summaryrefslogtreecommitdiff
path: root/src/lib/datafmt/datafmt.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/datafmt/datafmt.go')
-rw-r--r--src/lib/datafmt/datafmt.go786
1 files changed, 786 insertions, 0 deletions
diff --git a/src/lib/datafmt/datafmt.go b/src/lib/datafmt/datafmt.go
new file mode 100644
index 000000000..baeb3ac41
--- /dev/null
+++ b/src/lib/datafmt/datafmt.go
@@ -0,0 +1,786 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/* The datafmt package implements syntax-directed, type-driven formatting
+ of arbitrary data structures. Formatting a data structure consists of
+ two phases: first, a parser reads a format specification and builds a
+ "compiled" format. Then, the format can be applied repeatedly to
+ arbitrary values. Applying a format to a value evaluates to a []byte
+ containing the formatted value bytes, or nil.
+
+ A format specification is a set of package declarations and format rules:
+
+ Format = [ Entry { ";" Entry } [ ";" ] ] .
+ Entry = PackageDecl | FormatRule .
+
+ (The syntax of a format specification is presented in the same EBNF
+ notation as used in the Go language specification. The syntax of white
+ space, comments, identifiers, and string literals is the same as in Go.)
+
+ A package declaration binds a package name (such as 'ast') to a
+ package import path (such as '"go/ast"'). Each package used (in
+ a type name, see below) must be declared once before use.
+
+ PackageDecl = PackageName ImportPath .
+ PackageName = identifier .
+ ImportPath = string .
+
+ A format rule binds a rule name to a format expression. A rule name
+ may be a type name or one of the special names 'default' or '/'.
+ A type name may be the name of a predeclared type (for example, 'int',
+ 'float32', etc.), the package-qualified name of a user-defined type
+ (for example, 'ast.MapType'), or an identifier indicating the structure
+ of unnamed composite types ('array', 'chan', 'func', 'interface', 'map',
+ or 'ptr'). Each rule must have a unique name; rules can be declared in
+ any order.
+
+ FormatRule = RuleName "=" Expression .
+ RuleName = TypeName | "default" | "/" .
+ TypeName = [ PackageName "." ] identifier .
+
+ To format a value, the value's type name is used to select the format rule
+ (there is an override mechanism, see below). The format expression of the
+ selected rule specifies how the value is formatted. Each format expression,
+ when applied to a value, evaluates to a byte sequence or nil.
+
+ In its most general form, a format expression is a list of alternatives,
+ each of which is a sequence of operands:
+
+ Expression = [ Sequence ] { "|" [ Sequence ] } .
+ Sequence = Operand { Operand } .
+
+ The formatted result produced by an expression is the result of the first
+ alternative sequence that evaluates to a non-nil result; if there is no
+ such alternative, the expression evaluates to nil. The result produced by
+ an operand sequence is the concatenation of the results of its operands.
+ If any operand in the sequence evaluates to nil, the entire sequence
+ evaluates to nil.
+
+ There are five kinds of operands:
+
+ Operand = Literal | Field | Group | Option | Repetition .
+
+ Literals evaluate to themselves, with two substitutions. First,
+ %-formats expand in the manner of fmt.Printf, with the current value
+ passed as the parameter. Second, the current indentation (see below)
+ is inserted after every newline character.
+
+ Literal = string .
+
+ This table shows string literals applied to the value 42 and the
+ corresponding formatted result:
+
+ "foo" foo
+ "%x" 2a
+ "x = %d" x = 42
+ "%#x = %d" 0x2a = 42
+
+ A field operand is a field name optionally followed by an alternate
+ rule name. The field name may be an identifier or one of the special
+ names ^ or *.
+
+ Field = FieldName [ ":" RuleName ] .
+ FieldName = identifier | "^" | "*" .
+
+ If the field name is an identifier, the current value must be a struct,
+ and there must be a field with that name in the struct. The same lookup
+ rules apply as in the Go language (for instance, the name of an anonymous
+ field is the unqualified type name). The field name denotes the field
+ value in the struct. If the field is not found, formatting is aborted
+ and an error message is returned. (TODO consider changing the semantics
+ such that if a field is not found, it evaluates to nil).
