diff options
Diffstat (limited to 'src/pkg/crypto/rsa/rsa.go')
-rw-r--r-- | src/pkg/crypto/rsa/rsa.go | 538 |
1 files changed, 0 insertions, 538 deletions
diff --git a/src/pkg/crypto/rsa/rsa.go b/src/pkg/crypto/rsa/rsa.go deleted file mode 100644 index bce6ba4eb..000000000 --- a/src/pkg/crypto/rsa/rsa.go +++ /dev/null @@ -1,538 +0,0 @@ -// Copyright 2009 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package rsa implements RSA encryption as specified in PKCS#1. -package rsa - -import ( - "crypto/rand" - "crypto/subtle" - "errors" - "hash" - "io" - "math/big" -) - -var bigZero = big.NewInt(0) -var bigOne = big.NewInt(1) - -// A PublicKey represents the public part of an RSA key. -type PublicKey struct { - N *big.Int // modulus - E int // public exponent -} - -var ( - errPublicModulus = errors.New("crypto/rsa: missing public modulus") - errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") - errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") -) - -// checkPub sanity checks the public key before we use it. -// We require pub.E to fit into a 32-bit integer so that we -// do not have different behavior depending on whether -// int is 32 or 64 bits. See also -// http://www.imperialviolet.org/2012/03/16/rsae.html. -func checkPub(pub *PublicKey) error { - if pub.N == nil { - return errPublicModulus - } - if pub.E < 2 { - return errPublicExponentSmall - } - if pub.E > 1<<31-1 { - return errPublicExponentLarge - } - return nil -} - -// A PrivateKey represents an RSA key -type PrivateKey struct { - PublicKey // public part. - D *big.Int // private exponent - Primes []*big.Int // prime factors of N, has >= 2 elements. - - // Precomputed contains precomputed values that speed up private - // operations, if available. - Precomputed PrecomputedValues -} - -type PrecomputedValues struct { - Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) - Qinv *big.Int // Q^-1 mod P - - // CRTValues is used for the 3rd and subsequent primes. Due to a - // historical accident, the CRT for the first two primes is handled - // differently in PKCS#1 and interoperability is sufficiently - // important that we mirror this. - CRTValues []CRTValue -} - -// CRTValue contains the precomputed chinese remainder theorem values. -type CRTValue struct { - Exp *big.Int // D mod (prime-1). - Coeff *big.Int // R·Coeff ≡ 1 mod Prime. - R *big.Int // product of primes prior to this (inc p and q). -} - -// Validate performs basic sanity checks on the key. -// It returns nil if the key is valid, or else an error describing a problem. -func (priv *PrivateKey) Validate() error { - if err := checkPub(&priv.PublicKey); err != nil { - return err - } - - // Check that the prime factors are actually prime. Note that this is - // just a sanity check. Since the random witnesses chosen by - // ProbablyPrime are deterministic, given the candidate number, it's - // easy for an attack to generate composites that pass this test. - for _, prime := range priv.Primes { - if !prime.ProbablyPrime(20) { - return errors.New("crypto/rsa: prime factor is composite") - } - } - - // Check that Πprimes == n. - modulus := new(big.Int).Set(bigOne) - for _, prime := range priv.Primes { - modulus.Mul(modulus, prime) - } - if modulus.Cmp(priv.N) != 0 { - return errors.New("crypto/rsa: invalid modulus") - } - - // Check that de ≡ 1 mod p-1, for each prime. - // This implies that e is coprime to each p-1 as e has a multiplicative - // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = - // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 - // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. - congruence := new(big.Int) - de := new(big.Int).SetInt64(int64(priv.E)) - de.Mul(de, priv.D) - for _, prime := range priv.Primes { - pminus1 := new(big.Int).Sub(prime, bigOne) - congruence.Mod(de, pminus1) - if congruence.Cmp(bigOne) != 0 { - return errors.New("crypto/rsa: invalid exponents") - } - } - return nil -} - -// GenerateKey generates an RSA keypair of the given bit size using the -// random source random (for example, crypto/rand.Reader). -func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { - return GenerateMultiPrimeKey(random, 2, bits) -} - -// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit -// size and the given random source, as suggested in [1]. Although the public -// keys are compatible (actually, indistinguishable) from the 2-prime case, -// the private keys are not. Thus it may not be possible to export multi-prime -// private keys in certain formats or to subsequently import them into other -// code. -// -// Table 1 in [2] suggests maximum