summaryrefslogtreecommitdiff
path: root/src/pkg/big/rat.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/big/rat.go')
-rw-r--r--src/pkg/big/rat.go399
1 files changed, 0 insertions, 399 deletions
diff --git a/src/pkg/big/rat.go b/src/pkg/big/rat.go
deleted file mode 100644
index b61cbb966..000000000
--- a/src/pkg/big/rat.go
+++ /dev/null
@@ -1,399 +0,0 @@
-// Copyright 2010 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file implements multi-precision rational numbers.
-
-package big
-
-import (
- "encoding/binary"
- "fmt"
- "os"
- "strings"
-)
-
-// A Rat represents a quotient a/b of arbitrary precision. The zero value for
-// a Rat, 0/0, is not a legal Rat.
-type Rat struct {
- a Int
- b nat
-}
-
-
-// NewRat creates a new Rat with numerator a and denominator b.
-func NewRat(a, b int64) *Rat {
- return new(Rat).SetFrac64(a, b)
-}
-
-
-// SetFrac sets z to a/b and returns z.
-func (z *Rat) SetFrac(a, b *Int) *Rat {
- z.a.Set(a)
- z.a.neg = a.neg != b.neg
- z.b = z.b.set(b.abs)
- return z.norm()
-}
-
-
-// SetFrac64 sets z to a/b and returns z.
-func (z *Rat) SetFrac64(a, b int64) *Rat {
- z.a.SetInt64(a)
- if b < 0 {
- b = -b
- z.a.neg = !z.a.neg
- }
- z.b = z.b.setUint64(uint64(b))
- return z.norm()
-}
-
-
-// SetInt sets z to x (by making a copy of x) and returns z.
-func (z *Rat) SetInt(x *Int) *Rat {
- z.a.Set(x)
- z.b = z.b.setWord(1)
- return z
-}
-
-
-// SetInt64 sets z to x and returns z.
-func (z *Rat) SetInt64(x int64) *Rat {
- z.a.SetInt64(x)
- z.b = z.b.setWord(1)
- return z
-}
-
-
-// Sign returns:
-//
-// -1 if x < 0
-// 0 if x == 0
-// +1 if x > 0
-//
-func (x *Rat) Sign() int {
- return x.a.Sign()
-}
-
-
-// IsInt returns true if the denominator of x is 1.
-func (x *Rat) IsInt() bool {
- return len(x.b) == 1 && x.b[0] == 1
-}
-
-
-// Num returns the numerator of z; it may be <= 0.
-// The result is a reference to z's numerator; it
-// may change if a new value is assigned to z.
-func (z *Rat) Num() *Int {
- return &z.a
-}
-
-
-// Denom returns the denominator of z; it is always > 0.
-// The result is a reference to z's denominator; it
-// may change if a new value is assigned to z.
-func (z *Rat) Denom() *Int {
- return &Int{false, z.b}
-}
-
-
-func gcd(x, y nat) nat {
- // Euclidean algorithm.
- var a, b nat
- a = a.set(x)
- b = b.set(y)
- for len(b) != 0 {
- var q, r nat
- _, r = q.div(r, a, b)
- a = b
- b = r
- }
- return a
-}
-
-
-func (z *Rat) norm() *Rat {
- f := gcd(z.a.abs, z.b)
- if len(z.a.abs) == 0 {
- // z == 0
- z.a.neg = false // normalize sign
- z.b = z.b.setWord(1)
- return z
- }
- if f.cmp(natOne) != 0 {
- z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
- z.b, _ = z.b.div(nil, z.b, f)
- }
- return z
-}
-
-
-func mulNat(x *Int, y nat) *Int {
- var z Int
- z.abs = z.abs.mul(x.abs, y)
- z.neg = len(z.abs) > 0 && x.neg
- return &z
-}
-
-
-// Cmp compares x and y and returns:
-//
-// -1 if x < y
-// 0 if x == y
-// +1 if x > y
-//
-func (x *Rat) Cmp(y *Rat) (r int) {
- return mulNat(&x.a, y.b).Cmp(mulNat(&y.a, x.b))
-}
-
-
-// Abs sets z to |x| (the absolute value of x) and returns z.