+
+ The special name '^' denotes the current value. (TODO see if ^ can
+ change to @ or be eliminated).
+
+ The meaning of the special name '*' depends on the type of the current
+ value:
+
+ array, slice types array, slice element (inside {} only, see below)
+ interfaces value stored in interface
+ pointers value pointed to by pointer
+
+ (Implementation restriction: channel, function and map types are not
+ supported due to missing reflection support).
+
+ Fields are evaluated as follows: If the field value is nil, or an array
+ or slice element does not exist, the result is nil (see below for details
+ on array/slice elements). If the value is not nil the field value is
+ formatted (recursively) using the rule corresponding to its type name,
+ or the alternate rule name, if given.
+
+ The following example shows a complete format specification for a
+ struct 'myPackage.Point'. Assume the package
+
+ package myPackage // in directory myDir/myPackage
+ type Point struct {
+ name string;
+ x, y int;
+ }
+
+ Applying the format specification
+
+ myPackage "myDir/myPackage";
+ int = "%d";
+ hexInt = "0x%x";
+ string = "---%s---";
+ myPackage.Point = name "{" x ", " y:hexInt "}";
+
+ to the value myPackage.Point{"foo", 3, 15} results in
+
+ ---foo---{3, 0xf}
+
+ Finally, an operand may be a grouped, optional, or repeated expression.
+ A grouped expression ("group") groups a more complex expression (body)
+ so that it can be used in place of a single operand:
+
+ Group = "(" [ Indentation ">>" ] Body ")" .
+ Indentation = Expression .
+ Body = Expression .
+
+ A group body may be prefixed by an indentation expression followed by '>>'.
+ The indentation expression is applied to the current value like any other
+ expression and the result, if not nil, is appended to the current indentation
+ during the evaluation of the body (see also formatting state, below).
+
+ An optional expression ("option") is enclosed in '[]' brackets.
+
+ Option = "[" Body "]" .
+
+ An option evaluates to its body, except that if the body evaluates to nil,
+ the option expression evaluates to an empty []byte. Thus an option's purpose
+ is to protect the expression containing the option from a nil operand.
+
+ A repeated expression ("repetition") is enclosed in '{}' braces.
+
+ Repetition = "{" Body [ "/" Separator ] "}" .
+ Separator = Expression .
+
+ A repeated expression is evaluated as follows: The body is evaluated
+ repeatedly and its results are concatenated until the body evaluates
+ to nil. The result of the repetition is the (possibly empty) concatenation,
+ but it is never nil. An implicit index is supplied for the evaluation of
+ the body: that index is used to address elements of arrays or slices. If
+ the corresponding elements do not exist, the field denoting the element
+ evaluates to nil (which in turn may terminate the repetition).
+
+ The body of a repetition may be followed by a '/' and a "separator"
+ expression. If the separator is present, it is invoked between repetitions
+ of the body.
+
+ The following example shows a complete format specification for formatting
+ a slice of unnamed type. Applying the specification
+
+ int = "%b";
+ array = { * / ", " }; // array is the type name for an unnamed slice
+
+ to the value '[]int{2, 3, 5, 7}' results in
+
+ 10, 11, 101, 111
+
+ Default rule: If a format rule named 'default' is present, it is used for
+ formatting a value if no other rule was found. A common default rule is
+
+ default = "%v"
+
+ to provide default formatting for basic types without having to specify
+ a specific rule for each basic type.
+
+ Global separator rule: If a format rule named '/' is present, it is
+ invoked with the current value between literals. If the separator
+ expression evaluates to nil, it is ignored.
+
+ For instance, a global separator rule may be used to punctuate a sequence
+ of values with commas. The rules:
+
+ default = "%v";
+ / = ", ";
+
+ will format an argument list by printing each one in its default format,
+ separated by a comma and a space.
+*/
+package datafmt
+
+import (
+ "container/vector";
+ "fmt";
+ "go/token";
+ "io";
+ "os";
+ "reflect";
+ "runtime";
+ "strconv";
+ "strings";
+)
+
+
+// ----------------------------------------------------------------------------
+// Format representation
+
+type State struct
+
+// Custom formatters implement the Formatter function type.
