diff options
Diffstat (limited to 'src/pkg/bignum/bignum.go')
-rwxr-xr-x | src/pkg/bignum/bignum.go | 28 |
1 files changed, 7 insertions, 21 deletions
diff --git a/src/pkg/bignum/bignum.go b/src/pkg/bignum/bignum.go index 961d19c42..ed61dad6b 100755 --- a/src/pkg/bignum/bignum.go +++ b/src/pkg/bignum/bignum.go @@ -88,9 +88,7 @@ func assert(p bool) { } -func isSmall(x digit) bool { - return x < 1<<logH; -} +func isSmall(x digit) bool { return x < 1<<logH } // For debugging. Keep around. @@ -176,23 +174,17 @@ func (x Natural) Value() uint64 { // IsEven returns true iff x is divisible by 2. // -func (x Natural) IsEven() bool { - return len(x) == 0 || x[0]&1 == 0; -} +func (x Natural) IsEven() bool { return len(x) == 0 || x[0]&1 == 0 } // IsOdd returns true iff x is not divisible by 2. // -func (x Natural) IsOdd() bool { - return len(x) > 0 && x[0]&1 != 0; -} +func (x Natural) IsOdd() bool { return len(x) > 0 && x[0]&1 != 0 } // IsZero returns true iff x == 0. // -func (x Natural) IsZero() bool { - return len(x) == 0; -} +func (x Natural) IsZero() bool { return len(x) == 0 } // Operations @@ -867,9 +859,7 @@ func (x Natural) ToString(base uint) string { // String converts x to its decimal string representation. // x.String() is the same as x.ToString(10). // -func (x Natural) String() string { - return x.ToString(10); -} +func (x Natural) String() string { return x.ToString(10) } func fmtbase(c int) uint { @@ -888,9 +878,7 @@ func fmtbase(c int) uint { // Format is a support routine for fmt.Formatter. It accepts // the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal). // -func (x Natural) Format(h fmt.State, c int) { - fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))); -} +func (x Natural) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) } func hexvalue(ch byte) uint { @@ -1015,9 +1003,7 @@ func Fact(n uint) Natural { // Binomial computes the binomial coefficient of (n, k). // -func Binomial(n, k uint) Natural { - return MulRange(n-k+1, n).Div(MulRange(1, k)); -} +func Binomial(n, k uint) Natural { return MulRange(n-k+1, n).Div(MulRange(1, k)) } // Gcd computes the gcd of x and y. |