summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/openpgp/packet/public_key.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/openpgp/packet/public_key.go')
-rw-r--r--src/pkg/crypto/openpgp/packet/public_key.go260
1 files changed, 260 insertions, 0 deletions
diff --git a/src/pkg/crypto/openpgp/packet/public_key.go b/src/pkg/crypto/openpgp/packet/public_key.go
new file mode 100644
index 000000000..4a2ed0aca
--- /dev/null
+++ b/src/pkg/crypto/openpgp/packet/public_key.go
@@ -0,0 +1,260 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packet
+
+import (
+ "big"
+ "crypto/dsa"
+ "crypto/openpgp/error"
+ "crypto/rsa"
+ "crypto/sha1"
+ "encoding/binary"
+ "hash"
+ "io"
+ "os"
+)
+
+// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
+type PublicKey struct {
+ CreationTime uint32 // seconds since the epoch
+ PubKeyAlgo PublicKeyAlgorithm
+ PublicKey interface{} // Either a *rsa.PublicKey or *dsa.PublicKey
+ Fingerprint [20]byte
+ KeyId uint64
+ IsSubKey bool
+
+ n, e, p, q, g, y parsedMPI
+}
+
+func (pk *PublicKey) parse(r io.Reader) (err os.Error) {
+ // RFC 4880, section 5.5.2
+ var buf [6]byte
+ _, err = readFull(r, buf[:])
+ if err != nil {
+ return
+ }
+ if buf[0] != 4 {
+ return error.UnsupportedError("public key version")
+ }
+ pk.CreationTime = uint32(buf[1])<<24 | uint32(buf[2])<<16 | uint32(buf[3])<<8 | uint32(buf[4])
+ pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
+ switch pk.PubKeyAlgo {
+ case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+ err = pk.parseRSA(r)
+ case PubKeyAlgoDSA:
+ err = pk.parseDSA(r)
+ default:
+ err = error.UnsupportedError("public key type")
+ }
+ if err != nil {
+ return
+ }
+
+ // RFC 4880, section 12.2
+ fingerPrint := sha1.New()
+ pk.SerializeSignaturePrefix(fingerPrint)
+ pk.Serialize(fingerPrint)
+ copy(pk.Fingerprint[:], fingerPrint.Sum())
+ pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
+
+ return
+}
+
+// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
+// section 5.5.2.
+func (pk *PublicKey) parseRSA(r io.Reader) (err os.Error) {
+ pk.n.bytes, pk.n.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+ pk.e.bytes, pk.e.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+
+ if len(pk.e.bytes) > 3 {
+ err = error.UnsupportedError("large public exponent")
+ return
+ }
+ rsa := &rsa.PublicKey{
+ N: new(big.Int).SetBytes(pk.n.bytes),
+ E: 0,
+ }
+ for i := 0; i < len(pk.e.bytes); i++ {
+ rsa.E <<= 8
+ rsa.E |= int(pk.e.bytes[i])
+ }
+ pk.PublicKey = rsa
+ return
+}
+
+// parseRSA parses DSA public key material from the given Reader. See RFC 4880,
+// section 5.5.2.
+func (pk *PublicKey) parseDSA(r io.Reader) (err os.Error) {
+ pk.p.bytes, pk.p.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+ pk.q.bytes, pk.q.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+ pk.g.bytes, pk.g.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+ pk.y.bytes, pk.y.bitLength, err = readMPI(r)
+ if err != nil {
+ return
+ }
+
+ dsa := new(dsa.PublicKey)
+ dsa.P = new(big.Int).SetBytes(pk.p.bytes)
+ dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
+ dsa.G = new(big.Int).SetBytes(pk.g.bytes)
+ dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
+ pk.PublicKey = dsa
+ return
+}
+
+// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
+// The prefix is used when calculating a signature over this public key. See
+// RFC 4880, section 5.2.4.