+// A formatter is invoked with the current formatting state, the
+// value to format, and the rule name under which the formatter
+// was installed (the same formatter function may be installed
+// under different names). The formatter may access the current state
+// to guide formatting and use State.Write to append to the state's
+// output.
+//
+// A formatter must return a boolean value indicating if it evaluated
+// to a non-nil value (true), or a nil value (false).
+//
+type Formatter func(state *State, value interface{}, ruleName string) bool
+
+
+// A FormatterMap is a set of custom formatters.
+// It maps a rule name to a formatter function.
+//
+type FormatterMap map [string] Formatter;
+
+
+// A parsed format expression is built from the following nodes.
+//
+type (
+ expr interface {};
+
+ alternatives []expr; // x | y | z
+
+ sequence []expr; // x y z
+
+ literal [][]byte; // a list of string segments, possibly starting with '%'
+
+ field struct {
+ fieldName string; // including "^", "*"
+ ruleName string; // "" if no rule name specified
+ };
+
+ group struct {
+ indent, body expr; // (indent >> body)
+ };
+
+ option struct {
+ body expr; // [body]
+ };
+
+ repetition struct {
+ body, separator expr; // {body / separator}
+ };
+
+ custom struct {
+ ruleName string;
+ fun Formatter
+ };
+)
+
+
+// A Format is the result of parsing a format specification.
+// The format may be applied repeatedly to format values.
+//
+type Format map [string] expr;
+
+
+// ----------------------------------------------------------------------------
+// Formatting
+
+// An application-specific environment may be provided to Format.Apply;
+// the environment is available inside custom formatters via State.Env().
+// Environments must implement copying; the Copy method must return an
+// complete copy of the receiver. This is necessary so that the formatter
+// can save and restore an environment (in case of an absent expression).
+//
+// If the Environment doesn't change during formatting (this is under
+// control of the custom formatters), the Copy function can simply return
+// the receiver, and thus can be very light-weight.
+//
+type Environment interface {
+ Copy() Environment
+}
+
+
+// State represents the current formatting state.
+// It is provided as argument to custom formatters.
+//
+type State struct {
+ fmt Format; // format in use
+ env Environment; // user-supplied environment
+ errors chan os.Error; // not chan *Error (errors <- nil would be wrong!)
+ hasOutput bool; // true after the first literal has been written
+ indent io.ByteBuffer; // current indentation
+ output io.ByteBuffer; // format output
+ linePos token.Position; // position of line beginning (Column == 0)
+ default_ expr; // possibly nil
+ separator expr; // possibly nil
+}
+
+
+func newState(fmt Format, env Environment, errors chan os.Error) *State {
+ s := new(State);
+ s.fmt = fmt;
+ s.env = env;
+ s.errors = errors;
+ s.linePos = token.Position{Line: 1};
+
+ // if we have a default rule, cache it's expression for fast access
+ if x, found := fmt["default"]; found {
+ s.default_ = x;
+ }
+
+ // if we have a global separator rule, cache it's expression for fast access
+ if x, found := fmt["/"]; found {
+ s.separator = x;
+ }
+
+ return s;
+}
+
+
+// Env returns the environment passed to Format.Apply.
+func (s *State) Env() interface{} {
+ return s.env;
+}
+
+
+// LinePos returns the position of the current line beginning
+// in the state's output buffer. Line numbers start at 1.
+//
+func (s *State) LinePos() token.Position {
+ return s.linePos;
+}
+
+
+// Pos returns the position of the next byte to be written to the
+// output buffer. Line numbers start at 1.
+//
+func (s *State) Pos() token.Position {
+ offs := s.output.Len();
+ return token.Position{Line: s.linePos.Line, Column: offs - s.linePos.Offset, Offset: offs};
+}
+
+
+// Write writes data to the output buffer, inserting the indentation
+// string after each newline. It cannot return an error.