-func (z *Rat) Abs(x *Rat) *Rat {
- z.a.Abs(&x.a)
- z.b = z.b.set(x.b)
- return z
-}
-
-
-// Add sets z to the sum x+y and returns z.
-func (z *Rat) Add(x, y *Rat) *Rat {
- a1 := mulNat(&x.a, y.b)
- a2 := mulNat(&y.a, x.b)
- z.a.Add(a1, a2)
- z.b = z.b.mul(x.b, y.b)
- return z.norm()
-}
-
-
-// Sub sets z to the difference x-y and returns z.
-func (z *Rat) Sub(x, y *Rat) *Rat {
- a1 := mulNat(&x.a, y.b)
- a2 := mulNat(&y.a, x.b)
- z.a.Sub(a1, a2)
- z.b = z.b.mul(x.b, y.b)
- return z.norm()
-}
-
-
-// Mul sets z to the product x*y and returns z.
-func (z *Rat) Mul(x, y *Rat) *Rat {
- z.a.Mul(&x.a, &y.a)
- z.b = z.b.mul(x.b, y.b)
- return z.norm()
-}
-
-
-// Quo sets z to the quotient x/y and returns z.
-// If y == 0, a division-by-zero run-time panic occurs.
-func (z *Rat) Quo(x, y *Rat) *Rat {
- if len(y.a.abs) == 0 {
- panic("division by zero")
- }
- a := mulNat(&x.a, y.b)
- b := mulNat(&y.a, x.b)
- z.a.abs = a.abs
- z.b = b.abs
- z.a.neg = a.neg != b.neg
- return z.norm()
-}
-
-
-// Neg sets z to -x (by making a copy of x if necessary) and returns z.
-func (z *Rat) Neg(x *Rat) *Rat {
- z.a.Neg(&x.a)
- z.b = z.b.set(x.b)
- return z
-}
-
-
-// Set sets z to x (by making a copy of x if necessary) and returns z.
-func (z *Rat) Set(x *Rat) *Rat {
- z.a.Set(&x.a)
- z.b = z.b.set(x.b)
- return z
-}
-
-
-func ratTok(ch int) bool {
- return strings.IndexRune("+-/0123456789.eE", ch) >= 0
-}
-
-
-// Scan is a support routine for fmt.Scanner. It accepts the formats
-// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
-func (z *Rat) Scan(s fmt.ScanState, ch int) os.Error {
- tok, err := s.Token(true, ratTok)
- if err != nil {
- return err
- }
- if strings.IndexRune("efgEFGv", ch) < 0 {
- return os.NewError("Rat.Scan: invalid verb")
- }
- if _, ok := z.SetString(string(tok)); !ok {
- return os.NewError("Rat.Scan: invalid syntax")
- }
- return nil
-}
-
-
-// SetString sets z to the value of s and returns z and a boolean indicating
-// success. s can be given as a fraction "a/b" or as a floating-point number
-// optionally followed by an exponent. If the operation failed, the value of z
-// is undefined.
-func (z *Rat) SetString(s string) (*Rat, bool) {
- if len(s) == 0 {
- return z, false
- }
-
- // check for a quotient
- sep := strings.Index(s, "/")
- if sep >= 0 {
- if _, ok := z.a.SetString(s[0:sep], 10); !ok {
- return z, false
- }
- s = s[sep+1:]
- var err os.Error
- if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
- return z, false
- }
- return z.norm(), true
- }
-
- // check for a decimal point
- sep = strings.Index(s, ".")
- // check for an exponent
- e := strings.IndexAny(s, "eE")
- var exp Int
- if e >= 0 {
- if e < sep {
- // The E must come after the decimal point.