+func (pk *PublicKey) SerializeSignaturePrefix(h hash.Hash) {
+ var pLength uint16
+ switch pk.PubKeyAlgo {
+ case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+ pLength += 2 + uint16(len(pk.n.bytes))
+ pLength += 2 + uint16(len(pk.e.bytes))
+ case PubKeyAlgoDSA:
+ pLength += 2 + uint16(len(pk.p.bytes))
+ pLength += 2 + uint16(len(pk.q.bytes))
+ pLength += 2 + uint16(len(pk.g.bytes))
+ pLength += 2 + uint16(len(pk.y.bytes))
+ default:
+ panic("unknown public key algorithm")
+ }
+ pLength += 6
+ h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
+ return
+}
+
+// Serialize marshals the PublicKey to w in the form of an OpenPGP public key
+// packet, not including the packet header.
+func (pk *PublicKey) Serialize(w io.Writer) (err os.Error) {
+ var buf [6]byte
+ buf[0] = 4
+ buf[1] = byte(pk.CreationTime >> 24)
+ buf[2] = byte(pk.CreationTime >> 16)
+ buf[3] = byte(pk.CreationTime >> 8)
+ buf[4] = byte(pk.CreationTime)
+ buf[5] = byte(pk.PubKeyAlgo)
+
+ _, err = w.Write(buf[:])
+ if err != nil {
+ return
+ }
+
+ switch pk.PubKeyAlgo {
+ case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+ return writeMPIs(w, pk.n, pk.e)
+ case PubKeyAlgoDSA:
+ return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
+ }
+ return error.InvalidArgumentError("bad public-key algorithm")
+}
+
+// CanSign returns true iff this public key can generate signatures
+func (pk *PublicKey) CanSign() bool {
+ return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElgamal
+}
+
+// VerifySignature returns nil iff sig is a valid signature, made by this
+// public key, of the data hashed into signed. signed is mutated by this call.
+func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err os.Error) {
+ if !pk.CanSign() {
+ return error.InvalidArgumentError("public key cannot generate signatures")
+ }
+
+ rsaPublicKey, ok := pk.PublicKey.(*rsa.PublicKey)
+ if !ok {
+ // TODO(agl): support DSA and ECDSA keys.
+ return error.UnsupportedError("non-RSA public key")
+ }
+
+ signed.Write(sig.HashSuffix)
+ hashBytes := signed.Sum()
+
+ if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
+ return error.SignatureError("hash tag doesn't match")
+ }
+
+ err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.Signature)
+ if err != nil {
+ return error.SignatureError("RSA verification failure")
+ }
+ return nil
+}
+
+// VerifyKeySignature returns nil iff sig is a valid signature, make by this
+// public key, of the public key in signed.
+func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err os.Error) {
+ h := sig.Hash.New()
+ if h == nil {
+ return error.UnsupportedError("hash function")
+ }
+
+ // RFC 4880, section 5.2.4
+ pk.SerializeSignaturePrefix(h)
+ pk.Serialize(h)
+ signed.SerializeSignaturePrefix(h)
+ signed.Serialize(h)
+
+ return pk.VerifySignature(h, sig)
+}
+
+// VerifyUserIdSignature returns nil iff sig is a valid signature, make by this
+// public key, of the given user id.
+func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Error) {
+ h := sig.Hash.New()
+ if h == nil {
+ return error.UnsupportedError("hash function")
+ }
+
+ // RFC 4880, section 5.2.4
+ pk.SerializeSignaturePrefix(h)
+ pk.Serialize(h)
+
+ var buf [5]byte
+ buf[0] = 0xb4
+ buf[1] = byte(len(id) >> 24)
+ buf[2] = byte(len(id) >> 16)
+ buf[3] = byte(len(id) >> 8)
+ buf[4] = byte(len(id))
+ h.Write(buf[:])
+ h.Write([]byte(id))
+
+ return pk.VerifySignature(h, sig)
+}
+
+// A parsedMPI is used to store the contents of a big integer, along with the
+// bit length that was specified in the original input. This allows the MPI to
+// be reserialised exactly.
+type parsedMPI struct {
+ bytes []byte
+ bitLength uint16
+}
+
+// writeMPIs is a utility function for serialising several big integers to the
+// given Writer.
+func writeMPIs(w io.Writer, mpis ...parsedMPI) (err os.Error) {
+ for _, mpi := range mpis {
+ err = writeMPI(w, mpi.bitLength, mpi.bytes)
+ if err != nil {
+ return
+ }
+ }
+ return
+}