summaryrefslogtreecommitdiff
path: root/src/pkg/bignum/bignum.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/bignum/bignum.go')
-rwxr-xr-xsrc/pkg/bignum/bignum.go1464
1 files changed, 1464 insertions, 0 deletions
diff --git a/src/pkg/bignum/bignum.go b/src/pkg/bignum/bignum.go
new file mode 100755
index 000000000..b9ea66587
--- /dev/null
+++ b/src/pkg/bignum/bignum.go
@@ -0,0 +1,1464 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// A package for arbitrary precision arithmethic.
+// It implements the following numeric types:
+//
+// - Natural unsigned integers
+// - Integer signed integers
+// - Rational rational numbers
+//
+package bignum
+
+import "fmt"
+
+
+// ----------------------------------------------------------------------------
+// Internal representation
+//
+// A natural number of the form
+//
+// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
+//
+// with 0 <= x[i] < B and 0 <= i < n is stored in a slice of length n,
+// with the digits x[i] as the slice elements.
+//
+// A natural number is normalized if the slice contains no leading 0 digits.
+// During arithmetic operations, denormalized values may occur but are
+// always normalized before returning the final result. The normalized
+// representation of 0 is the empty slice (length = 0).
+//
+// The operations for all other numeric types are implemented on top of
+// the operations for natural numbers.
+//
+// The base B is chosen as large as possible on a given platform but there
+// are a few constraints besides the size of the largest unsigned integer
+// type available:
+//
+// 1) To improve conversion speed between strings and numbers, the base B
+// is chosen such that division and multiplication by 10 (for decimal
+// string representation) can be done without using extended-precision
+// arithmetic. This makes addition, subtraction, and conversion routines
+// twice as fast. It requires a ``buffer'' of 4 bits per operand digit.
+// That is, the size of B must be 4 bits smaller then the size of the
+// type (digit) in which these operations are performed. Having this
+// buffer also allows for trivial (single-bit) carry computation in
+// addition and subtraction (optimization suggested by Ken Thompson).
+//
+// 2) Long division requires extended-precision (2-digit) division per digit.
+// Instead of sacrificing the largest base type for all other operations,
+// for division the operands are unpacked into ``half-digits'', and the
+// results are packed again. For faster unpacking/packing, the base size
+// in bits must be even.
+
+type (
+ digit uint64;
+ digit2 uint32; // half-digits for division
+)
+
+
+const (
+ _LogW = 64;
+ _LogH = 4; // bits for a hex digit (= small number)
+ _LogB = _LogW - _LogH; // largest bit-width available
+
+ // half-digits
+ _W2 = _LogB / 2; // width
+ _B2 = 1 << _W2; // base
+ _M2 = _B2 - 1; // mask
+
+ // full digits
+ _W = _W2 * 2; // width
+ _B = 1 << _W; // base
+ _M = _B - 1; // mask
+)
+
+
+// ----------------------------------------------------------------------------
+// Support functions
+
+func assert(p bool) {
+ if !p {
+ panic("assert failed");
+ }
+}
+
+
+func isSmall(x digit) bool {
+ return x < 1<<_LogH;
+}
+
+
+// For debugging.
+func dump(x []digit) {
+ print("[", len(x), "]");
+ for i := len(x) - 1; i >= 0; i-- {
+ print(" ", x[i]);
+ }
+ println();
+}
+
+
+// ----------------------------------------------------------------------------
+// Natural numbers
+
+// Natural represents an unsigned integer value of arbitrary precision.
+//
+type Natural []digit;
+
+var (
+ natZero Natural = Natural{};
+ natOne Natural = Natural{1};
+ natTwo Natural = Natural{2};
+ natTen Natural = Natural{10};
+)
+
+
+// Nat creates a small natural number with value x.
+// Implementation restriction: At the moment, only values
+// x < (1<<60) are supported.
+//
+func Nat(x uint) Natural {
+ switch x {
+ case 0: return natZero;
+ case 1: return natOne;
+ case 2: return natTwo;
+ case 10: return natTen;
+ }
+ assert(digit(x) < _B);
+ return Natural{digit(x)};
+}
+
+
+// IsEven returns true iff x is divisible by 2.
+//
+func (x Natural) IsEven() bool {
+ return len(x) == 0 || x[0]&1 == 0;
+}
+
+
+// IsOdd returns true iff x is not divisible by 2.
+//
+func (x Natural) IsOdd() bool {
+ return len(x) > 0 && x[0]&1 != 0;
+}
+
+
+// IsZero returns true iff x == 0.
+//
+func (x Natural) IsZero() bool {
+ return len(x) == 0;
+}
+
+
+// Operations
+//
+// Naming conventions
+//
+// c carry
+// x, y operands
+// z result
+// n, m len(x), len(y)
+
+func normalize(x Natural) Natural {
+ n := len(x);
+ for n > 0 && x[n - 1] == 0 { n-- }
+ if n < len(x) {
+ x = x[0 : n]; // trim leading 0's
+ }
+ return x;
+}
+
+
+// Add returns the sum x + y.
