summaryrefslogtreecommitdiff
path: root/src/pkg/big/int.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/big/int.go')
-rwxr-xr-xsrc/pkg/big/int.go896
1 files changed, 0 insertions, 896 deletions
diff --git a/src/pkg/big/int.go b/src/pkg/big/int.go
deleted file mode 100755
index 0948919cd..000000000
--- a/src/pkg/big/int.go
+++ /dev/null
@@ -1,896 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file implements signed multi-precision integers.
-
-package big
-
-import (
- "fmt"
- "io"
- "os"
- "rand"
- "strings"
-)
-
-// An Int represents a signed multi-precision integer.
-// The zero value for an Int represents the value 0.
-type Int struct {
- neg bool // sign
- abs nat // absolute value of the integer
-}
-
-
-var intOne = &Int{false, natOne}
-
-
-// Sign returns:
-//
-// -1 if x < 0
-// 0 if x == 0
-// +1 if x > 0
-//
-func (x *Int) Sign() int {
- if len(x.abs) == 0 {
- return 0
- }
- if x.neg {
- return -1
- }
- return 1
-}
-
-
-// SetInt64 sets z to x and returns z.
-func (z *Int) SetInt64(x int64) *Int {
- neg := false
- if x < 0 {
- neg = true
- x = -x
- }
- z.abs = z.abs.setUint64(uint64(x))
- z.neg = neg
- return z
-}
-
-
-// NewInt allocates and returns a new Int set to x.
-func NewInt(x int64) *Int {
- return new(Int).SetInt64(x)
-}
-
-
-// Set sets z to x and returns z.
-func (z *Int) Set(x *Int) *Int {
- z.abs = z.abs.set(x.abs)
- z.neg = x.neg
- return z
-}
-
-
-// Abs sets z to |x| (the absolute value of x) and returns z.
-func (z *Int) Abs(x *Int) *Int {
- z.abs = z.abs.set(x.abs)
- z.neg = false
- return z
-}
-
-
-// Neg sets z to -x and returns z.
-func (z *Int) Neg(x *Int) *Int {
- z.abs = z.abs.set(x.abs)
- z.neg = len(z.abs) > 0 && !x.neg // 0 has no sign
- return z
-}
-
-
-// Add sets z to the sum x+y and returns z.
-func (z *Int) Add(x, y *Int) *Int {
- neg := x.neg
- if x.neg == y.neg {
- // x + y == x + y
- // (-x) + (-y) == -(x + y)
- z.abs = z.abs.add(x.abs, y.abs)
- } else {
- // x + (-y) == x - y == -(y - x)
- // (-x) + y == y - x == -(x - y)
- if x.abs.cmp(y.abs) >= 0 {
- z.abs = z.abs.sub(x.abs, y.abs)
- } else {
- neg = !neg
- z.abs = z.abs.sub(y.abs, x.abs)
- }
- }
- z.neg = len(z.abs) > 0 && neg // 0 has no sign
- return z
-}
-
-
-// Sub sets z to the difference x-y and returns z.
-func (z *Int) Sub(x, y *Int) *Int {
- neg := x.neg
- if x.neg != y.neg {
- // x - (-y) == x + y
- // (-x) - y == -(x + y)
- z.abs = z.abs.add(x.abs, y.abs)
- } else {
- // x - y == x - y == -(y - x)
- // (-x) - (-y) == y - x == -(x - y)
- if x.abs.cmp(y.abs) >= 0 {
- z.abs = z.abs.sub(x.abs, y.abs)
- } else {
- neg = !neg
- z.abs = z.abs.sub(y.abs, x.abs)
- }
- }
- z.neg = len(z.abs) > 0 && neg // 0 has no sign
- return z
-}
-
-
-// Mul sets z to the product x*y and returns z.
-func (z *Int) Mul(x, y *Int) *Int {
- // x * y == x * y
- // x * (-y) == -(x * y)
- // (-x) * y == -(x * y)
- // (-x) * (-y) == x * y
- z.abs = z.abs.mul(x.abs, y.abs)
- z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
- return z
-}
-
-
-// MulRange sets z to the product of all integers
-// in the range [a, b] inclusively and returns z.
-// If a > b (empty range), the result is 1.
-func (z *Int) MulRange(a, b int64) *Int {
- switch {
- case a > b:
- return z.SetInt64(1) // empty range
- case a <= 0 && b >= 0:
- return z.SetInt64(0) // range includes 0
- }
- // a <= b && (b < 0 || a > 0)
-
- neg := false
- if a < 0 {
- neg = (b-a)&1 == 0
- a, b = -b, -a
- }
-
- z.abs = z.abs.mulRange(uint64(a), uint64(b))
- z.neg = neg
- return z
-}
-
-
-// Binomial sets z to the binomial coefficient of (n, k) and returns z.