+//
+func (s *State) Write(data []byte) (int, os.Error) {
+ n := 0;
+ i0 := 0;
+ for i, ch := range data {
+ if ch == '\n' {
+ // write text segment and indentation
+ n1, _ := s.output.Write(data[i0 : i+1]);
+ n2, _ := s.output.Write(s.indent.Data());
+ n += n1 + n2;
+ i0 = i + 1;
+ s.linePos.Offset = s.output.Len();
+ s.linePos.Line++;
+ }
+ }
+ n3, _ := s.output.Write(data[i0 : len(data)]);
+ return n + n3, nil;
+}
+
+
+type checkpoint struct {
+ env Environment;
+ hasOutput bool;
+ outputLen int;
+ linePos token.Position;
+}
+
+
+func (s *State) save() checkpoint {
+ saved := checkpoint{nil, s.hasOutput, s.output.Len(), s.linePos};
+ if s.env != nil {
+ saved.env = s.env.Copy();
+ }
+ return saved;
+}
+
+
+func (s *State) restore(m checkpoint) {
+ s.env = m.env;
+ s.output.Truncate(m.outputLen);
+}
+
+
+func (s *State) error(msg string) {
+ s.errors <- os.NewError(msg);
+ runtime.Goexit();
+}
+
+
+// getField searches in val, which must be a struct, for a field
+// with the given name. It returns the value and the embedded depth
+// where it was found.
+//
+func getField(val reflect.Value, fieldname string) (reflect.Value, int) {
+ // do we have a struct in the first place?
+ if val.Kind() != reflect.StructKind {
+ return nil, 0;
+ }
+
+ sval, styp := val.(reflect.StructValue), val.Type().(reflect.StructType);
+
+ // look for field at the top level
+ for i := 0; i < styp.Len(); i++ {
+ name, typ, tag, offset := styp.Field(i);
+ if name == fieldname || name == "" && strings.HasSuffix(typ.Name(), "." + fieldname) /* anonymous field */ {
+ return sval.Field(i), 0;
+ }
+ }
+
+ // look for field in anonymous fields
+ var field reflect.Value;
+ level := 1000; // infinity (no struct has that many levels)
+ for i := 0; i < styp.Len(); i++ {
+ name, typ, tag, offset := styp.Field(i);
+ if name == "" {
+ f, l := getField(sval.Field(i), fieldname);
+ // keep the most shallow field
+ if f != nil {
+ switch {
+ case l < level:
+ field, level = f, l;
+ case l == level:
+ // more than one field at the same level,
+ // possibly an error unless there is a more
+ // shallow field found later
+ field = nil;
+ }
+ }
+ }
+ }
+
+ return field, level + 1;
+}
+
+
+// TODO At the moment, unnamed types are simply mapped to the default
+// names below. For instance, all unnamed arrays are mapped to
+// 'array' which is not really sufficient. Eventually one may want
+// to be able to specify rules for say an unnamed slice of T.
+//
+var defaultNames = map[int]string {
+ reflect.ArrayKind: "array",
+ reflect.BoolKind: "bool",
+ reflect.ChanKind: "chan",
+ reflect.DotDotDotKind: "ellipsis",
+ reflect.FloatKind: "float",
+ reflect.Float32Kind: "float32",
+ reflect.Float64Kind: "float64",
+ reflect.FuncKind: "func",
+ reflect.IntKind: "int",
+ reflect.Int16Kind: "int16",
+ reflect.Int32Kind: "int32",
+ reflect.Int64Kind: "int64",
+ reflect.Int8Kind: "int8",
+ reflect.InterfaceKind: "interface",
+ reflect.MapKind: "map",
+ reflect.PtrKind: "ptr",
+ reflect.StringKind: "string",
+ reflect.StructKind: "struct",
+ reflect.UintKind: "uint",
+ reflect.Uint16Kind: "uint16",
+ reflect.Uint32Kind: "uint32",
+ reflect.Uint64Kind: "uint64",
+ reflect.Uint8Kind: "uint8",
+ reflect.UintptrKind: "uintptr",
+}
+
+
+func typename(value reflect.Value) string {
+ name := value.Type().Name();
+ if name == "" {
+ if defaultName, found := defaultNames[value.Kind()]; found {
+ name = defaultName;
+ }
+ }
+ return name;
+}
+
+
+func (s *State) getFormat(name string) expr {
+ if fexpr, found := s.fmt[name]; found {
+ return fexpr;
+ }
+
+ if s.default_ != nil {
+ return s.default_;
+ }
+
+ s.error(fmt.Sprintf("no format rule for type: '%s'", name));
+ return nil;
+}
+
+
+// eval applies a format expression fexpr to a value. If the expression
+// evaluates internally to a non-nil []byte, that slice is appended to
+// the state's output buffer and eval returns true. Otherwise, eval
+// returns false and the state remains unchanged.