+//
+func (x Natural) Add(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+ if n < m {
+ return y.Add(x);
+ }
+
+ c := digit(0);
+ z := make(Natural, n + 1);
+ i := 0;
+ for i < m {
+ t := c + x[i] + y[i];
+ c, z[i] = t>>_W, t&_M;
+ i++;
+ }
+ for i < n {
+ t := c + x[i];
+ c, z[i] = t>>_W, t&_M;
+ i++;
+ }
+ if c != 0 {
+ z[i] = c;
+ i++;
+ }
+
+ return z[0 : i];
+}
+
+
+// Sub returns the difference x - y for x >= y.
+// If x < y, an underflow run-time error occurs (use Cmp to test if x >= y).
+//
+func (x Natural) Sub(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+ if n < m {
+ panic("underflow")
+ }
+
+ c := digit(0);
+ z := make(Natural, n);
+ i := 0;
+ for i < m {
+ t := c + x[i] - y[i];
+ c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
+ i++;
+ }
+ for i < n {
+ t := c + x[i];
+ c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
+ i++;
+ }
+ for i > 0 && z[i - 1] == 0 { // normalize
+ i--;
+ }
+
+ return z[0 : i];
+}
+
+
+// Returns c = x*y div B, z = x*y mod B.
+//
+func mul11(x, y digit) (digit, digit) {
+ // Split x and y into 2 sub-digits each,
+ // multiply the digits separately while avoiding overflow,
+ // and return the product as two separate digits.
+
+ // This code also works for non-even bit widths W
+ // which is why there are separate constants below
+ // for half-digits.
+ const W2 = (_W + 1)/2;
+ const DW = W2*2 - _W; // 0 or 1
+ const B2 = 1<<W2;
+ const M2 = _B2 - 1;
+
+ // split x and y into sub-digits
+ // x = (x1*B2 + x0)
+ // y = (y1*B2 + y0)
+ x1, x0 := x>>W2, x&M2;
+ y1, y0 := y>>W2, y&M2;
+
+ // x*y = t2*B2^2 + t1*B2 + t0
+ t0 := x0*y0;
+ t1 := x1*y0 + x0*y1;
+ t2 := x1*y1;
+
+ // compute the result digits but avoid overflow
+ // z = z1*B + z0 = x*y
+ z0 := (t1<<W2 + t0)&_M;
+ z1 := t2<<DW + (t1 + t0>>W2)>>(_W-W2);
+
+ return z1, z0;
+}
+
+
+// Mul returns the product x * y.
+//
+func (x Natural) Mul(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+
+ z := make(Natural, n + m);
+ for j := 0; j < m; j++ {
+ d := y[j];
+ if d != 0 {
+ c := digit(0);
+ for i := 0; i < n; i++ {
+ // z[i+j] += c + x[i]*d;
+ z1, z0 := mul11(x[i], d);
+ t := c + z[i+j] + z0;
+ c, z[i+j] = t>>_W, t&_M;
+ c += z1;
+ }
+ z[n+j] = c;
+ }
+ }
+
+ return normalize(z);
+}
+
+
+// DivMod needs multi-precision division, which is not available if digit
+// is already using the largest uint size. Instead, unpack each operand
+// into operands with twice as many digits of half the size (digit2), do
+// DivMod, and then pack the results again.
+
+func unpack(x Natural) []digit2 {
+ n := len(x);
+ z := make([]digit2, n*2 + 1); // add space for extra digit (used by DivMod)
+ for i := 0; i < n; i++ {
+ t := x[i];
+ z[i*2] = digit2(t & _M2);
+ z[i*2 + 1] = digit2(t >> _W2 & _M2);
+ }
+
+ // normalize result
+ k := 2*n;
+ for k > 0 && z[k - 1] == 0 { k-- }
+ return z[0 : k]; // trim leading 0's
+}
+
+
+func pack(x []digit2) Natural {
+ n := (len(x) + 1) / 2;
+ z := make(Natural, n);
+ if len(x) & 1 == 1 {
+ // handle odd len(x)
+ n--;
+ z[n] = digit(x[n*2]);
+ }
+ for i := 0; i < n; i++ {
+ z[i] = digit(x[i*2 + 1]) << _W2 | digit(x[i*2]);
+ }
+ return normalize(z);
+}
+
+
+func mul1(z, x []digit2, y digit2) digit2 {
+ n := len(x);
+ c := digit(0);
+ f := digit(y);
+ for i := 0; i < n; i++ {
+ t := c + digit(x[i])*f;
+ c, z[i] = t>>_W2, digit2(t&_M2);
+ }
+ return digit2(c);
+}
+
+
+func div1(z, x []digit2, y digit2) digit2 {
+ n := len(x);
+ c := digit(0);
+ d := digit(y);
+ for i := n-1; i >= 0; i-- {
+ t := c*_B2 + digit(x[i]);
+ c, z[i] = t%d, digit2(t/d);
+ }
+ return digit2(c);
+}
+
+
+// divmod returns q and r with x = y*q + r and 0 <= r < y.
