diff options
Diffstat (limited to 'src/pkg/crypto/aes/block.go')
| -rw-r--r-- | src/pkg/crypto/aes/block.go | 176 |
1 files changed, 0 insertions, 176 deletions
diff --git a/src/pkg/crypto/aes/block.go b/src/pkg/crypto/aes/block.go deleted file mode 100644 index 57a7e9e25..000000000 --- a/src/pkg/crypto/aes/block.go +++ /dev/null @@ -1,176 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// This Go implementation is derived in part from the reference -// ANSI C implementation, which carries the following notice: -// -// rijndael-alg-fst.c -// -// @version 3.0 (December 2000) -// -// Optimised ANSI C code for the Rijndael cipher (now AES) -// -// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> -// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> -// @author Paulo Barreto <paulo.barreto@terra.com.br> -// -// This code is hereby placed in the public domain. -// -// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS -// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE -// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR -// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, -// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE -// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, -// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -// -// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission -// for implementation details. -// http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf -// http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf - -package aes - -// Encrypt one block from src into dst, using the expanded key xk. -func encryptBlockGo(xk []uint32, dst, src []byte) { - var s0, s1, s2, s3, t0, t1, t2, t3 uint32 - - s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) - s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) - s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) - s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) - - // First round just XORs input with key. - s0 ^= xk[0] - s1 ^= xk[1] - s2 ^= xk[2] - s3 ^= xk[3] - - // Middle rounds shuffle using tables. - // Number of rounds is set by length of expanded key. - nr := len(xk)/4 - 2 // - 2: one above, one more below - k := 4 - for r := 0; r < nr; r++ { - t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)] - t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)] - t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)] - t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)] - k += 4 - s0, s1, s2, s3 = t0, t1, t2, t3 - } - - // Last round uses s-box directly and XORs to produce output. - s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff]) - s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff]) - s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff]) - s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff]) - - s0 ^= xk[k+0] - s1 ^= xk[k+1] - s2 ^= xk[k+2] - s3 ^= xk[k+3] - - dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) - dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) - dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) - dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) -} - -// Decrypt one block from src into dst, using the expanded key xk. -func decryptBlockGo(xk []uint32, dst, src []byte) { - var s0, s1, s2, s3, t0, t1, t2, t3 uint32 - - s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) - s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) - s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11]) - s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15]) - - // First round just XORs input with key. - s0 ^= xk[0] - s1 ^= xk[1] - s2 ^= xk[2] - s3 ^= xk[3] - - // Middle rounds shuffle using tables. - // Number of rounds is set by length of expanded key. - nr := len(xk)/4 - 2 // - 2: one above, one more below - k := 4 - for r := 0; r < nr; r++ { - t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)] - t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)] - t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)] - t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)] - k += 4 - s0, s1, s2, s3 = t0, t1, t2, t3 - } - - // Last round uses s-box directly and XORs to produce output. - s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff]) - s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff]) - s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff]) - s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff]) - - s0 ^= xk[k+0] - s1 ^= xk[k+1] - s2 ^= xk[k+2] - s3 ^= xk[k+3] - - dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0) - dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1) - dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2) - dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3) -} - -// Apply sbox0 to each byte in w. -func subw(w uint32) uint32 { - return uint32(sbox0[w>>24])<<24 | - uint32(sbox0[w>>16&0xff])<<16 | - uint32(sbox0[w>>8&0xff])<<8 | - uint32(sbox0[w&0xff]) -} - -// Rotate -func rotw(w uint32) uint32 { return w<<8 | w>>24 } - -// Key expansion algorithm. See FIPS-197, Figure 11. -// Their rcon[i] is our powx[i-1] << 24. -func expandKeyGo(key []byte, enc, dec []uint32) { - // Encryption key setup. - var i int - nk := len(key) / 4 - for i = 0; i < nk; i++ { - enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3]) - } - for ; i < len(enc); i++ { - t := enc[i-1] - if i%nk == 0 { - t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24) - } else if nk > 6 && i%nk == 4 { - t = subw(t) - } - enc[i] = enc[i-nk] ^ t - } - - // Derive decryption key from encryption key. - // Reverse the 4-word round key sets from enc to produce dec. - // All sets but the first and last get the MixColumn transform applied. - if dec == nil { - return - } - n := len(enc) - for i := 0; i < n; i += 4 { - ei := n - i - 4 - for j := 0; j < 4; j++ { - x := enc[ei+j] - if i > 0 && i+4 < n { - x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]] - } - dec[i+j] = x - } - } -} |