-func (z *Int) Binomial(n, k int64) *Int {
- var a, b Int
- a.MulRange(n-k+1, n)
- b.MulRange(1, k)
- return z.Quo(&a, &b)
-}
-
-
-// Quo sets z to the quotient x/y for y != 0 and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-// See QuoRem for more details.
-func (z *Int) Quo(x, y *Int) *Int {
- z.abs, _ = z.abs.div(nil, x.abs, y.abs)
- z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
- return z
-}
-
-
-// Rem sets z to the remainder x%y for y != 0 and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-// See QuoRem for more details.
-func (z *Int) Rem(x, y *Int) *Int {
- _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
- z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
- return z
-}
-
-
-// QuoRem sets z to the quotient x/y and r to the remainder x%y
-// and returns the pair (z, r) for y != 0.
-// If y == 0, a division-by-zero run-time panic occurs.
-//
-// QuoRem implements T-division and modulus (like Go):
-//
-// q = x/y with the result truncated to zero
-// r = x - y*q
-//
-// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
-//
-func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
- z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
- z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
- return z, r
-}
-
-
-// Div sets z to the quotient x/y for y != 0 and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-// See DivMod for more details.
-func (z *Int) Div(x, y *Int) *Int {
- y_neg := y.neg // z may be an alias for y
- var r Int
- z.QuoRem(x, y, &r)
- if r.neg {
- if y_neg {
- z.Add(z, intOne)
- } else {
- z.Sub(z, intOne)
- }
- }
- return z
-}
-
-
-// Mod sets z to the modulus x%y for y != 0 and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-// See DivMod for more details.
-func (z *Int) Mod(x, y *Int) *Int {
- y0 := y // save y
- if z == y || alias(z.abs, y.abs) {
- y0 = new(Int).Set(y)
- }
- var q Int
- q.QuoRem(x, y, z)
- if z.neg {
- if y0.neg {
- z.Sub(z, y0)
- } else {
- z.Add(z, y0)
- }
- }
- return z
-}
-
-
-// DivMod sets z to the quotient x div y and m to the modulus x mod y
-// and returns the pair (z, m) for y != 0.
-// If y == 0, a division-by-zero run-time panic occurs.
-//
-// DivMod implements Euclidean division and modulus (unlike Go):
-//
-// q = x div y such that
-// m = x - y*q with 0 <= m < |q|
-//
-// (See Raymond T. Boute, ``The Euclidean definition of the functions
-// div and mod''. ACM Transactions on Programming Languages and
-// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
-// ACM press.)
-//
-func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
- y0 := y // save y
- if z == y || alias(z.abs, y.abs) {
- y0 = new(Int).Set(y)
- }
- z.QuoRem(x, y, m)
- if m.neg {
- if y0.neg {
- z.Add(z, intOne)
- m.Sub(m, y0)
- } else {
- z.Sub(z, intOne)
- m.Add(m, y0)
- }
- }
- return z, m
-}
-
-
-// Cmp compares x and y and returns:
-//
-// -1 if x < y
-// 0 if x == y
-// +1 if x > y
-//
-func (x *Int) Cmp(y *Int) (r int) {
- // x cmp y == x cmp y
- // x cmp (-y) == x
- // (-x) cmp y == y
- // (-x) cmp (-y) == -(x cmp y)
- switch {
- case x.neg == y.neg:
- r = x.abs.cmp(y.abs)
- if x.neg {
- r = -r
- }
- case x.neg:
- r = -1
- default:
- r = 1
- }
- return
-}
-
-
-func (x *Int) String() string {
- switch {
- case x == nil:
- return "<nil>"
- case x.neg:
- return "-" + x.abs.decimalString()
- }
- return x.abs.decimalString()
-}
-
-
-func charset(ch int) string {
- switch ch {
- case 'b':
- return lowercaseDigits[0:2]
- case 'o':
- return lowercaseDigits[0:8]
- case 'd', 's', 'v':
- return lowercaseDigits[0:10]
- case 'x':
- return lowercaseDigits[0:16]
- case 'X':
- return uppercaseDigits[0:16]
- }
- return "" // unknown format
-}
-
-
-// Format is a support routine for fmt.Formatter. It accepts
-// the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
-// (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
-//
-func (x *Int) Format(s fmt.State, ch int) {
- cs := charset(ch)
-
- // special cases
- switch {
- case cs == "":
- // unknown format
- fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
- return
- case x == nil:
- fmt.Fprint(s, "<nil>")
- return
- }
-
- // determine format
- format := "%s"
