diff options
Diffstat (limited to 'src/pkg/big/int.go')
-rwxr-xr-x | src/pkg/big/int.go | 896 |
1 files changed, 0 insertions, 896 deletions
diff --git a/src/pkg/big/int.go b/src/pkg/big/int.go deleted file mode 100755 index 0948919cd..000000000 --- a/src/pkg/big/int.go +++ /dev/null @@ -1,896 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This file implements signed multi-precision integers. - -package big - -import ( - "fmt" - "io" - "os" - "rand" - "strings" -) - -// An Int represents a signed multi-precision integer. -// The zero value for an Int represents the value 0. -type Int struct { - neg bool // sign - abs nat // absolute value of the integer -} - - -var intOne = &Int{false, natOne} - - -// Sign returns: -// -// -1 if x < 0 -// 0 if x == 0 -// +1 if x > 0 -// -func (x *Int) Sign() int { - if len(x.abs) == 0 { - return 0 - } - if x.neg { - return -1 - } - return 1 -} - - -// SetInt64 sets z to x and returns z. -func (z *Int) SetInt64(x int64) *Int { - neg := false - if x < 0 { - neg = true - x = -x - } - z.abs = z.abs.setUint64(uint64(x)) - z.neg = neg - return z -} - - -// NewInt allocates and returns a new Int set to x. -func NewInt(x int64) *Int { - return new(Int).SetInt64(x) -} - - -// Set sets z to x and returns z. -func (z *Int) Set(x *Int) *Int { - z.abs = z.abs.set(x.abs) - z.neg = x.neg - return z -} - - -// Abs sets z to |x| (the absolute value of x) and returns z. -func (z *Int) Abs(x *Int) *Int { - z.abs = z.abs.set(x.abs) - z.neg = false - return z -} - - -// Neg sets z to -x and returns z. -func (z *Int) Neg(x *Int) *Int { - z.abs = z.abs.set(x.abs) - z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign - return z -} - - -// Add sets z to the sum x+y and returns z. -func (z *Int) Add(x, y *Int) *Int { - neg := x.neg - if x.neg == y.neg { - // x + y == x + y - // (-x) + (-y) == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x + (-y) == x - y == -(y - x) - // (-x) + y == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - - -// Sub sets z to the difference x-y and returns z. -func (z *Int) Sub(x, y *Int) *Int { - neg := x.neg - if x.neg != y.neg { - // x - (-y) == x + y - // (-x) - y == -(x + y) - z.abs = z.abs.add(x.abs, y.abs) - } else { - // x - y == x - y == -(y - x) - // (-x) - (-y) == y - x == -(x - y) - if x.abs.cmp(y.abs) >= 0 { - z.abs = z.abs.sub(x.abs, y.abs) - } else { - neg = !neg - z.abs = z.abs.sub(y.abs, x.abs) - } - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - return z -} - - -// Mul sets z to the product x*y and returns z. -func (z *Int) Mul(x, y *Int) *Int { - // x * y == x * y - // x * (-y) == -(x * y) - // (-x) * y == -(x * y) - // (-x) * (-y) == x * y - z.abs = z.abs.mul(x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - - -// MulRange sets z to the product of all integers -// in the range [a, b] inclusively and returns z. -// If a > b (empty range), the result is 1. -func (z *Int) MulRange(a, b int64) *Int { - switch { - case a > b: - return z.SetInt64(1) // empty range - case a <= 0 && b >= 0: - return z.SetInt64(0) // range includes 0 - } - // a <= b && (b < 0 || a > 0) - - neg := false - if a < 0 { - neg = (b-a)&1 == 0 - a, b = -b, -a - } - - z.abs = z.abs.mulRange(uint64(a), uint64(b)) - z.neg = neg - return z -} - - -// Binomial sets z to the binomial coefficient of (n, k) and returns z. -func (z *Int) Binomial(n, k int64) *Int { - var a, b Int - a.MulRange(n-k+1, n) - b.MulRange(1, k) - return z.Quo(&a, &b) -} - - -// Quo sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// See QuoRem for more details. -func (z *Int) Quo(x, y *Int) *Int { - z.abs, _ = z.abs.div(nil, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign - return z -} - - -// Rem sets z to the remainder