diff options
Diffstat (limited to 'src/pkg/crypto/cipher/gcm.go')
| -rw-r--r-- | src/pkg/crypto/cipher/gcm.go | 343 |
1 files changed, 0 insertions, 343 deletions
diff --git a/src/pkg/crypto/cipher/gcm.go b/src/pkg/crypto/cipher/gcm.go deleted file mode 100644 index bdafd85fc..000000000 --- a/src/pkg/crypto/cipher/gcm.go +++ /dev/null @@ -1,343 +0,0 @@ -// Copyright 2013 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -package cipher - -import ( - "crypto/subtle" - "errors" -) - -// AEAD is a cipher mode providing authenticated encryption with associated -// data. -type AEAD interface { - // NonceSize returns the size of the nonce that must be passed to Seal - // and Open. - NonceSize() int - - // Overhead returns the maximum difference between the lengths of a - // plaintext and ciphertext. - Overhead() int - - // Seal encrypts and authenticates plaintext, authenticates the - // additional data and appends the result to dst, returning the updated - // slice. The nonce must be NonceSize() bytes long and unique for all - // time, for a given key. - // - // The plaintext and dst may alias exactly or not at all. - Seal(dst, nonce, plaintext, data []byte) []byte - - // Open decrypts and authenticates ciphertext, authenticates the - // additional data and, if successful, appends the resulting plaintext - // to dst, returning the updated slice. The nonce must be NonceSize() - // bytes long and both it and the additional data must match the - // value passed to Seal. - // - // The ciphertext and dst may alias exactly or not at all. - Open(dst, nonce, ciphertext, data []byte) ([]byte, error) -} - -// gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM -// standard and make getUint64 suitable for marshaling these values, the bits -// are stored backwards. For example: -// the coefficient of x⁰ can be obtained by v.low >> 63. -// the coefficient of x⁶³ can be obtained by v.low & 1. -// the coefficient of x⁶⁴ can be obtained by v.high >> 63. -// the coefficient of x¹²⁷ can be obtained by v.high & 1. -type gcmFieldElement struct { - low, high uint64 -} - -// gcm represents a Galois Counter Mode with a specific key. See -// http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf -type gcm struct { - cipher Block - // productTable contains the first sixteen powers of the key, H. - // However, they are in bit reversed order. See NewGCM. - productTable [16]gcmFieldElement -} - -// NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode. -func NewGCM(cipher Block) (AEAD, error) { - if cipher.BlockSize() != gcmBlockSize { - return nil, errors.New("cipher: NewGCM requires 128-bit block cipher") - } - - var key [gcmBlockSize]byte - cipher.Encrypt(key[:], key[:]) - - g := &gcm{cipher: cipher} - - // We precompute 16 multiples of |key|. However, when we do lookups - // into this table we'll be using bits from a field element and - // therefore the bits will be in the reverse order. So normally one - // would expect, say, 4*key to be in index 4 of the table but due to - // this bit ordering it will actually be in index 0010 (base 2) = 2. - x := gcmFieldElement{ - getUint64(key[:8]), - getUint64(key[8:]), - } - g.productTable[reverseBits(1)] = x - - for i := 2; i < 16; i += 2 { - g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)]) - g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x) - } - - return g, nil -} - -const ( - gcmBlockSize = 16 - gcmTagSize = 16 - gcmNonceSize = 12 -) - -func (*gcm) NonceSize() int { - return gcmNonceSize -} - -func (*gcm) Overhead() int { - return gcmTagSize -} - -func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte { - if len(nonce) != gcmNonceSize { - panic("cipher: incorrect nonce length given to GCM") - } - - ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize) - - // See GCM spec, section 7.1. - var counter, tagMask [gcmBlockSize]byte - copy(counter[:], nonce) - counter[gcmBlockSize-1] = 1 - - g.cipher.Encrypt(tagMask[:], counter[:]) - gcmInc32(&counter) - - g.counterCrypt(out, plaintext, &counter) - g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) - - return ret -} - -var errOpen = errors.New("cipher: message authentication failed") - -func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { - if len(nonce) != gcmNonceSize { - panic("cipher: incorrect nonce length given to GCM") - } - - if len(ciphertext) < gcmTagSize { - return nil, errOpen - } - tag := ciphertext[len(ciphertext)-gcmTagSize:] - ciphertext = ciphertext[:len(ciphertext)-gcmTagSize] - - // See GCM spec, section 7.1. - var counter, tagMask [gcmBlockSize]byte - copy(counter[:], nonce) - counter[gcmBlockSize-1] = 1 - - g.cipher.Encrypt(tagMask[:], counter[:]) - gcmInc32(&counter) - - var expectedTag [gcmTagSize]byte - g.auth(expectedTag[:], ciphertext, data, &tagMask) - - if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 { - return nil, errOpen - } - - ret, out := sliceForAppend(dst, len(ciphertext)) - g.counterCrypt(out, ciphertext, &counter) - - return ret, nil -} - -// reverseBits reverses the order of the bits of 4-bit