{}; + NatOne *Natural = &Natural{1}; + NatTwo *Natural = &Natural{2}; + NatTen *Natural = &Natural{10}; +) + + +// Creation + +export func Nat(x uint) *Natural { + switch x { + case 0: return NatZero; + case 1: return NatOne; + case 2: return NatTwo; + case 10: return NatTen; + } + assert(Digit(x) < B); + return &Natural{Digit(x)}; +} + + +// Predicates + +func (x *Natural) IsOdd() bool { + return len(x) > 0 && x[0]&1 != 0; +} + + +func (x *Natural) IsZero() bool { + return len(x) == 0; +} + + +// Operations + +func Normalize(x *Natural) *Natural { + n := len(x); + for n > 0 && x[n - 1] == 0 { n-- } + if n < len(x) { + x = x[0 : n]; // trim leading 0's + } + return x; +} + + +func (x *Natural) Add(y *Natural) *Natural { + n := len(x); + m := len(y); + if n < m { + return y.Add(x); + } + + z := new(Natural, n + 1); + c := Add(z[0 : m], x[0 : m], y); + z[n] = Add1(z[m : n], x[m : n], c); + + return Normalize(z); +} + + +func (x *Natural) Sub(y *Natural) *Natural { + n := len(x); + m := len(y); + if n < m { + panic("underflow") + } + + z := new(Natural, n); + c := Sub(z[0 : m], x[0 : m], y); + if Sub1(z[m : n], x[m : n], c) != 0 { + panic("underflow"); + } + + return Normalize(z); +} + + +func (x *Natural) Mul(y *Natural) *Natural { + n := len(x); + m := len(y); + + z := new(Natural, n + m); + Mul(z, x, y); + + return Normalize(z); +} + + +// DivMod needs multi-precision division which is not available if Digit +// is already using the largest uint size. Instead, unpack each operand +// into operands with twice as many digits of half the size (Digit2), do +// DivMod, and then pack the results again. + +func Unpack(x *Natural) *[]Digit2 { + n := len(x); + z := new([]Digit2, n*2 + 1); // add space for extra digit (used by DivMod) + for i := 0; i < n; i++ { + t := x[i]; + z[i*2] = Digit2(t & M2); + z[i*2 + 1] = Digit2(t >> W2 & M2); + } + + // normalize result + k := 2*n; + for k > 0 && z[k - 1] == 0 { k-- } + return z[0 : k]; // trim leading 0's +} + + +func Pack(x *[]Digit2) *Natural { + n := (len(x) + 1) / 2; + z := new(Natural, n); + if len(x) & 1 == 1 { + // handle odd len(x) + n--; + z[n] = Digit(x[n*2]); + } + for i := 0; i < n; i++ { + z[i] = Digit(x[i*2 + 1]) << W2 | Digit(x[i*2]); + } + return Normalize(z); +} + + +func Mul1(z, x *[]Digit2, y Digit2) Digit2 { + n := len(x); + var c Digit; + f := Digit(y); + for i := 0; i < n; i++ { + t := c + Digit(x[i])*f; + c, z[i] = t>>W2, Digit2(t&M2); + } + return Digit2(c); +} + + +func Div1(z, x *[]Digit2, y Digit2) Digit2 { + n := len(x); + var c Digit; + d := Digit(y); + for i := n-1; i >= 0; i-- { + t := c*B2 + Digit(x[i]); + c, z[i] = t%d, Digit2(t/d); + } + return Digit2(c); +} + + +// DivMod returns q and r with x = y*q + r and 0 <= r < y. +// x and y are destroyed in the process. +// +// The algorithm used here is based on 1). 2) describes the same algorithm +// in C. A discussion and summary of the relevant theorems can be found in +// 3). 3) also describes an easier way to obtain the trial digit - however +// it relies on tripple-precision arithmetic which is why Knuth's method is +// used here. +// +// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical +// Algorithms." Addison-Wesley, Reading, 1969. +// (Algorithm D, Sec. 4.3.1) +// +// 2) Henry S. Warren, Jr., "A Hacker's Delight". Addison-Wesley, 2003. +// (9-2 Multiword Division, p.140ff) +// +// 3) P. Brinch Hansen, Multiple-length division revisited: A tour of the +// minefield. "Software - Practice and Experience 24", (June 1994), +// 579-601. John Wiley & Sons, Ltd. + +func DivMod(x, y *[]Digit2) (*[]Digit2, *[]Digit2) { + n := len(x); + m := len(y); + if m == 0 { + panic("division by zero"); + } + assert(n+1 <= cap(x)); // space for one extra digit + x = x[0 : n + 1]; + assert(x[n] == 0); + + if m == 1 { + // division by single digit + // result is shifted left by 1 in place! + x[0] = Div1(x[1 : n+1], x[0 : n], y[0]); + + } else if m > n { + // y > x => quotient = 0, remainder = x + // TODO in this case we shouldn't even unpack x and y + m = n; + + } else { + // general case + assert(2 <= m && m <= n); + + // normalize x and y + // TODO Instead of multiplying, it would be sufficient to + // shift y such that the normalization condition is + // satisfied (as done in "Hacker's Delight"). + f := B2 / (Digit(y[m-1]) + 1); + if f != 1 { + Mul1(x, x, Digit2(f)); + Mul1(y, y, Digit2(f)); + } + assert(B2/2 <= y[m-1] && y[m-1] < B2); // incorrect scaling + + y1, y2 := Digit(y[m-1]), Digit(y[m-2]); + d2 := Digit(y1)<<W2 + Digit(y2); + for i := n-m; i >= 0; i-- { + k := i+m; + + // compute trial digit (Knuth) + var q Digit; + { x0, x1, x2 := Digit(x[k]), Digit(x[k-1]), Digit(x[k-2]); + if x0 != y1 { + q = (x0<<W2 + x1)/y1; + } else { + q = B2 - 1; + } + for y2*q > (x0<<W2 + x1 - y1*q)<<W2 + x2 { + q-- + } + } + + // subtract y*q + c := Digit(0); + for j := 0; j < m; j++ { + t := c + Digit(x[i+j]) - Digit(y[j])*q; + c, x[i+j] = Digit(int64(t)>>W2), Digit2(t&M2); // requires arithmetic shift! + } + + // correct if trial digit was too large + if c + Digit(x[k]) != 0 { + // add y + c := Digit(0); + for j := 0; j < m; j++ { + t := c + Digit(x[i+j]) + Digit(y[j]); + c, x[i+j] = t >> W2, Digit2(t & M2) + } + assert(c + Digit(x[k]) == 0); + // correct trial digit + q--; + } + + x[k] = Digit2(q); + } + + // undo normalization for remainder + if f != 1 { + c := Div1(x[0 : m], x[0 : m], Digit2(f)); + assert(c == 0); + } + } + + return x[m : n+1], x[0 : m]; +} + + +func (x *Natural) Div(y *Natural) *Natural { + q, r := DivMod(Unpack(x), Unpack(y)); + return Pack(q); +} + + +func (x *Natural) Mod(y *Natural) *Natural { + q, r := DivMod(Unpack(x), Unpack(y)); + return Pack(r); +} + + +func (x *Natural) DivMod(y *Natural) (*Natural, *Natural) { + q, r := DivMod(Unpack(x), Unpack(y)); + return Pack(q), Pack(r); +} + + +func (x *Natural) Shl(s uint) *Natural { + n := uint(len(x)); + m := n + s/W; + z := new(Natural, m+1); + + z[m] = Shl(z[m-n : m], x, s%W); + + return Normalize(z); +} + + +func (x *Natural) Shr(s uint) *Natural { + n := uint(len(x)); + m := n - s/W; + if m > n { // check for underflow + m = 0; + } + z := new(Natural, m); + + Shr(z, x[n-m : n], s%W); + + return Normalize(z); +} + + +func (x *Natural) And(y *Natural) *Natural { + n := len(x); + m := len(y); + if n < m { + return y.And(x); + } + + z := new(Natural, n); + And(z[0 : m], x[0 : m], y); + Or1(z[m : n], x[m : n], 0); + + return Normalize(z); +} + + +func (x *Natural) Or(y *Natural) *Natural { + n := len(x); + m := len(y); + if n < m { + return y.Or(x); + } + + z := new(Natural, n); + Or(z[0 : m], x[0 : m], y); + Or1(z[m : n], x[m : n], 0); + + return Normalize(z); +} + + +func (x *Natural) Xor(y *Natural) *Natural { + n := len(x); + m := len(y); + if n < m { + return y.Xor(x); + } + + z := new(Natural, n); + Xor(z[0 : m], x[0 : m], y); + Or1(z[m : n], x[m : n], 0); + + return Normalize(z); +} + + +func (x *Natural) Cmp(y *Natural) int { + n := len(x); + m := len(y); + + if n != m || n == 0 { + return n - m; + } + + i := n - 1; + for i > 0 && x[i] == y[i] { i--; } + + d := 0; + switch { + case x[i] < y[i]: d = -1; + case x[i] > y[i]: d = 1; + } + + return d; +} + + +func Log2(x Digit) uint { + assert(x > 0); + n := uint(0); + for x > 0 { + x >>= 1; + n++; + } + return n - 1; +} + + +func (x *Natural) Log2() uint { + n := len(x); + if n > 0 { + return (uint(n) - 1)*W + Log2(x[n - 1]); + } + panic("Log2(0)"); +} + + +// Computes x = x div d in place (modifies x) for "small" d's. +// Returns