+//
+func (s *State) eval(fexpr expr, value reflect.Value, index int) bool {
+ // an empty format expression always evaluates
+ // to a non-nil (but empty) []byte
+ if fexpr == nil {
+ return true;
+ }
+
+ switch t := fexpr.(type) {
+ case alternatives:
+ // append the result of the first alternative that evaluates to
+ // a non-nil []byte to the state's output
+ mark := s.save();
+ for _, x := range t {
+ if s.eval(x, value, index) {
+ return true;
+ }
+ s.restore(mark);
+ }
+ return false;
+
+ case sequence:
+ // append the result of all operands to the state's output
+ // unless a nil result is encountered
+ mark := s.save();
+ for _, x := range t {
+ if !s.eval(x, value, index) {
+ s.restore(mark);
+ return false;
+ }
+ }
+ return true;
+
+ case literal:
+ // write separator, if any
+ if s.hasOutput {
+ // not the first literal
+ if s.separator != nil {
+ sep := s.separator; // save current separator
+ s.separator = nil; // and disable it (avoid recursion)
+ mark := s.save();
+ if !s.eval(sep, value, index) {
+ s.restore(mark);
+ }
+ s.separator = sep; // enable it again
+ }
+ }
+ s.hasOutput = true;
+ // write literal segments
+ for _, lit := range t {
+ if lit[0] == '%' && len(lit) > 1 {
+ // segment contains a %-format at the beginning
+ if lit[1] == '%' {
+ // "%%" is printed as a single "%"
+ s.Write(lit[1 : len(lit)]);
+ } else {
+ // use s instead of s.output to get indentation right
+ fmt.Fprintf(s, string(lit), value.Interface());
+ }
+ } else {
+ // segment contains no %-formats
+ s.Write(lit);
+ }
+ }
+ return true; // a literal never evaluates to nil
+
+ case *field:
+ // determine field value
+ switch t.fieldName {
+ case "^":
+ // field value is current value
+
+ case "*":
+ // indirection: operation is type-specific
+ switch v := value.(type) {
+ case reflect.ArrayValue:
+ if v.IsNil() || v.Len() <= index {
+ return false;
+ }
+ value = v.Elem(index);
+
+ case reflect.MapValue:
+ s.error("reflection support for maps incomplete");
+
+ case reflect.PtrValue:
+ if v.IsNil() {
+ return false;
+ }
+ value = v.Sub();
+
+ case reflect.InterfaceValue:
+ if v.IsNil() {
+ return false;
+ }
+ value = v.Value();
+
+ case reflect.ChanValue:
+ s.error("reflection support for chans incomplete");
+
+ case reflect.FuncValue:
+ s.error("reflection support for funcs incomplete");
+
+ default:
+ s.error(fmt.Sprintf("error: * does not apply to `%s`", value.Type().Name()));
+ }
+
+ default:
+ // value is value of named field
+ field, _ := getField(value, t.fieldName);
+ if field == nil {
+ // TODO consider just returning false in this case
+ s.error(fmt.Sprintf("error: no field `%s` in `%s`", t.fieldName, value.Type().Name()));
+ }
+ value = field;
+ }
+
+ // determine rule
+ ruleName := t.ruleName;
+ if ruleName == "" {
+ // no alternate rule name, value type determines rule
+ ruleName = typename(value)
+ }
+ fexpr = s.getFormat(ruleName);
+
+ mark := s.save();
+ if !s.eval(fexpr, value, index) {
+ s.restore(mark);
+ return false;
+ }
+ return true;
+
+ case *group:
+ // remember current indentation
+ indentLen := s.indent.Len();
+
+ // update current indentation
+ mark := s.save();
+ s.eval(t.indent, value, index);
+ // if the indentation evaluates to nil, the state's output buffer
+ // didn't change - either way it's ok to append the difference to
+ // the current identation
+ s.indent.Write(s.output.Data()[mark.outputLen : s.output.Len()]);
+ s.restore(mark);
+
+ // format group body
+ mark = s.save();
+ b := true;
+ if !s.eval(t.body, value, index) {
+ s.restore(mark);
+ b = false;
+ }
+
+ // reset indentation
+ s.indent.Truncate(indentLen);
+ return b;
+
+ case *option:
+ // evaluate the body and append the result to the state's output
+ // buffer unless the result is nil
+ mark := s.save();
+ if !s.eval(t.body, value, 0) { // TODO is 0 index correct?
