summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/ecdsa/ecdsa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/ecdsa/ecdsa.go')
-rw-r--r--src/pkg/crypto/ecdsa/ecdsa.go36
1 files changed, 19 insertions, 17 deletions
diff --git a/src/pkg/crypto/ecdsa/ecdsa.go b/src/pkg/crypto/ecdsa/ecdsa.go
index 7bce1bc96..b28239b78 100644
--- a/src/pkg/crypto/ecdsa/ecdsa.go
+++ b/src/pkg/crypto/ecdsa/ecdsa.go
@@ -7,21 +7,20 @@
package ecdsa
// References:
-// [NSA]: Suite B implementor's guide to FIPS 186-3,
+// [NSA]: Suite B implementer's guide to FIPS 186-3,
// http://www.nsa.gov/ia/_files/ecdsa.pdf
// [SECG]: SECG, SEC1
// http://www.secg.org/download/aid-780/sec1-v2.pdf
import (
- "big"
"crypto/elliptic"
"io"
- "os"
+ "math/big"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
- *elliptic.Curve
+ elliptic.Curve
X, Y *big.Int
}
@@ -35,22 +34,23 @@ var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the field underlying the given
// curve using the procedure given in [NSA] A.2.1.
-func randFieldElement(c *elliptic.Curve, rand io.Reader) (k *big.Int, err os.Error) {
- b := make([]byte, c.BitSize/8+8)
+func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
+ params := c.Params()
+ b := make([]byte, params.BitSize/8+8)
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
- n := new(big.Int).Sub(c.N, one)
+ n := new(big.Int).Sub(params.N, one)
k.Mod(k, n)
k.Add(k, one)
return
}
// GenerateKey generates a public&private key pair.
-func GenerateKey(c *elliptic.Curve, rand io.Reader) (priv *PrivateKey, err os.Error) {
+func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error) {
k, err := randFieldElement(c, rand)
if err != nil {
return
@@ -67,8 +67,8 @@ func GenerateKey(c *elliptic.Curve, rand io.Reader) (priv *PrivateKey, err os.Er
// about how this is done. [NSA] suggests that this is done in the obvious
// manner, but [SECG] truncates the hash to the bit-length of the curve order
// first. We follow [SECG] because that's what OpenSSL does.
-func hashToInt(hash []byte, c *elliptic.Curve) *big.Int {
- orderBits := c.N.BitLen()
+func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
+ orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
@@ -86,9 +86,10 @@ func hashToInt(hash []byte, c *elliptic.Curve) *big.Int {
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
// rand.
-func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err os.Error) {
+func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
+ N := c.Params().N
var k, kInv *big.Int
for {
@@ -99,9 +100,9 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err os.
return
}
- kInv = new(big.Int).ModInverse(k, c.N)
+ kInv = new(big.Int).ModInverse(k, N)
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
- r.Mod(r, priv.Curve.N)
+ r.Mod(r, N)
if r.Sign() != 0 {
break
}
@@ -111,7 +112,7 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err os.
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
- s.Mod(s, priv.PublicKey.Curve.N)
+ s.Mod(s, N)
if s.Sign() != 0 {
break
}
@@ -125,15 +126,16 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err os.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
// See [NSA] 3.4.2
c := pub.Curve
+ N := c.Params().N
if r.Sign() == 0 || s.Sign() == 0 {
return false
}
- if r.Cmp(c.N) >= 0 || s.Cmp(c.N) >= 0 {
+ if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
e := hashToInt(hash, c)
- w := new(big.Int).ModInverse(s, c.N)
+ w := new(big.Int).ModInverse(s, N)
u1 := e.Mul(e, w)
u2 := w.Mul(r, w)
@@ -144,6 +146,6 @@ func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
return false
}
x, _ := c.Add(x1, y1, x2, y2)
- x.Mod(x, c.N)
+ x.Mod(x, N)
return x.Cmp(r) == 0
}