- if s.Flag('#') {
- switch ch {
- case 'o':
- format = "0%s"
- case 'x':
- format = "0x%s"
- case 'X':
- format = "0X%s"
- }
- }
- t := fmt.Sprintf(format, x.abs.string(cs))
-
- // insert spaces in hexadecimal formats if needed
- if len(t) > 0 && s.Flag(' ') && (ch == 'x' || ch == 'X') {
- spaces := (len(t)+1)/2 - 1
- spaced := make([]byte, len(t)+spaces)
- var i, j int
- spaced[i] = t[j]
- i++
- j++
- if len(t)&1 == 0 {
- spaced[i] = t[j]
- i++
- j++
- }
- for j < len(t) {
- spaced[i] = ' '
- i++
- spaced[i] = t[j]
- i++
- j++
- spaced[i] = t[j]
- i++
- j++
- }
- t = string(spaced)
- }
-
- // determine sign prefix
- prefix := ""
- switch {
- case x.neg:
- prefix = "-"
- case s.Flag('+'):
- prefix = "+"
- case s.Flag(' ') && ch != 'x' && ch != 'X':
- prefix = " "
- }
-
- // fill to minimum width and prepend sign prefix
- if width, ok := s.Width(); ok && len(t)+len(prefix) < width {
- if s.Flag('0') {
- t = fmt.Sprintf("%s%0*d%s", prefix, width-len(t)-len(prefix), 0, t)
- } else {
- if s.Flag('-') {
- width = -width
- }
- t = fmt.Sprintf("%*s", width, prefix+t)
- }
- } else if prefix != "" {
- t = prefix + t
- }
-
- fmt.Fprint(s, t)
-}
-
-
-// scan sets z to the integer value corresponding to the longest possible prefix
-// read from r representing a signed integer number in a given conversion base.
-// It returns z, the actual conversion base used, and an error, if any. In the
-// error case, the value of z is undefined. The syntax follows the syntax of
-// integer literals in Go.
-//
-// The base argument must be 0 or a value from 2 through MaxBase. If the base
-// is 0, the string prefix determines the actual conversion base. A prefix of
-// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
-// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
-//
-func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, os.Error) {
- // determine sign
- ch, _, err := r.ReadRune()
- if err != nil {
- return z, 0, err
- }
- neg := false
- switch ch {
- case '-':
- neg = true
- case '+': // nothing to do
- default:
- r.UnreadRune()
- }
-
- // determine mantissa
- z.abs, base, err = z.abs.scan(r, base)
- if err != nil {
- return z, base, err
- }
- z.neg = len(z.abs) > 0 && neg // 0 has no sign
-
- return z, base, nil
-}
-
-
-// Scan is a support routine for fmt.Scanner; it sets z to the value of
-// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
-// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
-func (z *Int) Scan(s fmt.ScanState, ch int) os.Error {
- s.SkipSpace() // skip leading space characters
- base := 0
- switch ch {
- case 'b':
- base = 2
- case 'o':
- base = 8
- case 'd':
- base = 10
- case 'x', 'X':
- base = 16
- case 's', 'v':
- // let scan determine the base
- default:
- return os.NewError("Int.Scan: invalid verb")
- }
- _, _, err := z.scan(s, base)
- return err
-}
-
-
-// Int64 returns the int64 representation of x.
-// If x cannot be represented in an int64, the result is undefined.
-func (x *Int) Int64() int64 {
- if len(x.abs) == 0 {
- return 0
- }
- v := int64(x.abs[0])
- if _W == 32 && len(x.abs) > 1 {
- v |= int64(x.abs[1]) << 32
- }
- if x.neg {
- v = -v
- }
- return v
-}
-
-
-// SetString sets z to the value of s, interpreted in the given base,
-// and returns z and a boolean indicating success. If SetString fails,
-// the value of z is undefined.
-//
-// The base argument must be 0 or a value from 2 through MaxBase. If the base
-// is 0, the string prefix determines the actual conversion base. A prefix of
-// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
-// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
-//
-func (z *Int) SetString(s string, base int) (*Int, bool) {
- r := strings.NewReader(s)
- _, _, err := z.scan(r, base)
- if err != nil {
- return z, false
- }
- _, _, err = r.ReadRune()
- return z, err == os.EOF // err == os.EOF => scan consumed all of s
-}
-
-
-// SetBytes interprets buf as the bytes of a big-endian unsigned
-// integer, sets z to that value, and returns z.
-func (z *Int) SetBytes(buf []byte) *Int {
- z.abs = z.abs.setBytes(buf)
- z.neg = false
- return z
-}
-
-
-// Bytes returns the absolute value of z as a big-endian byte slice.