- return z, false
- }
- if _, ok := exp.SetString(s[e+1:], 10); !ok {
- return z, false
- }
- s = s[0:e]
- }
- if sep >= 0 {
- s = s[0:sep] + s[sep+1:]
- exp.Sub(&exp, NewInt(int64(len(s)-sep)))
- }
-
- if _, ok := z.a.SetString(s, 10); !ok {
- return z, false
- }
- powTen := nat{}.expNN(natTen, exp.abs, nil)
- if exp.neg {
- z.b = powTen
- z.norm()
- } else {
- z.a.abs = z.a.abs.mul(z.a.abs, powTen)
- z.b = z.b.setWord(1)
- }
-
- return z, true
-}
-
-
-// String returns a string representation of z in the form "a/b" (even if b == 1).
-func (z *Rat) String() string {
- return z.a.String() + "/" + z.b.decimalString()
-}
-
-
-// RatString returns a string representation of z in the form "a/b" if b != 1,
-// and in the form "a" if b == 1.
-func (z *Rat) RatString() string {
- if z.IsInt() {
- return z.a.String()
- }
- return z.String()
-}
-
-
-// FloatString returns a string representation of z in decimal form with prec
-// digits of precision after the decimal point and the last digit rounded.
-func (z *Rat) FloatString(prec int) string {
- if z.IsInt() {
- s := z.a.String()
- if prec > 0 {
- s += "." + strings.Repeat("0", prec)
- }
- return s
- }
-
- q, r := nat{}.div(nat{}, z.a.abs, z.b)
-
- p := natOne
- if prec > 0 {
- p = nat{}.expNN(natTen, nat{}.setUint64(uint64(prec)), nil)
- }
-
- r = r.mul(r, p)
- r, r2 := r.div(nat{}, r, z.b)
-
- // see if we need to round up
- r2 = r2.add(r2, r2)
- if z.b.cmp(r2) <= 0 {
- r = r.add(r, natOne)
- if r.cmp(p) >= 0 {
- q = nat{}.add(q, natOne)
- r = nat{}.sub(r, p)
- }
- }
-
- s := q.decimalString()
- if z.a.neg {
- s = "-" + s
- }
-
- if prec > 0 {
- rs := r.decimalString()
- leadingZeros := prec - len(rs)
- s += "." + strings.Repeat("0", leadingZeros) + rs
- }
-
- return s
-}
-
-
-// Gob codec version. Permits backward-compatible changes to the encoding.
-const ratGobVersion byte = 1
-
-// GobEncode implements the gob.GobEncoder interface.
-func (z *Rat) GobEncode() ([]byte, os.Error) {
- buf := make([]byte, 1+4+(len(z.a.abs)+len(z.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
- i := z.b.bytes(buf)
- j := z.a.abs.bytes(buf[0:i])
- n := i - j
- if int(uint32(n)) != n {
- // this should never happen
- return nil, os.NewError("Rat.GobEncode: numerator too large")
- }
- binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
- j -= 1 + 4
- b := ratGobVersion << 1 // make space for sign bit
- if z.a.neg {
- b |= 1
- }
- buf[j] = b
- return buf[j:], nil
-}
-
-
-// GobDecode implements the gob.GobDecoder interface.
-func (z *Rat) GobDecode(buf []byte) os.Error {
- if len(buf) == 0 {
- return os.NewError("Rat.GobDecode: no data")
- }
- b := buf[0]
- if b>>1 != ratGobVersion {
- return os.NewError(fmt.Sprintf("Rat.GobDecode: encoding version %d not supported", b>>1))
- }
- const j = 1 + 4
- i := j + binary.BigEndian.Uint32(buf[j-4:j])
- z.a.neg = b&1 != 0
- z.a.abs = z.a.abs.setBytes(buf[j:i])
- z.b = z.b.setBytes(buf[i:])
- return nil
-}