diff options
Diffstat (limited to 'src/pkg/compress/flate/huffman_code.go')
-rw-r--r-- | src/pkg/compress/flate/huffman_code.go | 378 |
1 files changed, 0 insertions, 378 deletions
diff --git a/src/pkg/compress/flate/huffman_code.go b/src/pkg/compress/flate/huffman_code.go deleted file mode 100644 index 7ed603a4f..000000000 --- a/src/pkg/compress/flate/huffman_code.go +++ /dev/null @@ -1,378 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package flate - -import ( - "math" - "sort" -) - -type huffmanEncoder struct { - codeBits []uint8 - code []uint16 -} - -type literalNode struct { - literal uint16 - freq int32 -} - -type chain struct { - // The sum of the leaves in this tree - freq int32 - - // The number of literals to the left of this item at this level - leafCount int32 - - // The right child of this chain in the previous level. - up *chain -} - -type levelInfo struct { - // Our level. for better printing - level int32 - - // The most recent chain generated for this level - lastChain *chain - - // The frequency of the next character to add to this level - nextCharFreq int32 - - // The frequency of the next pair (from level below) to add to this level. - // Only valid if the "needed" value of the next lower level is 0. - nextPairFreq int32 - - // The number of chains remaining to generate for this level before moving - // up to the next level - needed int32 - - // The levelInfo for level+1 - up *levelInfo - - // The levelInfo for level-1 - down *levelInfo -} - -func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } - -func newHuffmanEncoder(size int) *huffmanEncoder { - return &huffmanEncoder{make([]uint8, size), make([]uint16, size)} -} - -// Generates a HuffmanCode corresponding to the fixed literal table -func generateFixedLiteralEncoding() *huffmanEncoder { - h := newHuffmanEncoder(maxLit) - codeBits := h.codeBits - code := h.code - var ch uint16 - for ch = 0; ch < maxLit; ch++ { - var bits uint16 - var size uint8 - switch { - case ch < 144: - // size 8, 000110000 .. 10111111 - bits = ch + 48 - size = 8 - break - case ch < 256: - // size 9, 110010000 .. 111111111 - bits = ch + 400 - 144 - size = 9 - break - case ch < 280: - // size 7, 0000000 .. 0010111 - bits = ch - 256 - size = 7 - break - default: - // size 8, 11000000 .. 11000111 - bits = ch + 192 - 280 - size = 8 - } - codeBits[ch] = size - code[ch] = reverseBits(bits, size) - } - return h -} - -func generateFixedOffsetEncoding() *huffmanEncoder { - h := newHuffmanEncoder(30) - codeBits := h.codeBits - code := h.code - for ch := uint16(0); ch < 30; ch++ { - codeBits[ch] = 5 - code[ch] = reverseBits(ch, 5) - } - return h -} - -var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() -var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() - -func (h *huffmanEncoder) bitLength(freq []int32) int64 { - var total int64 - for i, f := range freq { - if f != 0 { - total += int64(f) * int64(h.codeBits[i]) - } - } - return total -} - -// Generate elements in the chain using an iterative algorithm. -func (h *huffmanEncoder) generateChains(top *levelInfo, list []literalNode) { - n := len(list) - list = list[0 : n+1] - list[n] = maxNode() - - l := top - for { - if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { - // We've run out of both leafs and pairs. - // End all calculations for this level. - // To m sure we never come back to this level or any lower level, - // set nextPairFreq impossibly large. - l.lastChain = nil - l.needed = 0 - l = l.up - l.nextPairFreq = math.MaxInt32 - continue - } - - prevFreq := l.lastChain.freq - if l.nextCharFreq < l.nextPairFreq { - // The next item on this row is a leaf node. - n := l.lastChain.leafCount + 1 - l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up} - l.nextCharFreq = list[n].freq - } else { - // The next item on this row is a pair from the previous row. - // nextPairFreq isn't valid until we generate two - // more values in the level below - l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain} - l.down.needed = 2 - } - - if l.needed--; l.needed == 0 { - // We've done everything we need to do for this level. - // Continue calculating one level up. Fill in nextPairFreq - // of that level with the sum of the two nodes we've just calculated on - // this level. - up := l.up - if up == nil { - // All done! - return - } - up.nextPairFreq = prevFreq + l.lastChain.freq - l = up - } else { - // If we stole from below, move down temporarily to replenish it. - for l.down.needed > 0 { - l = l.down - } - } - } -} - -// Return the number of literals assigned to each bit size in the Huffman encoding -// -// This method is only called when list.length >= 3 -// The cases of 0, 1, and 2 literals are handled by special case code. -// -// list An array of the literals with non-zero frequencies -// and their associated frequencies. The array is in order of increasing -// frequency, and has as its last element a special element with frequency -// MaxInt32 -// maxBits The maximum number of bits that should be used to encode any literal. -// return An integer array in which array[i] indicates the number of literals -// that should be encoded in i bits. -func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { - n := int32(len(list)) - list = list[0 : n+1] - list[n] = maxNode() - - // The tree can't have greater depth than n - 1, no matter what. This - // saves a little bit of work in some small cases - maxBits = minInt32(maxBits, n-1) - - // Create information about each of the levels. - // A bogus "Level 0" whose sole purpose is so that - // level1.prev.needed==0. This makes level1.nextPairFreq - // be a legitimate value that never gets chosen. - top := &levelInfo{needed: 0} - chain2 := &chain{list[1].freq, 2, new(chain)} - for level := int32(1); level <= maxBits; level++ { - // For every level, the first two items are the first two characters. - // We initialize the levels as if we had already figured this out. - top = &levelInfo{ - level: level, - lastChain: chain2, - nextCharFreq: list[2].freq, - nextPairFreq: list[0].freq + list[1].freq, - down: top, - } - top.down.up = top - if level == 1 { - top.nextPairFreq = math.MaxInt32 - } - } - - // We need a total of 2*n - 2 items at top level and have already generated 2. - top.needed = 2*n - 4 - - l := top - for { - if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { - // We've run out of both leafs and pairs. - // End all calculations for this level. - // To m sure we never come back to this level or any lower level, - // set nextPairFreq impossibly large. - l.lastChain = nil - l.needed = 0 - l = l.up - l.nextPairFreq = math.MaxInt32 - continue - } - - prevFreq := l.lastChain.freq - if l.nextCharFreq < l.nextPairFreq { - // The next item on this row is a leaf node. - n := l.lastChain.leafCount + 1 - l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up} - l.nextCharFreq = list[n].freq - } else { - // The next item on this row is a pair from the previous row. - // nextPairFreq isn't valid until we generate two - // more values in the level below - l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain} - l.down.needed = 2 - } - - if l.needed--; l.needed == 0 { - // We've done everything we need to do for this level. - // Continue calculating one level up. Fill in nextPairFreq - // of that level with the sum of the two nodes we've just calculated on - // this level. - up := l.up - if up == nil { - // All done! - break - } - up.nextPairFreq = prevFreq + l.lastChain.freq - l = up - } else { - // If we stole from below, move down temporarily to replenish it. - for l.down.needed > 0 { - l = l.down - } - } - } - - // Somethings is wrong if at the end, the top level is null or hasn't used - // all of the leaves. - if top.lastChain.leafCount != n { - panic("top.lastChain.leafCount != n") - } - - bitCount := make([]int32, maxBits+1) - bits := 1 - for chain := top.lastChain; chain.up != nil; chain = chain.up { - // chain.leafCount gives the number of literals requiring at least "bits" - // bits to encode. - bitCount[bits] = chain.leafCount - chain.up.leafCount - bits++ - } - return bitCount -} - -// Look at the leaves and assign them a bit count and an encoding as specified -// in RFC 1951 3.2.2 -func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { - code := uint16(0) - for n, bits := range bitCount { - code <<= 1 - if n == 0 || bits == 0 { - continue - } - // The literals list[len(list)-bits] .. list[len(list)-bits] - // are encoded using "bits" bits, and get the values - // code, code + 1, .... The code values are - // assigned in literal order (not frequency order). - chunk := list[len(list)-int(bits):] - sortByLiteral(chunk) - for _, node := range chunk { - h.codeBits[node.literal] = uint8(n) - h.code[node.literal] = reverseBits(code, uint8(n)) - code++ - } - list = list[0 : len(list)-int(bits)] - } -} - -// Update this Huffman Code object to be the minimum code for the specified frequency count. -// -// freq An array of frequencies, in which frequency[i] gives the frequency of literal i. -// maxBits The maximum number of bits to use for any literal. -func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { - list := make([]literalNode, len(freq)+1) - // Number of non-zero literals - count := 0 - // Set list to be the set of all non-zero literals and their frequencies - for i, f := range freq { - if f != 0 { - list[count] = literalNode{uint16(i), f} - count++ - } else { - h.codeBits[i] = 0 - } - } - // If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros - h.codeBits = h.codeBits[0:len(freq)] - list = list[0:count] - if count <= 2 { - // Handle the small cases here, because they are awkward for the general case code. With - // two or fewer literals, everything has bit length 1. - for i, node := range list { - // "list" is in order of increasing literal value. - h.codeBits[node.literal] = 1 - h.code[node.literal] = uint16(i) - } - return - } - sortByFreq(list) - - // Get the number of literals for each bit count - bitCount := h.bitCounts(list, maxBits) - // And do the assignment - h.assignEncodingAndSize(bitCount, list) -} - -type literalNodeSorter struct { - a []literalNode - less func(i, j int) bool -} - -func (s literalNodeSorter) Len() int { return len(s.a) } - -func (s literalNodeSorter) Less(i, j int) bool { - return s.less(i, j) -} - -func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] } - -func sortByFreq(a []literalNode) { - s := &literalNodeSorter{a, func(i, j int) bool { - if a[i].freq == a[j].freq { - return a[i].literal < a[j].literal - } - return a[i].freq < a[j].freq - }} - sort.Sort(s) -} - -func sortByLiteral(a []literalNode) { - s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }} - sort.Sort(s) -} |