+// x and y are destroyed in the process.
+//
+// The algorithm used here is based on 1). 2) describes the same algorithm
+// in C. A discussion and summary of the relevant theorems can be found in
+// 3). 3) also describes an easier way to obtain the trial digit - however
+// it relies on tripple-precision arithmetic which is why Knuth's method is
+// used here.
+//
+// 1) D. Knuth, The Art of Computer Programming. Volume 2. Seminumerical
+// Algorithms. Addison-Wesley, Reading, 1969.
+// (Algorithm D, Sec. 4.3.1)
+//
+// 2) Henry S. Warren, Jr., Hacker's Delight. Addison-Wesley, 2003.
+// (9-2 Multiword Division, p.140ff)
+//
+// 3) P. Brinch Hansen, ``Multiple-length division revisited: A tour of the
+// minefield''. Software - Practice and Experience 24, (June 1994),
+// 579-601. John Wiley & Sons, Ltd.
+
+func divmod(x, y []digit2) ([]digit2, []digit2) {
+ n := len(x);
+ m := len(y);
+ if m == 0 {
+ panic("division by zero");
+ }
+ assert(n+1 <= cap(x)); // space for one extra digit
+ x = x[0 : n + 1];
+ assert(x[n] == 0);
+
+ if m == 1 {
+ // division by single digit
+ // result is shifted left by 1 in place!
+ x[0] = div1(x[1 : n+1], x[0 : n], y[0]);
+
+ } else if m > n {
+ // y > x => quotient = 0, remainder = x
+ // TODO in this case we shouldn't even unpack x and y
+ m = n;
+
+ } else {
+ // general case
+ assert(2 <= m && m <= n);
+
+ // normalize x and y
+ // TODO Instead of multiplying, it would be sufficient to
+ // shift y such that the normalization condition is
+ // satisfied (as done in Hacker's Delight).
+ f := _B2 / (digit(y[m-1]) + 1);
+ if f != 1 {
+ mul1(x, x, digit2(f));
+ mul1(y, y, digit2(f));
+ }
+ assert(_B2/2 <= y[m-1] && y[m-1] < _B2); // incorrect scaling
+
+ y1, y2 := digit(y[m-1]), digit(y[m-2]);
+ d2 := digit(y1)<<_W2 + digit(y2);
+ for i := n-m; i >= 0; i-- {
+ k := i+m;
+
+ // compute trial digit (Knuth)
+ var q digit;
+ { x0, x1, x2 := digit(x[k]), digit(x[k-1]), digit(x[k-2]);
+ if x0 != y1 {
+ q = (x0<<_W2 + x1)/y1;
+ } else {
+ q = _B2 - 1;
+ }
+ for y2*q > (x0<<_W2 + x1 - y1*q)<<_W2 + x2 {
+ q--
+ }
+ }
+
+ // subtract y*q
+ c := digit(0);
+ for j := 0; j < m; j++ {
+ t := c + digit(x[i+j]) - digit(y[j])*q;
+ c, x[i+j] = digit(int64(t) >> _W2), digit2(t & _M2); // requires arithmetic shift!
+ }
+
+ // correct if trial digit was too large
+ if c + digit(x[k]) != 0 {
+ // add y
+ c := digit(0);
+ for j := 0; j < m; j++ {
+ t := c + digit(x[i+j]) + digit(y[j]);
+ c, x[i+j] = t >> _W2, digit2(t & _M2)
+ }
+ assert(c + digit(x[k]) == 0);
+ // correct trial digit
+ q--;
+ }
+
+ x[k] = digit2(q);
+ }
+
+ // undo normalization for remainder
+ if f != 1 {
+ c := div1(x[0 : m], x[0 : m], digit2(f));
+ assert(c == 0);
+ }
+ }
+
+ return x[m : n+1], x[0 : m];
+}
+
+
+// Div returns the quotient q = x / y for y > 0,
+// with x = y*q + r and 0 <= r < y.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x Natural) Div(y Natural) Natural {
+ q, r := divmod(unpack(x), unpack(y));
+ return pack(q);
+}
+
+
+// Mod returns the modulus r of the division x / y for y > 0,
+// with x = y*q + r and 0 <= r < y.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x Natural) Mod(y Natural) Natural {
+ q, r := divmod(unpack(x), unpack(y));
+ return pack(r);
+}
+
+
+// DivMod returns the pair (x.Div(y), x.Mod(y)) for y > 0.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x Natural) DivMod(y Natural) (Natural, Natural) {
+ q, r := divmod(unpack(x), unpack(y));
+ return pack(q), pack(r);
+}
+
+
+func shl(z, x []digit, s uint) digit {
+ assert(s <= _W);
+ n := len(x);
+ c := digit(0);
+ for i := 0; i < n; i++ {
+ c, z[i] = x[i] >> (_W-s), x[i] << s & _M | c;
+ }
+ return c;
+}
+
+
+// Shl implements ``shift left'' x << s. It returns x * 2^s.