+ s.restore(mark);
+ }
+ return true; // an option never evaluates to nil
+
+ case *repetition:
+ // evaluate the body and append the result to the state's output
+ // buffer until a result is nil
+ for i := 0; ; i++ {
+ mark := s.save();
+ // write separator, if any
+ if i > 0 && t.separator != nil {
+ // nil result from separator is ignored
+ mark := s.save();
+ if !s.eval(t.separator, value, i) {
+ s.restore(mark);
+ }
+ }
+ if !s.eval(t.body, value, i) {
+ s.restore(mark);
+ break;
+ }
+ }
+ return true; // a repetition never evaluates to nil
+
+ case *custom:
+ // invoke the custom formatter to obtain the result
+ mark := s.save();
+ if !t.fun(s, value.Interface(), t.ruleName) {
+ s.restore(mark);
+ return false;
+ }
+ return true;
+ }
+
+ panic("unreachable");
+ return false;
+}
+
+
+// Eval formats each argument according to the format
+// f and returns the resulting []byte and os.Error. If
+// an error occured, the []byte contains the partially
+// formatted result. An environment env may be passed
+// in which is available in custom formatters through
+// the state parameter.
+//
+func (f Format) Eval(env Environment, args ...) ([]byte, os.Error) {
+ errors := make(chan os.Error);
+ s := newState(f, env, errors);
+
+ go func() {
+ value := reflect.NewValue(args).(reflect.StructValue);
+ for i := 0; i < value.Len(); i++ {
+ fld := value.Field(i);
+ mark := s.save();
+ if !s.eval(s.getFormat(typename(fld)), fld, 0) { // TODO is 0 index correct?
+ s.restore(mark);
+ }
+ }
+ errors <- nil; // no errors
+ }();
+
+ return s.output.Data(), <- errors;
+}
+
+
+// ----------------------------------------------------------------------------
+// Convenience functions
+
+// Fprint formats each argument according to the format f
+// and writes to w. The result is the total number of bytes
+// written and an os.Error, if any.
+//
+func (f Format) Fprint(w io.Writer, env Environment, args ...) (int, os.Error) {
+ data, err := f.Eval(env, args);
+ if err != nil {
+ // TODO should we print partial result in case of error?
+ return 0, err;
+ }
+ return w.Write(data);
+}
+
+
+// Print formats each argument according to the format f
+// and writes to standard output. The result is the total
+// number of bytes written and an os.Error, if any.
+//
+func (f Format) Print(args ...) (int, os.Error) {
+ return f.Fprint(os.Stdout, nil, args);
+}
+
+
+// Sprint formats each argument according to the format f
+// and returns the resulting string. If an error occurs
+// during formatting, the result string contains the
+// partially formatted result followed by an error message.
+//
+func (f Format) Sprint(args ...) string {
+ var buf io.ByteBuffer;
+ n, err := f.Fprint(&buf, nil, args);
+ if err != nil {
+ fmt.Fprintf(&buf, "--- Sprint(%s) failed: %v", fmt.Sprint(args), err);
+ }
+ return string(buf.Data());
+}