updated x and x mod d. +func DivMod1(x *Natural, d Digit) (*Natural, Digit) { + assert(0 < d && IsSmall(d - 1)); + + c := Digit(0); + for i := len(x) - 1; i >= 0; i-- { + t := c<<W + x[i]; + c, x[i] = t%d, t/d; + } + + return Normalize(x), c; +} + + +func (x *Natural) String(base uint) string { + if len(x) == 0 { + return "0"; + } + + // allocate buffer for conversion + assert(2 <= base && base <= 16); + n := (x.Log2() + 1) / Log2(Digit(base)) + 1; // +1: round up + s := new([]byte, n); + + // don't destroy x + t := new(Natural, len(x)); + Or1(t, x, 0); // copy + + // convert + i := n; + for !t.IsZero() { + i--; + var d Digit; + t, d = DivMod1(t, Digit(base)); + s[i] = "0123456789abcdef"[d]; + }; + + return string(s[i : n]); +} + + +func HexValue(ch byte) uint { + d := uint(1 << LogH); + switch { + case '0' <= ch && ch <= '9': d = uint(ch - '0'); + case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10; + case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10; + } + return d; +} + + +// Computes x = x*d + c for "small" d's. +func MulAdd1(x *Natural, d, c Digit) *Natural { + assert(IsSmall(d-1) && IsSmall(c)); + n := len(x); + z := new(Natural, n + 1); + + for i := 0; i < n; i++ { + t := c + x[i]*d; + c, z[i] = t>>W, t&M; + } + z[n] = c; + + return Normalize(z); +} + + +// Determines base (octal, decimal, hexadecimal) if base == 0. +// Returns the number and base. +export func NatFromString(s string, base uint, slen *int) (*Natural, uint) { + // determine base if necessary + i, n := 0, len(s); + if base == 0 { + base = 10; + if n > 0 && s[0] == '0' { + if n > 1 && (s[1] == 'x' || s[1] == 'X') { + base, i = 16, 2; + } else { + base, i = 8, 1; + } + } + } + + // convert string + assert(2 <= base && base <= 16); + x := Nat(0); + for ; i < n; i++ { + d := HexValue(s[i]); + if d < base { + x = MulAdd1(x, Digit(base), Digit(d)); + } else { + break; + } + } + + // provide number of string bytes consumed if necessary + if slen != nil { + *slen = i; + } + + return x, base; +} + + +// Natural number functions + +func Pop1(x Digit) uint { + n := uint(0); + for x != 0 { + x &= x-1; + n++; + } + return n; +} + + +func (x *Natural) Pop() uint { + n := uint(0); + for i := len(x) - 1; i >= 0; i-- { + n += Pop1(x[i]); + } + return n; +} + + +func (x *Natural) Pow(n uint) *Natural { + z := Nat(1); + for n > 0 { + // z * x^n == x^n0 + if n&1 == 1 { + z = z.Mul(x); + } + x, n = x.Mul(x), n/2; + } + return z; +} + + +export func MulRange(a, b uint) *Natural { + switch { + case a > b: return Nat(1); + case a == b: return Nat(a); + case a + 1 == b: return Nat(a).Mul(Nat(b)); + } + m := (a + b)>>1; + assert(a <= m && m < b); + return MulRange(a, m).Mul(MulRange(m + 1, b)); +} + + +export func Fact(n uint) *Natural { + // Using MulRange() instead of the basic for-loop + // lead to faster factorial computation. + return MulRange(2, n); +} + + +func (x *Natural) Gcd(y *Natural) *Natural { + // Euclidean algorithm. + for !y.IsZero() { + x, y = y, x.Mod(y); + } + return x; +} + + +// ---------------------------------------------------------------------------- +// Integer numbers +// +// Integers are normalized if the mantissa is normalized and the sign is +// false for mant == 0. Use MakeInt to create normalized Integers. + +export type Integer struct { + sign bool; + mant *Natural; +} + + +// Creation + +export func MakeInt(sign bool, mant *Natural) *Integer { + if mant.IsZero() { + sign = false; // normalize + } + return &Integer{sign, mant}; +} + + +export func Int(x int) *Integer { + sign := false; + var ux uint; + if x < 0 { + sign = true; + if -x == x { + // smallest negative integer + t := ^0; + ux = ^(uint(t) >> 1); + } else { + ux = uint(-x); + } + } else { + ux = uint(x); + } + return