+//
+func (x Natural) Shl(s uint) Natural {
+ n := uint(len(x));
+ m := n + s/_W;
+ z := make(Natural, m+1);
+
+ z[m] = shl(z[m-n : m], x, s%_W);
+
+ return normalize(z);
+}
+
+
+func shr(z, x []digit, s uint) digit {
+ assert(s <= _W);
+ n := len(x);
+ c := digit(0);
+ for i := n - 1; i >= 0; i-- {
+ c, z[i] = x[i] << (_W-s) & _M, x[i] >> s | c;
+ }
+ return c;
+}
+
+
+// Shr implements ``shift right'' x >> s. It returns x / 2^s.
+//
+func (x Natural) Shr(s uint) Natural {
+ n := uint(len(x));
+ m := n - s/_W;
+ if m > n { // check for underflow
+ m = 0;
+ }
+ z := make(Natural, m);
+
+ shr(z, x[n-m : n], s%_W);
+
+ return normalize(z);
+}
+
+
+// And returns the ``bitwise and'' x & y for the binary representation of x and y.
+//
+func (x Natural) And(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+ if n < m {
+ return y.And(x);
+ }
+
+ z := make(Natural, m);
+ for i := 0; i < m; i++ {
+ z[i] = x[i] & y[i];
+ }
+ // upper bits are 0
+
+ return normalize(z);
+}
+
+
+func copy(z, x []digit) {
+ for i, e := range x {
+ z[i] = e
+ }
+}
+
+
+// Or returns the ``bitwise or'' x | y for the binary representation of x and y.
+//
+func (x Natural) Or(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+ if n < m {
+ return y.Or(x);
+ }
+
+ z := make(Natural, n);
+ for i := 0; i < m; i++ {
+ z[i] = x[i] | y[i];
+ }
+ copy(z[m : n], x[m : n]);
+
+ return z;
+}
+
+
+// Xor returns the ``bitwise exclusive or'' x ^ y for the binary representation of x and y.
+//
+func (x Natural) Xor(y Natural) Natural {
+ n := len(x);
+ m := len(y);
+ if n < m {
+ return y.Xor(x);
+ }
+
+ z := make(Natural, n);
+ for i := 0; i < m; i++ {
+ z[i] = x[i] ^ y[i];
+ }
+ copy(z[m : n], x[m : n]);
+
+ return normalize(z);
+}
+
+
+// Cmp compares x and y. The result is an int value
+//
+// < 0 if x < y
+// == 0 if x == y
+// > 0 if x > y
+//
+func (x Natural) Cmp(y Natural) int {
+ n := len(x);
+ m := len(y);
+
+ if n != m || n == 0 {
+ return n - m;
+ }
+
+ i := n - 1;
+ for i > 0 && x[i] == y[i] { i--; }
+
+ d := 0;
+ switch {
+ case x[i] < y[i]: d = -1;
+ case x[i] > y[i]: d = 1;
+ }
+
+ return d;
+}
+
+
+func log2(x digit) uint {
+ assert(x > 0);
+ n := uint(0);
+ for x > 0 {
+ x >>= 1;
+ n++;
+ }
+ return n - 1;
+}
+
+
+// Log2 computes the binary logarithm of x for x > 0.
+// The result is the integer n for which 2^n <= x < 2^(n+1).
+// If x == 0 a run-time error occurs.
+//
+func (x Natural) Log2() uint {
+ n := len(x);
+ if n > 0 {
+ return (uint(n) - 1)*_W + log2(x[n - 1]);
+ }
+ panic("Log2(0)");
+}
+
+
+// Computes x = x div d in place (modifies x) for small d's.
+// Returns updated x and x mod d.
+//
+func divmod1(x Natural, d digit) (Natural, digit) {
+ assert(0 < d && isSmall(d - 1));
+
+ c := digit(0);
+ for i := len(x) - 1; i >= 0; i-- {
+ t := c<<_W + x[i];
+ c, x[i] = t%d, t/d;
+ }
+
+ return normalize(x), c;
+}
+
+
+// ToString converts x to a string for a given base, with 2 <= base <= 16.
+//
+func (x Natural) ToString(base uint) string {
+ if len(x) == 0 {
+ return "0";
+ }
+
+ // allocate buffer for conversion
+ assert(2 <= base && base <= 16);
+ n := (x.Log2() + 1) / log2(digit(base)) + 1; // +1: round up
+ s := make([]byte, n);
+
+ // don't destroy x
+ t := make(Natural, len(x));
+ copy(t, x);
+
+ // convert
+ i := n;
+ for !t.IsZero() {
+ i--;
+ var d digit;
+ t, d = divmod1(t, digit(base));
+ s[i] = "0123456789abcdef"[d];
+ };
+
+ return string(s[i : n]);
+}
+
+
+// String converts x to its decimal string representation.
+// x.String() is the same as x.ToString(10).