number in i. -func reverseBits(i int) int { - i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) - i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) - return i -} - -// gcmAdd adds two elements of GF(2¹²⁸) and returns the sum. -func gcmAdd(x, y *gcmFieldElement) gcmFieldElement { - // Addition in a characteristic 2 field is just XOR. - return gcmFieldElement{x.low ^ y.low, x.high ^ y.high} -} - -// gcmDouble returns the result of doubling an element of GF(2¹²⁸). -func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) { - msbSet := x.high&1 == 1 - - // Because of the bit-ordering, doubling is actually a right shift. - double.high = x.high >> 1 - double.high |= x.low << 63 - double.low = x.low >> 1 - - // If the most-significant bit was set before shifting then it, - // conceptually, becomes a term of x^128. This is greater than the - // irreducible polynomial so the result has to be reduced. The - // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to - // eliminate the term at x^128 which also means subtracting the other - // four terms. In characteristic 2 fields, subtraction == addition == - // XOR. - if msbSet { - double.low ^= 0xe100000000000000 - } - - return -} - -var gcmReductionTable = []uint16{ - 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, - 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, -} - -// mul sets y to y*H, where H is the GCM key, fixed during NewGCM. -func (g *gcm) mul(y *gcmFieldElement) { - var z gcmFieldElement - - for i := 0; i < 2; i++ { - word := y.high - if i == 1 { - word = y.low - } - - // Multiplication works by multiplying z by 16 and adding in - // one of the precomputed multiples of H. - for j := 0; j < 64; j += 4 { - msw := z.high & 0xf - z.high >>= 4 - z.high |= z.low << 60 - z.low >>= 4 - z.low ^= uint64(gcmReductionTable[msw]) << 48 - - // the values in |table| are ordered for - // little-endian bit positions. See the comment - // in NewGCM. - t := &g.productTable[word&0xf] - - z.low ^= t.low - z.high ^= t.high - word >>= 4 - } - } - - *y = z -} - -// updateBlocks extends y with more polynomial terms from blocks, based on -// Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks. -func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) { - for len(blocks) > 0 { - y.low ^= getUint64(blocks) - y.high ^= getUint64(blocks[8:]) - g.mul(y) - blocks = blocks[gcmBlockSize:] - } -} - -// update extends y with more polynomial terms from data. If data is not a -// multiple of gcmBlockSize bytes long then the remainder is zero padded. -func (g *gcm) update(y *gcmFieldElement, data []byte) { - fullBlocks := (len(data) >> 4) << 4 - g.updateBlocks(y, data[:fullBlocks]) - - if len(data) != fullBlocks { - var partialBlock [gcmBlockSize]byte - copy(partialBlock[:], data[fullBlocks:]) - g.updateBlocks(y, partialBlock[:]) - } -} - -// gcmInc32 treats the final four bytes of counterBlock as a big-endian value -// and increments it. -func gcmInc32(counterBlock *[16]byte) { - for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- { - counterBlock[i]++ - if counterBlock[i] != 0 { - break - } - } -} - -// sliceForAppend takes a slice and a requested number of bytes. It returns a -// slice with the contents of the given slice followed by that many bytes and a -// second slice that aliases into it and contains only the extra bytes. If the -// original slice has sufficient capacity then no allocation is performed. -func sliceForAppend(in []byte, n int) (head, tail []byte) { - if total := len(in) + n; cap(in) >= total { - head = in[:total] - } else { - head = make([]byte, total) - copy(head, in) - } - tail = head[len(in):] - return -} - -// counterCrypt crypts in to out using g.cipher in counter mode. -func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { - var mask [gcmBlockSize]byte - - for len(in) >= gcmBlockSize { - g.cipher.Encrypt(mask[:], counter[:]) - gcmInc32(counter) - - xorWords(out, in, mask[:]) - out = out[gcmBlockSize:] - in = in[gcmBlockSize:] - } - - if len(in) > 0 { - g.cipher.Encrypt(mask[:], counter[:]) - gcmInc32(counter) - xorBytes(out, in, mask[:]) - } -} - -// auth calculates GHASH(ciphertext, additionalData), masks the result with -// tagMask and writes the result to out. -func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { - var y gcmFieldElement - g.update(&y, additionalData) - g.update(&y, ciphertext) - - y.low ^= uint64(len(additionalData)) * 8 - y.high ^= uint64(len(ciphertext)) * 8 - - g.mul(&y) - - putUint64(out, y.low) - putUint64(out[8:], y.high) - - xorWords(out, out, tagMask[:]) -} - -func getUint64(data []byte) uint64 { - r := uint64(data[0])<<56 | - uint64(data[1])<<48 | - uint64(data[2])<<40 | - uint64(data[3])<<32 | - uint64(data[4])<<24 | - uint64(data[5])<<16 | - uint64(data[6])<<8 | - uint64(data[7]) - return r -} - -func putUint64(out []byte, v uint64) { - out[0] = byte(v >> 56) - out[1] = byte(v >> 48) - out[2] = byte(v >> 40) - out[3] = byte(v >> 32) - out[4] = byte(v >> 24) - out[5] = byte(v >> 16) - out[6] = byte(v >> 8) - out[7] = byte(v) -} |