MakeInt(sign, Nat(ux)); +} + + +// Predicates + +func (x *Integer) IsOdd() bool { + return x.mant.IsOdd(); +} + + +func (x *Integer) IsZero() bool { + return x.mant.IsZero(); +} + + +func (x *Integer) IsNeg() bool { + return x.sign && !x.mant.IsZero() +} + + +func (x *Integer) IsPos() bool { + return !x.sign && !x.mant.IsZero() +} + + +// Operations + +func (x *Integer) Neg() *Integer { + return MakeInt(!x.sign, x.mant); +} + + +func (x *Integer) Add(y *Integer) *Integer { + var z *Integer; + if x.sign == y.sign { + // x + y == x + y + // (-x) + (-y) == -(x + y) + z = MakeInt(x.sign, x.mant.Add(y.mant)); + } else { + // x + (-y) == x - y == -(y - x) + // (-x) + y == y - x == -(x - y) + if x.mant.Cmp(y.mant) >= 0 { + z = MakeInt(false, x.mant.Sub(y.mant)); + } else { + z = MakeInt(true, y.mant.Sub(x.mant)); + } + } + if x.sign { + z.sign = !z.sign; + } + return z; +} + + +func (x *Integer) Sub(y *Integer) *Integer { + var z *Integer; + if x.sign != y.sign { + // x - (-y) == x + y + // (-x) - y == -(x + y) + z = MakeInt(false, x.mant.Add(y.mant)); + } else { + // x - y == x - y == -(y - x) + // (-x) - (-y) == y - x == -(x - y) + if x.mant.Cmp(y.mant) >= 0 { + z = MakeInt(false, x.mant.Sub(y.mant)); + } else { + z = MakeInt(true, y.mant.Sub(x.mant)); + } + } + if x.sign { + z.sign = !z.sign; + } + return z; +} + + +func (x *Integer) Mul(y *Integer) *Integer { + // x * y == x * y + // x * (-y) == -(x * y) + // (-x) * y == -(x * y) + // (-x) * (-y) == x * y + return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant)); +} + + +func (x *Integer) MulNat(y *Natural) *Integer { + // x * y == x * y + // (-x) * y == -(x * y) + return MakeInt(x.sign, x.mant.Mul(y)); +} + + +// Quo and Rem implement T-division and modulus (like C99): +// +// q = x.Quo(y) = trunc(x/y) (truncation towards zero) +// r = x.Rem(y) = x - y*q +// +// ( Daan Leijen, "Division and Modulus for Computer Scientists". ) + +func (x *Integer) Quo(y *Integer) *Integer { + // x / y == x / y + // x / (-y) == -(x / y) + // (-x) / y == -(x / y) + // (-x) / (-y) == x / y + return MakeInt(x.sign != y.sign, x.mant.Div(y.mant)); +} + + +func (x *Integer) Rem(y *Integer) *Integer { + // x % y == x % y + // x % (-y) == x % y + // (-x) % y == -(x % y) + // (-x) % (-y) == -(x % y) + return MakeInt(x.sign, x.mant.Mod(y.mant)); +} + + +func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) { + q, r := x.mant.DivMod(y.mant); + return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r); +} + + +// Div and Mod implement Euclidian division and modulus: +// +// d = x.Div(y) +// m = x.Mod(y) with: 0 <= m < |d| and: y = x*d + m +// +// ( Raymond T. Boute, The Euclidian definition of the functions +// div and mod. "ACM Transactions on Programming Languages and +// Systems (TOPLAS)", 14(2):127-144, New York, NY, USA, 4/1992. +// ACM press. ) + + +func (x *Integer) Div(y *Integer) *Integer { + q, r := x.QuoRem(y); + if r.IsNeg() { + if y.IsPos() { + q = q.Sub(Int(1)); + } else { + q = q.Add(Int(1)); + } + } + return q; +} + + +func (x *Integer) Mod(y *Integer) *Integer { + r := x.Rem(y); + if r.IsNeg() { + if y.IsPos() { + r = r.Add(y); + } else { + r = r.Sub(y); + } + } + return r; +} + + +func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) { + q, r := x.QuoRem(y); + if r.IsNeg() { + if y.IsPos() { + q = q.Sub(Int(1)); + r = r.Add(y); + } else { + q = q.Add(Int(1)); + r = r.Sub(y); + } + } + return q, r; +} + + +func (x *Integer) Shl(s uint) *Integer { + return MakeInt(x.sign, x.mant.Shl(s)); +} + + +func (x *Integer) Shr(s uint) *Integer { + z := MakeInt(x.sign, x.mant.Shr(s)); + if x.IsNeg() { + panic("UNIMPLEMENTED"); + } + return z; +} + + +func (x *Integer) And(y *Integer) *Integer { + panic("UNIMPLEMENTED"); + return