+//
+func (x Natural) String() string {
+ return x.ToString(10);
+}
+
+
+func fmtbase(c int) uint {
+ switch c {
+ case 'b': return 2;
+ case 'o': return 8;
+ case 'x': return 16;
+ }
+ return 10;
+}
+
+
+// Format is a support routine for fmt.Formatter. It accepts
+// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
+//
+func (x Natural) Format(h fmt.Formatter, c int) {
+ fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
+}
+
+
+func hexvalue(ch byte) uint {
+ d := uint(1 << _LogH);
+ switch {
+ case '0' <= ch && ch <= '9': d = uint(ch - '0');
+ case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
+ case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10;
+ }
+ return d;
+}
+
+
+// Computes x = x*d + c for small d's.
+//
+func muladd1(x Natural, d, c digit) Natural {
+ assert(isSmall(d-1) && isSmall(c));
+ n := len(x);
+ z := make(Natural, n + 1);
+
+ for i := 0; i < n; i++ {
+ t := c + x[i]*d;
+ c, z[i] = t>>_W, t&_M;
+ }
+ z[n] = c;
+
+ return normalize(z);
+}
+
+
+// NatFromString returns the natural number corresponding to the
+// longest possible prefix of s representing a natural number in a
+// given conversion base, the actual conversion base used, and the
+// prefix length.
+//
+// If the base argument is 0, the string prefix determines the actual
+// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
+// ``0'' prefix selects base 8. Otherwise the selected base is 10.
+//
+func NatFromString(s string, base uint) (Natural, uint, int) {
+ // determine base if necessary
+ i, n := 0, len(s);
+ if base == 0 {
+ base = 10;
+ if n > 0 && s[0] == '0' {
+ if n > 1 && (s[1] == 'x' || s[1] == 'X') {
+ base, i = 16, 2;
+ } else {
+ base, i = 8, 1;
+ }
+ }
+ }
+
+ // convert string
+ assert(2 <= base && base <= 16);
+ x := Nat(0);
+ for ; i < n; i++ {
+ d := hexvalue(s[i]);
+ if d < base {
+ x = muladd1(x, digit(base), digit(d));
+ } else {
+ break;
+ }
+ }
+
+ return x, base, i;
+}
+
+
+// Natural number functions
+
+func pop1(x digit) uint {
+ n := uint(0);
+ for x != 0 {
+ x &= x-1;
+ n++;
+ }
+ return n;
+}
+
+
+// Pop computes the ``population count'' of (the number of 1 bits in) x.
+//
+func (x Natural) Pop() uint {
+ n := uint(0);
+ for i := len(x) - 1; i >= 0; i-- {
+ n += pop1(x[i]);
+ }
+ return n;
+}
+
+
+// Pow computes x to the power of n.
+//
+func (xp Natural) Pow(n uint) Natural {
+ z := Nat(1);
+ x := xp;
+ for n > 0 {
+ // z * x^n == x^n0
+ if n&1 == 1 {
+ z = z.Mul(x);
+ }
+ x, n = x.Mul(x), n/2;
+ }
+ return z;
+}
+
+
+// MulRange computes the product of all the unsigned integers
+// in the range [a, b] inclusively.
+//
+func MulRange(a, b uint) Natural {
+ switch {
+ case a > b: return Nat(1);
+ case a == b: return Nat(a);
+ case a + 1 == b: return Nat(a).Mul(Nat(b));
+ }
+ m := (a + b)>>1;
+ assert(a <= m && m < b);
+ return MulRange(a, m).Mul(MulRange(m + 1, b));
+}
+
+
+// Fact computes the factorial of n (Fact(n) == MulRange(2, n)).
+//
+func Fact(n uint) Natural {
+ // Using MulRange() instead of the basic for-loop
+ // lead to faster factorial computation.
+ return MulRange(2, n);
+}
+
+
+// Binomial computes the binomial coefficient of (n, k).
+//
+func Binomial(n, k uint) Natural {
+ return MulRange(n-k+1, n).Div(MulRange(1, k));
+}
+
+
+// Gcd computes the gcd of x and y.
+//
+func (x Natural) Gcd(y Natural) Natural {
+ // Euclidean algorithm.
+ a, b := x, y;
+ for !b.IsZero() {
+ a, b = b, a.Mod(b);
+ }
+ return a;
+}
+
+
+// ----------------------------------------------------------------------------
+// Integer numbers
+//
+// Integers are normalized if the mantissa is normalized and the sign is
+// false for mant == 0. Use MakeInt to create normalized Integers.
+
+// Integer represents a signed integer value of arbitrary precision.
+//
+type Integer struct {
+ sign bool;
+ mant Natural;
+}
+
+
+// MakeInt makes an integer given a sign and a mantissa.
+// The number is positive (>= 0) if sign is false or the
+// mantissa is zero; it is negative otherwise.
+//
+func MakeInt(sign bool, mant Natural) *Integer {
+ if mant.IsZero() {
+ sign = false; // normalize
+ }
+ return &Integer{sign, mant};
+}
+
+
+// Int creates a small integer with value x.