x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// See QuoRem for more details. -func (z *Int) Rem(x, y *Int) *Int { - _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) - z.neg = len(z.abs) > 0 && x.neg // 0 has no sign - return z -} - - -// QuoRem sets z to the quotient x/y and r to the remainder x%y -// and returns the pair (z, r) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// QuoRem implements T-division and modulus (like Go): -// -// q = x/y with the result truncated to zero -// r = x - y*q -// -// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) -// -func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { - z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) - z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign - return z, r -} - - -// Div sets z to the quotient x/y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// See DivMod for more details. -func (z *Int) Div(x, y *Int) *Int { - y_neg := y.neg // z may be an alias for y - var r Int - z.QuoRem(x, y, &r) - if r.neg { - if y_neg { - z.Add(z, intOne) - } else { - z.Sub(z, intOne) - } - } - return z -} - - -// Mod sets z to the modulus x%y for y != 0 and returns z. -// If y == 0, a division-by-zero run-time panic occurs. -// See DivMod for more details. -func (z *Int) Mod(x, y *Int) *Int { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - var q Int - q.QuoRem(x, y, z) - if z.neg { - if y0.neg { - z.Sub(z, y0) - } else { - z.Add(z, y0) - } - } - return z -} - - -// DivMod sets z to the quotient x div y and m to the modulus x mod y -// and returns the pair (z, m) for y != 0. -// If y == 0, a division-by-zero run-time panic occurs. -// -// DivMod implements Euclidean division and modulus (unlike Go): -// -// q = x div y such that -// m = x - y*q with 0 <= m < |q| -// -// (See Raymond T. Boute, ``The Euclidean definition of the functions -// div and mod''. ACM Transactions on Programming Languages and -// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. -// ACM press.) -// -func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { - y0 := y // save y - if z == y || alias(z.abs, y.abs) { - y0 = new(Int).Set(y) - } - z.QuoRem(x, y, m) - if m.neg { - if y0.neg { - z.Add(z, intOne) - m.Sub(m, y0) - } else { - z.Sub(z, intOne) - m.Add(m, y0) - } - } - return z, m -} - - -// Cmp compares x and y and returns: -// -// -1 if x < y -// 0 if x == y -// +1 if x > y -// -func (x *Int) Cmp(y *Int) (r int) { - // x cmp y == x cmp y - // x cmp (-y) == x - // (-x) cmp y == y - // (-x) cmp (-y) == -(x cmp y) - switch { - case x.neg == y.neg: - r = x.abs.cmp(y.abs) - if x.neg { - r = -r - } - case x.neg: - r = -1 - default: - r = 1 - } - return -} - - -func (x *Int) String() string { - switch { - case x == nil: - return "<nil>" - case x.neg: - return "-" + x.abs.decimalString() - } - return x.abs.decimalString() -} - - -func charset(ch int) string { - switch ch { - case 'b': - return lowercaseDigits[0:2] - case 'o': - return lowercaseDigits[0:8] - case 'd', 's', 'v': - return lowercaseDigits[0:10] - case 'x': - return lowercaseDigits[0:16] - case 'X': - return uppercaseDigits[0:16] - } - return "" // unknown format -} - - -// Format is a support routine for fmt.Formatter. It accepts -// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x' -// (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -// -func (x *Int) Format(s fmt.State, ch int) { - cs := charset(ch) - - // special cases - switch { - case cs == "": - // unknown format - fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String()) - return - case x == nil: - fmt.Fprint(s, "<nil>") - return - } - - // determine format - format := "%s" - if s.Flag('#') { - switch ch { - case 'o': - format = "0%s" - case 'x': - format = "0x%s" - case 