nil; +} + + +func (x *Integer) Or(y *Integer) *Integer { + panic("UNIMPLEMENTED"); + return nil; +} + + +func (x *Integer) Xor(y *Integer) *Integer { + panic("UNIMPLEMENTED"); + return nil; +} + + +func (x *Integer) Cmp(y *Integer) int { + // x cmp y == x cmp y + // x cmp (-y) == x + // (-x) cmp y == y + // (-x) cmp (-y) == -(x cmp y) + var r int; + switch { + case x.sign == y.sign: + r = x.mant.Cmp(y.mant); + if x.sign { + r = -r; + } + case x.sign: r = -1; + case y.sign: r = 1; + } + return r; +} + + +func (x *Integer) String(base uint) string { + if x.mant.IsZero() { + return "0"; + } + var s string; + if x.sign { + s = "-"; + } + return s + x.mant.String(base); +} + + +// Determines base (octal, decimal, hexadecimal) if base == 0. +// Returns the number and base. +export func IntFromString(s string, base uint, slen *int) (*Integer, uint) { + // get sign, if any + sign := false; + if len(s) > 0 && (s[0] == '-' || s[0] == '+') { + sign = s[0] == '-'; + s = s[1 : len(s)]; + } + + var mant *Natural; + mant, base = NatFromString(s, base, slen); + + // correct slen if necessary + if slen != nil && sign { + *slen++; + } + + return MakeInt(sign, mant), base; +} + + +// ---------------------------------------------------------------------------- +// Rational numbers + +export type Rational struct { + a *Integer; // numerator + b *Natural; // denominator +} + + +// Creation + +export func MakeRat(a *Integer, b *Natural) *Rational { + f := a.mant.Gcd(b); // f > 0 + if f.Cmp(Nat(1)) != 0 { + a = MakeInt(a.sign, a.mant.Div(f)); + b = b.Div(f); + } + return &Rational{a, b}; +} + + +export func Rat(a0 int, b0 int) *Rational { + a, b := Int(a0), Int(b0); + if b.sign { + a = a.Neg(); + } + return MakeRat(a, b.mant); +} + + +// Predicates + +func (x *Rational) IsZero() bool { + return x.a.IsZero(); +} + + +func (x *Rational) IsNeg() bool { + return x.a.IsNeg(); +} + + +func (x *Rational) IsPos() bool { + return x.a.IsPos(); +} + + +func (x *Rational) IsInt() bool { + return x.b.Cmp(Nat(1)) == 0; +} + + +// Operations + +func (x *Rational) Neg() *Rational { + return MakeRat(x.a.Neg(), x.b); +} + + +func (x *Rational) Add(y *Rational) *Rational { + return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b)); +} + + +func (x *Rational) Sub(y *Rational) *Rational { + return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b)); +} + + +func (x *Rational) Mul(y *Rational) *Rational { + return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b)); +} + + +func (x *Rational) Quo(y *Rational) *Rational { + a := x.a.MulNat(y.b); + b := y.a.MulNat(x.b); + if b.IsNeg() { + a = a.Neg(); + } + return MakeRat(a, b.mant); +} + + +func (x *Rational) Cmp(y *Rational) int { + return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b)); +} + + +func (x *Rational) String(base uint) string { + s := x.a.String(base); + if !x.IsInt() { + s += "/" + x.b.String(base); + } + return s; +} + + +// Determines base (octal, decimal, hexadecimal) if base == 0. +// Returns the number and base of the nominator. +export func RatFromString(s string, base uint, slen *int) (*Rational, uint) { + // read nominator + var alen, blen int; + a, abase := IntFromString(s, base, &alen); + b := Nat(1); + + // read denominator or fraction, if any + if alen < len(s) { + ch := s[alen]; + if ch == '/' { + alen++; + b, base = NatFromString(s[alen : len(s)], base, &blen); + } else if ch == '.' { + alen++; + b, base = NatFromString(s[alen : len(s)], abase, &blen); + assert(base == abase); + f := Nat(base).Pow(uint(blen)); + a = MakeInt(a.sign, a.mant.Mul(f).Add(b)); + b = f; + } + } + + // provide number of string bytes consumed if necessary + if slen != nil { + *slen = alen + blen; + } + + return MakeRat(a, b), abase; +} |