+// Implementation restriction: At the moment, only values
+// with an absolute value |x| < (1<<60) are supported.
+//
+func Int(x int) *Integer {
+ sign := false;
+ var ux uint;
+ if x < 0 {
+ sign = true;
+ if -x == x {
+ // smallest negative integer
+ t := ^0;
+ ux = ^(uint(t) >> 1);
+ } else {
+ ux = uint(-x);
+ }
+ } else {
+ ux = uint(x);
+ }
+ return MakeInt(sign, Nat(ux));
+}
+
+
+// Predicates
+
+// IsEven returns true iff x is divisible by 2.
+//
+func (x *Integer) IsEven() bool {
+ return x.mant.IsEven();
+}
+
+
+// IsOdd returns true iff x is not divisible by 2.
+//
+func (x *Integer) IsOdd() bool {
+ return x.mant.IsOdd();
+}
+
+
+// IsZero returns true iff x == 0.
+//
+func (x *Integer) IsZero() bool {
+ return x.mant.IsZero();
+}
+
+
+// IsNeg returns true iff x < 0.
+//
+func (x *Integer) IsNeg() bool {
+ return x.sign && !x.mant.IsZero()
+}
+
+
+// IsPos returns true iff x >= 0.
+//
+func (x *Integer) IsPos() bool {
+ return !x.sign && !x.mant.IsZero()
+}
+
+
+// Operations
+
+// Neg returns the negated value of x.
+//
+func (x *Integer) Neg() *Integer {
+ return MakeInt(!x.sign, x.mant);
+}
+
+
+// Add returns the sum x + y.
+//
+func (x *Integer) Add(y *Integer) *Integer {
+ var z *Integer;
+ if x.sign == y.sign {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z = MakeInt(x.sign, x.mant.Add(y.mant));
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.mant.Cmp(y.mant) >= 0 {
+ z = MakeInt(false, x.mant.Sub(y.mant));
+ } else {
+ z = MakeInt(true, y.mant.Sub(x.mant));
+ }
+ }
+ if x.sign {
+ z.sign = !z.sign;
+ }
+ return z;
+}
+
+
+// Sub returns the difference x - y.
+//
+func (x *Integer) Sub(y *Integer) *Integer {
+ var z *Integer;
+ if x.sign != y.sign {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z = MakeInt(false, x.mant.Add(y.mant));
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.mant.Cmp(y.mant) >= 0 {
+ z = MakeInt(false, x.mant.Sub(y.mant));
+ } else {
+ z = MakeInt(true, y.mant.Sub(x.mant));
+ }
+ }
+ if x.sign {
+ z.sign = !z.sign;
+ }
+ return z;
+}
+
+
+// Mul returns the product x * y.
+//
+func (x *Integer) Mul(y *Integer) *Integer {
+ // x * y == x * y
+ // x * (-y) == -(x * y)
+ // (-x) * y == -(x * y)
+ // (-x) * (-y) == x * y
+ return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant));
+}
+
+
+// MulNat returns the product x * y, where y is a (unsigned) natural number.
+//
+func (x *Integer) MulNat(y Natural) *Integer {
+ // x * y == x * y
+ // (-x) * y == -(x * y)
+ return MakeInt(x.sign, x.mant.Mul(y));
+}
+
+
+// Quo returns the quotient q = x / y for y != 0.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+// Quo and Rem implement T-division and modulus (like C99):
+//
+// q = x.Quo(y) = trunc(x/y) (truncation towards zero)
+// r = x.Rem(y) = x - y*q
+//
+// (Daan Leijen, ``Division and Modulus for Computer Scientists''.)
+//
+func (x *Integer) Quo(y *Integer) *Integer {
+ // x / y == x / y
+ // x / (-y) == -(x / y)
+ // (-x) / y == -(x / y)
+ // (-x) / (-y) == x / y
+ return MakeInt(x.sign != y.sign, x.mant.Div(y.mant));
+}
+
+
+// Rem returns the remainder r of the division x / y for y != 0,
+// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
+// to the sign of x.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x *Integer) Rem(y *Integer) *Integer {
+ // x % y == x % y
+ // x % (-y) == x % y
+ // (-x) % y == -(x % y)
+ // (-x) % (-y) == -(x % y)
+ return MakeInt(x.sign, x.mant.Mod(y.mant));
+}
+
+
+// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
+ q, r := x.mant.DivMod(y.mant);
+ return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r);
+}
+
+
+// Div returns the quotient q = x / y for y != 0.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+// Div and Mod implement Euclidian division and modulus:
+//
+// q = x.Div(y)
+// r = x.Mod(y) with: 0 <= r < |q| and: y = x*q + r
+//
+// (Raymond T. Boute, ``The Euclidian definition of the functions
+// div and mod''. ACM Transactions on Programming Languages and
+// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
+// ACM press.)