-func (z *Int) Bytes() []byte {
- buf := make([]byte, len(z.abs)*_S)
- return buf[z.abs.bytes(buf):]
-}
-
-
-// BitLen returns the length of the absolute value of z in bits.
-// The bit length of 0 is 0.
-func (z *Int) BitLen() int {
- return z.abs.bitLen()
-}
-
-
-// Exp sets z = x**y mod m. If m is nil, z = x**y.
-// See Knuth, volume 2, section 4.6.3.
-func (z *Int) Exp(x, y, m *Int) *Int {
- if y.neg || len(y.abs) == 0 {
- neg := x.neg
- z.SetInt64(1)
- z.neg = neg
- return z
- }
-
- var mWords nat
- if m != nil {
- mWords = m.abs
- }
-
- z.abs = z.abs.expNN(x.abs, y.abs, mWords)
- z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
- return z
-}
-
-
-// GcdInt sets d to the greatest common divisor of a and b, which must be
-// positive numbers.
-// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y.
-// If either a or b is not positive, GcdInt sets d = x = y = 0.
-func GcdInt(d, x, y, a, b *Int) {
- if a.neg || b.neg {
- d.SetInt64(0)
- if x != nil {
- x.SetInt64(0)
- }
- if y != nil {
- y.SetInt64(0)
- }
- return
- }
-
- A := new(Int).Set(a)
- B := new(Int).Set(b)
-
- X := new(Int)
- Y := new(Int).SetInt64(1)
-
- lastX := new(Int).SetInt64(1)
- lastY := new(Int)
-
- q := new(Int)
- temp := new(Int)
-
- for len(B.abs) > 0 {
- r := new(Int)
- q, r = q.QuoRem(A, B, r)
-
- A, B = B, r
-
- temp.Set(X)
- X.Mul(X, q)
- X.neg = !X.neg
- X.Add(X, lastX)
- lastX.Set(temp)
-
- temp.Set(Y)
- Y.Mul(Y, q)
- Y.neg = !Y.neg
- Y.Add(Y, lastY)
- lastY.Set(temp)
- }
-
- if x != nil {
- *x = *lastX
- }
-
- if y != nil {
- *y = *lastY
- }
-
- *d = *A
-}
-
-
-// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
-// If it returns true, z is prime with probability 1 - 1/4^n.
-// If it returns false, z is not prime.
-func ProbablyPrime(z *Int, n int) bool {
- return !z.neg && z.abs.probablyPrime(n)
-}
-
-
-// Rand sets z to a pseudo-random number in [0, n) and returns z.
-func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
- z.neg = false
- if n.neg == true || len(n.abs) == 0 {
- z.abs = nil
- return z
- }
- z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
- return z
-}
-
-
-// ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
-// p is a prime) and returns z.
-func (z *Int) ModInverse(g, p *Int) *Int {
- var d Int
- GcdInt(&d, z, nil, g, p)
- // x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
- // that modulo p results in g*x = 1, therefore x is the inverse element.
- if z.neg {
- z.Add(z, p)
- }
- return z
-}
-
-
-// Lsh sets z = x << n and returns z.
-func (z *Int) Lsh(x *Int, n uint) *Int {
- z.abs = z.abs.shl(x.abs, n)
- z.neg = x.neg
- return z
-}
-
-
-// Rsh sets z = x >> n and returns z.
-func (z *Int) Rsh(x *Int, n uint) *Int {
- if x.neg {
- // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
- t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
- t = t.shr(t, n)
- z.abs = t.add(t, natOne)
- z.neg = true // z cannot be zero if x is negative
- return z
- }
-
- z.abs = z.abs.shr(x.abs, n)
- z.neg = false
- return z
-}
-
-
-// Bit returns the value of the i'th bit of z. That is, it
-// returns (z>>i)&1. The bit index i must be >= 0.
-func (z *Int) Bit(i int) uint {
- if i < 0 {
- panic("negative bit index")
- }
- if z.neg {
- t := nat{}.sub(z.abs, natOne)
- return t.bit(uint(i)) ^ 1
- }
-
- return z.abs.bit(uint(i))
-}
-
-
-// SetBit sets the i'th bit of z to bit and returns z.
-// That is, if bit is 1 SetBit sets z = x | (1 << i);
-// if bit is 0 it sets z = x &^ (1 << i). If bit is not 0 or 1,
-// SetBit will panic.