'X': - format = "0X%s" - } - } - t := fmt.Sprintf(format, x.abs.string(cs)) - - // insert spaces in hexadecimal formats if needed - if len(t) > 0 && s.Flag(' ') && (ch == 'x' || ch == 'X') { - spaces := (len(t)+1)/2 - 1 - spaced := make([]byte, len(t)+spaces) - var i, j int - spaced[i] = t[j] - i++ - j++ - if len(t)&1 == 0 { - spaced[i] = t[j] - i++ - j++ - } - for j < len(t) { - spaced[i] = ' ' - i++ - spaced[i] = t[j] - i++ - j++ - spaced[i] = t[j] - i++ - j++ - } - t = string(spaced) - } - - // determine sign prefix - prefix := "" - switch { - case x.neg: - prefix = "-" - case s.Flag('+'): - prefix = "+" - case s.Flag(' ') && ch != 'x' && ch != 'X': - prefix = " " - } - - // fill to minimum width and prepend sign prefix - if width, ok := s.Width(); ok && len(t)+len(prefix) < width { - if s.Flag('0') { - t = fmt.Sprintf("%s%0*d%s", prefix, width-len(t)-len(prefix), 0, t) - } else { - if s.Flag('-') { - width = -width - } - t = fmt.Sprintf("%*s", width, prefix+t) - } - } else if prefix != "" { - t = prefix + t - } - - fmt.Fprint(s, t) -} - - -// scan sets z to the integer value corresponding to the longest possible prefix -// read from r representing a signed integer number in a given conversion base. -// It returns z, the actual conversion base used, and an error, if any. In the -// error case, the value of z is undefined. The syntax follows the syntax of -// integer literals in Go. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, os.Error) { - // determine sign - ch, _, err := r.ReadRune() - if err != nil { - return z, 0, err - } - neg := false - switch ch { - case '-': - neg = true - case '+': // nothing to do - default: - r.UnreadRune() - } - - // determine mantissa - z.abs, base, err = z.abs.scan(r, base) - if err != nil { - return z, base, err - } - z.neg = len(z.abs) > 0 && neg // 0 has no sign - - return z, base, nil -} - - -// Scan is a support routine for fmt.Scanner; it sets z to the value of -// the scanned number. It accepts the formats 'b' (binary), 'o' (octal), -// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal). -func (z *Int) Scan(s fmt.ScanState, ch int) os.Error { - s.SkipSpace() // skip leading space characters - base := 0 - switch ch { - case 'b': - base = 2 - case 'o': - base = 8 - case 'd': - base = 10 - case 'x', 'X': - base = 16 - case 's', 'v': - // let scan determine the base - default: - return os.NewError("Int.Scan: invalid verb") - } - _, _, err := z.scan(s, base) - return err -} - - -// Int64 returns the int64 representation of x. -// If x cannot be represented in an int64, the result is undefined. -func (x *Int) Int64() int64 { - if len(x.abs) == 0 { - return 0 - } - v := int64(x.abs[0]) - if _W == 32 && len(x.abs) > 1 { - v |= int64(x.abs[1]) << 32 - } - if x.neg { - v = -v - } - return v -} - - -// SetString sets z to the value of s, interpreted in the given base, -// and returns z and a boolean indicating success. If SetString fails, -// the value of z is undefined. -// -// The base argument must be 0 or a value from 2 through MaxBase. If the base -// is 0, the string prefix determines the actual conversion base. A prefix of -// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a -// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. -// -func (z *Int) SetString(s string, base int) (*Int, bool) { - r := strings.NewReader(s) - _, _, err := z.scan(r, base) - if err != nil { - return z, false - } - _, _, err = r.ReadRune() - return z, err == os.EOF // err == os.EOF => scan consumed all of s -} - - -// SetBytes interprets buf as the bytes of a big-endian unsigned -// integer, sets z to that value, and returns z. -func (z *Int) SetBytes(buf []byte) *Int { - z.abs = z.abs.setBytes(buf) - z.neg = false - return z -} - - -// Bytes returns the absolute value of z as a big-endian byte slice. -func (z *Int) Bytes() []byte { - buf := make([]byte, len(z.abs)*_S) - return buf[z.abs.bytes(buf):] -} - - -// BitLen returns the length of the absolute value of z in bits. -// The bit length of 0 is 0. -func (z *Int) BitLen() int { - return z.abs.bitLen() -} - - -// Exp sets z = x**y mod m. If m is nil, z = x**y. -// See Knuth, volume 2, section 4.6.3. -func (z *Int) Exp(x, y, m *Int) *Int { - if y.neg || len(y.abs) == 0 { - neg := x.neg - z.SetInt64(1) - z.neg = neg - return z - } - - var mWords nat - if m != nil { - mWords = m.abs - } - - z.abs = z.abs.expNN(x.abs, y.abs, mWords) - z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign - return z -} - - -// GcdInt sets d to the greatest common divisor of a and b, which must be -// positive numbers. -// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y. -// If either a or b is not positive, GcdInt sets d = x = y = 0. -func GcdInt(d, x, y, a, b *Int) { - if a.neg || b.neg { - d.SetInt64(0) - if x != nil { - x.SetInt64(0) - } - if y != nil { - y.SetInt64(0) - } - return - } - - A := new(Int).Set(a) - B := new(Int).Set(b) - - X := new(Int) - Y := new(Int).SetInt64(1) - - lastX := new(Int).SetInt64(1) - lastY := new(Int) - - q := new(Int) - temp := new(Int) - - for len(B.abs) > 0 { - r := new(Int) - q, r = q.QuoRem(A, B, r) - - A, B = B, r - - temp.Set(X) - X.Mul(X, q) - X.neg = !X.neg - X.Add(X, lastX) - lastX.Set(temp) - - temp.Set(Y) - Y.Mul(Y, q) - Y.neg = !Y.neg - Y.Add(Y, lastY) - lastY.Set(temp) - } - - if x != nil { - *x = *lastX - } - - if y != nil { - *y = *lastY - } - - *d = *A -} - - -// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime. -// If it returns true, z is prime with probability 1 - 1/4^n. -// If it returns false, z is not prime. -func ProbablyPrime(z *Int, n int) bool { - return !z.neg && z.abs.probablyPrime(n) -} - - -// Rand sets z to a pseudo-random number in [0, n) and returns z. -func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { - z.neg = false - if n.neg == true || len(n.abs) == 0 { - z.abs = nil - return z - } - z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) - return z -} - - -// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where -// p is a prime) and returns z. -func (z *Int) ModInverse(g, p *Int) *Int { - var d Int - GcdInt(&d, z, nil, g, p) - // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking - // that modulo p results in g*x = 1, therefore x is the inverse element. - if z.neg { - z.Add(z, p) - } - return z -} - - -// Lsh sets z = x << n and returns z. -func (z *Int) Lsh(x *Int, n uint) *Int { - z.abs = z.abs.shl(x.abs, n) - z.neg = x.neg - return z -} - - -// Rsh sets z = x >> n and returns z. -func (z *Int) Rsh(x *Int, n uint) *Int { - if x.neg { - // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) - t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 - t = t.shr(t, n) - z.abs = t.add(t, natOne) - z.neg = true // z cannot be zero if x is negative - return z - } - - z.abs = z.abs.shr(x.abs, n) - z.neg = false - return z -} - - -// Bit returns the value of the i'th bit of z. That is, it -// returns (z>>i)&1. The bit index i must be >= 0. -func (z *Int) Bit(i int) uint { - if i < 0 { - panic("negative bit index") - } - if z.neg { - t := nat{}.sub(z.abs, natOne) - return t.bit(uint(i)) ^ 1 - } - - return z.abs.bit(uint(i)) -} - - -// SetBit sets the i'th bit of z to bit and returns z. -// That is, if bit is 1 SetBit sets z = x | (1 << i); -// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1, -// SetBit will panic. -func (z *Int) SetBit(x *Int, i int, b uint) *Int { - if i < 0 { - panic("negative bit index") - } - if x.neg { - t := z.abs.sub(x.abs, natOne) - t = t.setBit(t, uint(i), b^1) - z.abs = t.add(t, natOne) - z.neg = len(z.abs) > 0 - return z - } - z.abs = z.abs.setBit(x.abs, uint(i), b) - z.neg = false - return z -} - - -// And sets z = x & y and returns z. -func (z *Int) And(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) - x1 := nat{}.sub(x.abs, natOne) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x & y == x & y - z.abs = z.abs.and(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // & is symmetric - } - - // x & (-y) == x & ^(y-1) == x &^ (y-1) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.andNot(x.abs, y1) - z.neg = false - return z -} - - -// AndNot sets z = x &^ y and returns z. -func (z *Int) AndNot(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) - x1 := nat{}.sub(x.abs, natOne) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.andNot(y1, x1) - z.neg = false - return z - } - - // x &^ y == x &^ y - z.abs = z.abs.andNot(x.abs, y.abs) - z.neg = false - return z - } - - if x.neg { - // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) - x1 := nat{}.sub(x.abs, natOne) - z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) - z.neg = true // z cannot be zero if x is negative and y is positive - return z - } - - // x &^ (-y) == x &^ ^(y-1) == x & (y-1) - y1 := nat{}.add(y.abs, natOne) - z.abs = z.abs.and(x.abs, y1) - z.neg = false - return z -} - - -// Or sets z = x | y and returns z. -func (z *Int) Or(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) - x1 := nat{}.sub(x.abs, natOne) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.and(x1, y1), natOne) - z.neg = true // z cannot be zero if x and y are negative - return z - } - - // x | y == x | y - z.abs = z.abs.or(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // | is symmetric - } - - // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) - z.neg = true // z cannot be zero if one of x or y is negative - return z -} - - -// Xor sets z = x ^ y and returns z. -func (z *Int) Xor(x, y *Int) *Int { - if x.neg == y.neg { - if x.neg { - // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) - x1 := nat{}.sub(x.abs, natOne) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.xor(x1, y1) - z.neg = false - return z - } - - // x ^ y == x ^ y - z.abs = z.abs.xor(x.abs, y.abs) - z.neg = false - return z - } - - // x.neg != y.neg - if x.neg { - x, y = y, x // ^ is symmetric - } - - // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) - y1 := nat{}.sub(y.abs, natOne) - z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) - z.neg = true // z cannot be zero if only one of x or y is negative - return z -} - - -// Not sets z = ^x and returns z. -func (z *Int) Not(x *Int) *Int { - if x.neg { - // ^(-x) == ^(^(x-1)) == x-1 - z.abs = z.abs.sub(x.abs, natOne) - z.neg = false - return z - } - - // ^x == -x-1 == -(x+1) - z.abs = z.abs.add(x.abs, natOne) - z.neg = true // z cannot be zero if x is positive - return z -} - - -// Gob codec version. Permits backward-compatible changes to the encoding. -const intGobVersion byte = 1 - -// GobEncode implements the gob.GobEncoder interface. -func (z *Int) GobEncode() ([]byte, os.Error) { - buf := make([]byte, 1+len(z.abs)*_S) // extra byte for version and sign bit - i := z.abs.bytes(buf) - 1 // i >= 0 - b := intGobVersion << 1 // make space for sign bit - if z.neg { - b |= 1 - } - buf[i] = b - return buf[i:], nil -} - - -// GobDecode implements the gob.GobDecoder interface. -func (z *Int) GobDecode(buf []byte) os.Error { - if len(buf) == 0 { - return os.NewError("Int.GobDecode: no data") - } - b := buf[0] - if b>>1 != intGobVersion { - return os.NewError(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1)) - } - z.neg = b&1 != 0 - z.abs = z.abs.setBytes(buf[1:]) - return nil -} |