+//
+func (x *Integer) Div(y *Integer) *Integer {
+ q, r := x.QuoRem(y);
+ if r.IsNeg() {
+ if y.IsPos() {
+ q = q.Sub(Int(1));
+ } else {
+ q = q.Add(Int(1));
+ }
+ }
+ return q;
+}
+
+
+// Mod returns the modulus r of the division x / y for y != 0,
+// with r = x - y*x.Div(y). r is always positive.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x *Integer) Mod(y *Integer) *Integer {
+ r := x.Rem(y);
+ if r.IsNeg() {
+ if y.IsPos() {
+ r = r.Add(y);
+ } else {
+ r = r.Sub(y);
+ }
+ }
+ return r;
+}
+
+
+// DivMod returns the pair (x.Div(y), x.Mod(y)).
+//
+func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
+ q, r := x.QuoRem(y);
+ if r.IsNeg() {
+ if y.IsPos() {
+ q = q.Sub(Int(1));
+ r = r.Add(y);
+ } else {
+ q = q.Add(Int(1));
+ r = r.Sub(y);
+ }
+ }
+ return q, r;
+}
+
+
+// Shl implements ``shift left'' x << s. It returns x * 2^s.
+//
+func (x *Integer) Shl(s uint) *Integer {
+ return MakeInt(x.sign, x.mant.Shl(s));
+}
+
+
+// Shr implements ``shift right'' x >> s. It returns x / 2^s.
+// Implementation restriction: Shl is not yet implemented for negative x.
+//
+func (x *Integer) Shr(s uint) *Integer {
+ z := MakeInt(x.sign, x.mant.Shr(s));
+ if x.IsNeg() {
+ panic("UNIMPLEMENTED Integer.Shr of negative values");
+ }
+ return z;
+}
+
+
+// And returns the ``bitwise and'' x & y for the binary representation of x and y.
+// Implementation restriction: And is not implemented for negative x.
+//
+func (x *Integer) And(y *Integer) *Integer {
+ var z *Integer;
+ if !x.sign && !y.sign {
+ z = MakeInt(false, x.mant.And(y.mant));
+ } else {
+ panic("UNIMPLEMENTED Integer.And of negative values");
+ }
+ return z;
+}
+
+
+// Or returns the ``bitwise or'' x | y for the binary representation of x and y.
+// Implementation restriction: Or is not implemented for negative x.
+//
+func (x *Integer) Or(y *Integer) *Integer {
+ var z *Integer;
+ if !x.sign && !y.sign {
+ z = MakeInt(false, x.mant.Or(y.mant));
+ } else {
+ panic("UNIMPLEMENTED Integer.Or of negative values");
+ }
+ return z;
+}
+
+
+// Xor returns the ``bitwise xor'' x | y for the binary representation of x and y.
+// Implementation restriction: Xor is not implemented for negative integers.
+//
+func (x *Integer) Xor(y *Integer) *Integer {
+ var z *Integer;
+ if !x.sign && !y.sign {
+ z = MakeInt(false, x.mant.Xor(y.mant));
+ } else {
+ panic("UNIMPLEMENTED Integer.Xor of negative values");
+ }
+ return z;
+}
+
+
+// Cmp compares x and y. The result is an int value
+//
+// < 0 if x < y
+// == 0 if x == y
+// > 0 if x > y
+//
+func (x *Integer) Cmp(y *Integer) int {
+ // x cmp y == x cmp y
+ // x cmp (-y) == x
+ // (-x) cmp y == y
+ // (-x) cmp (-y) == -(x cmp y)
+ var r int;
+ switch {
+ case x.sign == y.sign:
+ r = x.mant.Cmp(y.mant);
+ if x.sign {
+ r = -r;
+ }
+ case x.sign: r = -1;
+ case y.sign: r = 1;
+ }
+ return r;
+}
+
+
+// ToString converts x to a string for a given base, with 2 <= base <= 16.
+//
+func (x *Integer) ToString(base uint) string {
+ if x.mant.IsZero() {
+ return "0";
+ }
+ var s string;
+ if x.sign {
+ s = "-";
+ }
+ return s + x.mant.ToString(base);
+}
+
+
+// String converts x to its decimal string representation.
+// x.String() is the same as x.ToString(10).
+//
+func (x *Integer) String() string {
+ return x.ToString(10);
+}
+
+
+// Format is a support routine for fmt.Formatter. It accepts
+// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
+//
+func (x *Integer) Format(h fmt.Formatter, c int) {
+ fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
+}
+
+
+// IntFromString returns the integer corresponding to the
+// longest possible prefix of s representing an integer in a
+// given conversion base, the actual conversion base used, and
+// the prefix length.
+//
+// If the base argument is 0, the string prefix determines the actual
+// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
+// ``0'' prefix selects base 8. Otherwise the selected base is 10.
+//
+func IntFromString(s string, base uint) (*Integer, uint, int) {
+ // skip sign, if any
+ i0 := 0;
+ if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
+ i0 = 1;
+ }
+
+ mant, base, slen := NatFromString(s[i0 : len(s)], base);
+
+ return MakeInt(i0 > 0 && s[0] == '-', mant), base, i0 + slen;
+}
+
+
+// ----------------------------------------------------------------------------
+// Rational numbers
+
+// Rational represents a quotient a/b of arbitrary precision.