-func (z *Int) SetBit(x *Int, i int, b uint) *Int {
- if i < 0 {
- panic("negative bit index")
- }
- if x.neg {
- t := z.abs.sub(x.abs, natOne)
- t = t.setBit(t, uint(i), b^1)
- z.abs = t.add(t, natOne)
- z.neg = len(z.abs) > 0
- return z
- }
- z.abs = z.abs.setBit(x.abs, uint(i), b)
- z.neg = false
- return z
-}
-
-
-// And sets z = x & y and returns z.
-func (z *Int) And(x, y *Int) *Int {
- if x.neg == y.neg {
- if x.neg {
- // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
- x1 := nat{}.sub(x.abs, natOne)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
- z.neg = true // z cannot be zero if x and y are negative
- return z
- }
-
- // x & y == x & y
- z.abs = z.abs.and(x.abs, y.abs)
- z.neg = false
- return z
- }
-
- // x.neg != y.neg
- if x.neg {
- x, y = y, x // & is symmetric
- }
-
- // x & (-y) == x & ^(y-1) == x &^ (y-1)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.andNot(x.abs, y1)
- z.neg = false
- return z
-}
-
-
-// AndNot sets z = x &^ y and returns z.
-func (z *Int) AndNot(x, y *Int) *Int {
- if x.neg == y.neg {
- if x.neg {
- // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
- x1 := nat{}.sub(x.abs, natOne)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.andNot(y1, x1)
- z.neg = false
- return z
- }
-
- // x &^ y == x &^ y
- z.abs = z.abs.andNot(x.abs, y.abs)
- z.neg = false
- return z
- }
-
- if x.neg {
- // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
- x1 := nat{}.sub(x.abs, natOne)
- z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
- z.neg = true // z cannot be zero if x is negative and y is positive
- return z
- }
-
- // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
- y1 := nat{}.add(y.abs, natOne)
- z.abs = z.abs.and(x.abs, y1)
- z.neg = false
- return z
-}
-
-
-// Or sets z = x | y and returns z.
-func (z *Int) Or(x, y *Int) *Int {
- if x.neg == y.neg {
- if x.neg {
- // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
- x1 := nat{}.sub(x.abs, natOne)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
- z.neg = true // z cannot be zero if x and y are negative
- return z
- }
-
- // x | y == x | y
- z.abs = z.abs.or(x.abs, y.abs)
- z.neg = false
- return z
- }
-
- // x.neg != y.neg
- if x.neg {
- x, y = y, x // | is symmetric
- }
-
- // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
- z.neg = true // z cannot be zero if one of x or y is negative
- return z
-}
-
-
-// Xor sets z = x ^ y and returns z.
-func (z *Int) Xor(x, y *Int) *Int {
- if x.neg == y.neg {
- if x.neg {
- // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
- x1 := nat{}.sub(x.abs, natOne)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.xor(x1, y1)
- z.neg = false
- return z
- }
-
- // x ^ y == x ^ y
- z.abs = z.abs.xor(x.abs, y.abs)
- z.neg = false
- return z
- }
-
- // x.neg != y.neg
- if x.neg {
- x, y = y, x // ^ is symmetric
- }
-
- // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
- y1 := nat{}.sub(y.abs, natOne)
- z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
- z.neg = true // z cannot be zero if only one of x or y is negative
- return z
-}
-
-
-// Not sets z = ^x and returns z.
-func (z *Int) Not(x *Int) *Int {
- if x.neg {
- // ^(-x) == ^(^(x-1)) == x-1
- z.abs = z.abs.sub(x.abs, natOne)
- z.neg = false
- return z
- }
-
- // ^x == -x-1 == -(x+1)
- z.abs = z.abs.add(x.abs, natOne)
- z.neg = true // z cannot be zero if x is positive
- return z
-}
-
-
-// Gob codec version. Permits backward-compatible changes to the encoding.
-const intGobVersion byte = 1
-
-// GobEncode implements the gob.GobEncoder interface.
-func (z *Int) GobEncode() ([]byte, os.Error) {
- buf := make([]byte, 1+len(z.abs)*_S) // extra byte for version and sign bit
- i := z.abs.bytes(buf) - 1 // i >= 0
- b := intGobVersion << 1 // make space for sign bit
- if z.neg {
- b |= 1
- }
- buf[i] = b
- return buf[i:], nil
-}
-
-
-// GobDecode implements the gob.GobDecoder interface.
-func (z *Int) GobDecode(buf []byte) os.Error {
- if len(buf) == 0 {
- return os.NewError("Int.GobDecode: no data")
- }
- b := buf[0]
- if b>>1 != intGobVersion {
- return os.NewError(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
- }
- z.neg = b&1 != 0
- z.abs = z.abs.setBytes(buf[1:])
- return nil
-}