summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/aes/block.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/aes/block.go')
-rw-r--r--src/pkg/crypto/aes/block.go176
1 files changed, 0 insertions, 176 deletions
diff --git a/src/pkg/crypto/aes/block.go b/src/pkg/crypto/aes/block.go
deleted file mode 100644
index 57a7e9e25..000000000
--- a/src/pkg/crypto/aes/block.go
+++ /dev/null
@@ -1,176 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This Go implementation is derived in part from the reference
-// ANSI C implementation, which carries the following notice:
-//
-// rijndael-alg-fst.c
-//
-// @version 3.0 (December 2000)
-//
-// Optimised ANSI C code for the Rijndael cipher (now AES)
-//
-// @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
-// @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
-// @author Paulo Barreto <paulo.barreto@terra.com.br>
-//
-// This code is hereby placed in the public domain.
-//
-// THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
-// OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
-// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
-// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
-// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
-// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
-// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
-// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-//
-// See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission
-// for implementation details.
-// http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
-// http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
-
-package aes
-
-// Encrypt one block from src into dst, using the expanded key xk.
-func encryptBlockGo(xk []uint32, dst, src []byte) {
- var s0, s1, s2, s3, t0, t1, t2, t3 uint32
-
- s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
- s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
- s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
- s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
-
- // First round just XORs input with key.
- s0 ^= xk[0]
- s1 ^= xk[1]
- s2 ^= xk[2]
- s3 ^= xk[3]
-
- // Middle rounds shuffle using tables.
- // Number of rounds is set by length of expanded key.
- nr := len(xk)/4 - 2 // - 2: one above, one more below
- k := 4
- for r := 0; r < nr; r++ {
- t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)]
- t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)]
- t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)]
- t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)]
- k += 4
- s0, s1, s2, s3 = t0, t1, t2, t3
- }
-
- // Last round uses s-box directly and XORs to produce output.
- s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff])
- s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff])
- s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff])
- s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff])
-
- s0 ^= xk[k+0]
- s1 ^= xk[k+1]
- s2 ^= xk[k+2]
- s3 ^= xk[k+3]
-
- dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
- dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
- dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
- dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
-}
-
-// Decrypt one block from src into dst, using the expanded key xk.
-func decryptBlockGo(xk []uint32, dst, src []byte) {
- var s0, s1, s2, s3, t0, t1, t2, t3 uint32
-
- s0 = uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3])
- s1 = uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7])
- s2 = uint32(src[8])<<24 | uint32(src[9])<<16 | uint32(src[10])<<8 | uint32(src[11])
- s3 = uint32(src[12])<<24 | uint32(src[13])<<16 | uint32(src[14])<<8 | uint32(src[15])
-
- // First round just XORs input with key.
- s0 ^= xk[0]
- s1 ^= xk[1]
- s2 ^= xk[2]
- s3 ^= xk[3]
-
- // Middle rounds shuffle using tables.
- // Number of rounds is set by length of expanded key.
- nr := len(xk)/4 - 2 // - 2: one above, one more below
- k := 4
- for r := 0; r < nr; r++ {
- t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)]
- t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)]
- t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)]
- t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)]
- k += 4
- s0, s1, s2, s3 = t0, t1, t2, t3
- }
-
- // Last round uses s-box directly and XORs to produce output.
- s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff])
- s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff])
- s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff])
- s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff])
-
- s0 ^= xk[k+0]
- s1 ^= xk[k+1]
- s2 ^= xk[k+2]
- s3 ^= xk[k+3]
-
- dst[0], dst[1], dst[2], dst[3] = byte(s0>>24), byte(s0>>16), byte(s0>>8), byte(s0)
- dst[4], dst[5], dst[6], dst[7] = byte(s1>>24), byte(s1>>16), byte(s1>>8), byte(s1)
- dst[8], dst[9], dst[10], dst[11] = byte(s2>>24), byte(s2>>16), byte(s2>>8), byte(s2)
- dst[12], dst[13], dst[14], dst[15] = byte(s3>>24), byte(s3>>16), byte(s3>>8), byte(s3)
-}
-
-// Apply sbox0 to each byte in w.
-func subw(w uint32) uint32 {
- return uint32(sbox0[w>>24])<<24 |
- uint32(sbox0[w>>16&0xff])<<16 |
- uint32(sbox0[w>>8&0xff])<<8 |
- uint32(sbox0[w&0xff])
-}
-
-// Rotate
-func rotw(w uint32) uint32 { return w<<8 | w>>24 }
-
-// Key expansion algorithm. See FIPS-197, Figure 11.
-// Their rcon[i] is our powx[i-1] << 24.
-func expandKeyGo(key []byte, enc, dec []uint32) {
- // Encryption key setup.
- var i int
- nk := len(key) / 4
- for i = 0; i < nk; i++ {
- enc[i] = uint32(key[4*i])<<24 | uint32(key[4*i+1])<<16 | uint32(key[4*i+2])<<8 | uint32(key[4*i+3])
- }
- for ; i < len(enc); i++ {
- t := enc[i-1]
- if i%nk == 0 {
- t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24)
- } else if nk > 6 && i%nk == 4 {
- t = subw(t)
- }
- enc[i] = enc[i-nk] ^ t
- }
-
- // Derive decryption key from encryption key.
- // Reverse the 4-word round key sets from enc to produce dec.
- // All sets but the first and last get the MixColumn transform applied.
- if dec == nil {
- return
- }
- n := len(enc)
- for i := 0; i < n; i += 4 {
- ei := n - i - 4
- for j := 0; j < 4; j++ {
- x := enc[ei+j]
- if i > 0 && i+4 < n {
- x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]]
- }
- dec[i+j] = x
- }
- }
-}