+//
+type Rational struct {
+ a *Integer; // numerator
+ b Natural; // denominator
+}
+
+
+// MakeRat makes a rational number given a numerator a and a denominator b.
+//
+func MakeRat(a *Integer, b Natural) *Rational {
+ f := a.mant.Gcd(b); // f > 0
+ if f.Cmp(Nat(1)) != 0 {
+ a = MakeInt(a.sign, a.mant.Div(f));
+ b = b.Div(f);
+ }
+ return &Rational{a, b};
+}
+
+
+// Rat creates a small rational number with value a0/b0.
+// Implementation restriction: At the moment, only values a0, b0
+// with an absolute value |a0|, |b0| < (1<<60) are supported.
+//
+func Rat(a0 int, b0 int) *Rational {
+ a, b := Int(a0), Int(b0);
+ if b.sign {
+ a = a.Neg();
+ }
+ return MakeRat(a, b.mant);
+}
+
+
+// Predicates
+
+// IsZero returns true iff x == 0.
+//
+func (x *Rational) IsZero() bool {
+ return x.a.IsZero();
+}
+
+
+// IsNeg returns true iff x < 0.
+//
+func (x *Rational) IsNeg() bool {
+ return x.a.IsNeg();
+}
+
+
+// IsPos returns true iff x > 0.
+//
+func (x *Rational) IsPos() bool {
+ return x.a.IsPos();
+}
+
+
+// IsInt returns true iff x can be written with a denominator 1
+// in the form x == x'/1; i.e., if x is an integer value.
+//
+func (x *Rational) IsInt() bool {
+ return x.b.Cmp(Nat(1)) == 0;
+}
+
+
+// Operations
+
+// Neg returns the negated value of x.
+//
+func (x *Rational) Neg() *Rational {
+ return MakeRat(x.a.Neg(), x.b);
+}
+
+
+// Add returns the sum x + y.
+//
+func (x *Rational) Add(y *Rational) *Rational {
+ return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b));
+}
+
+
+// Sub returns the difference x - y.
+//
+func (x *Rational) Sub(y *Rational) *Rational {
+ return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b));
+}
+
+
+// Mul returns the product x * y.
+//
+func (x *Rational) Mul(y *Rational) *Rational {
+ return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b));
+}
+
+
+// Quo returns the quotient x / y for y != 0.
+// If y == 0, a division-by-zero run-time error occurs.
+//
+func (x *Rational) Quo(y *Rational) *Rational {
+ a := x.a.MulNat(y.b);
+ b := y.a.MulNat(x.b);
+ if b.IsNeg() {
+ a = a.Neg();
+ }
+ return MakeRat(a, b.mant);
+}
+
+
+// Cmp compares x and y. The result is an int value
+//
+// < 0 if x < y
+// == 0 if x == y
+// > 0 if x > y
+//
+func (x *Rational) Cmp(y *Rational) int {
+ return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b));
+}
+
+
+// ToString converts x to a string for a given base, with 2 <= base <= 16.
+// The string representation is of the form "n" if x is an integer; otherwise
+// it is of form "n/d".
+//
+func (x *Rational) ToString(base uint) string {
+ s := x.a.ToString(base);
+ if !x.IsInt() {
+ s += "/" + x.b.ToString(base);
+ }
+ return s;
+}
+
+
+// String converts x to its decimal string representation.
+// x.String() is the same as x.ToString(10).
+//
+func (x *Rational) String() string {
+ return x.ToString(10);
+}
+
+
+// Format is a support routine for fmt.Formatter. It accepts
+// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
+//
+func (x *Rational) Format(h fmt.Formatter, c int) {
+ fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
+}
+
+
+// RatFromString returns the rational number corresponding to the
+// longest possible prefix of s representing a rational number in a
+// given conversion base, the actual conversion base used, and the
+// prefix length.
+//
+// If the base argument is 0, the string prefix determines the actual
+// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
+// ``0'' prefix selects base 8. Otherwise the selected base is 10.
+//
+func RatFromString(s string, base uint) (*Rational, uint, int) {
+ // read nominator
+ a, abase, alen := IntFromString(s, base);
+ b := Nat(1);
+
+ // read denominator or fraction, if any
+ var blen int;
+ if alen < len(s) {
+ ch := s[alen];
+ if ch == '/' {
+ alen++;
+ b, base, blen = NatFromString(s[alen : len(s)], base);
+ } else if ch == '.' {
+ alen++;
+ b, base, blen = NatFromString(s[alen : len(s)], abase);
+ assert(base == abase);
+ f := Nat(base).Pow(uint(blen));
+ a = MakeInt(a.sign, a.mant.Mul(f).Add(b));
+ b = f;
+ }
+ }
+
+ return MakeRat(a, b), base, alen + blen;
+}