numbers of primes for a given size. -// -// [1] US patent 4405829 (1972, expired) -// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf -func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { - priv = new(PrivateKey) - priv.E = 65537 - - if nprimes < 2 { - return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") - } - - primes := make([]*big.Int, nprimes) - -NextSetOfPrimes: - for { - todo := bits - // crypto/rand should set the top two bits in each prime. - // Thus each prime has the form - // p_i = 2^bitlen(p_i) × 0.11... (in base 2). - // And the product is: - // P = 2^todo × α - // where α is the product of nprimes numbers of the form 0.11... - // - // If α < 1/2 (which can happen for nprimes > 2), we need to - // shift todo to compensate for lost bits: the mean value of 0.11... - // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 - // will give good results. - if nprimes >= 7 { - todo += (nprimes - 2) / 5 - } - for i := 0; i < nprimes; i++ { - primes[i], err = rand.Prime(random, todo/(nprimes-i)) - if err != nil { - return nil, err - } - todo -= primes[i].BitLen() - } - - // Make sure that primes is pairwise unequal. - for i, prime := range primes { - for j := 0; j < i; j++ { - if prime.Cmp(primes[j]) == 0 { - continue NextSetOfPrimes - } - } - } - - n := new(big.Int).Set(bigOne) - totient := new(big.Int).Set(bigOne) - pminus1 := new(big.Int) - for _, prime := range primes { - n.Mul(n, prime) - pminus1.Sub(prime, bigOne) - totient.Mul(totient, pminus1) - } - if n.BitLen() != bits { - // This should never happen for nprimes == 2 because - // crypto/rand should set the top two bits in each prime. - // For nprimes > 2 we hope it does not happen often. - continue NextSetOfPrimes - } - - g := new(big.Int) - priv.D = new(big.Int) - y := new(big.Int) - e := big.NewInt(int64(priv.E)) - g.GCD(priv.D, y, e, totient) - - if g.Cmp(bigOne) == 0 { - if priv.D.Sign() < 0 { - priv.D.Add(priv.D, totient) - } - priv.Primes = primes - priv.N = n - - break - } - } - - priv.Precompute() - return -} - -// incCounter increments a four byte, big-endian counter. -func incCounter(c *[4]byte) { - if c[3]++; c[3] != 0 { - return - } - if c[2]++; c[2] != 0 { - return - } - if c[1]++; c[1] != 0 { - return - } - c[0]++ -} - -// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function -// specified in PKCS#1 v2.1. -func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { - var counter [4]byte - var digest []byte - - done := 0 - for done < len(out) { - hash.Write(seed) - hash.Write(counter[0:4]) - digest = hash.Sum(digest[:0]) - hash.Reset() - - for i := 0; i < len(digest) && done < len(out); i++ { - out[done] ^= digest[i] - done++ - } - incCounter(&counter) - } -} - -// ErrMessageTooLong is returned when attempting to encrypt a message which is -// too large for the size of the public key. -var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") - -func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { - e := big.NewInt(int64(pub.E)) - c.Exp(m, e, pub.N) - return c -} - -// EncryptOAEP encrypts the given message with RSA-OAEP. -// The message must be no longer than the length of the public modulus less -// twice the hash length plus 2. -func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { - if err := checkPub(pub); err != nil { - return nil, err - } - hash.Reset() - k := (pub.N.BitLen() + 7) / 8 - if len(msg) > k-2*hash.Size()-2 { - err = ErrMessageTooLong - return - } - - hash.Write(label) - lHash := hash.Sum(nil) - hash.Reset() - - em := make([]byte, k) - seed := em[1 : 1+hash.Size()] - db := em[1+hash.Size():] - - copy(db[0:hash.Size()], lHash) - db[len(db)-len(msg)-1] = 1 - copy(db[len(db)-len(msg):], msg) - - _, err = io.ReadFull(random, seed) - if err != nil { - return - } - - mgf1XOR(db, hash, seed) - mgf1XOR(seed, hash, db) - - m := new(big.Int) - m.SetBytes(em) - c := encrypt(new(big.Int), pub, m) - out = c.Bytes() - - if len(out) < k { - // If the output is too small, we need to left-pad with zeros. - t := make([]byte, k) - copy(t[k-len(out):], out) - out = t - } - - return -} - -// ErrDecryption represents a failure to decrypt a message. -// It is deliberately vague to avoid adaptive attacks. -var ErrDecryption = errors.New("crypto/rsa: decryption error") - -// ErrVerification represents a failure to verify a signature. -// It is deliberately vague to avoid adaptive attacks. -var ErrVerification = errors.New("crypto/rsa: verification error") - -// modInverse returns ia, the inverse of a in the multiplicative group of prime -// order n. It requires that a be a member of the group (i.e. less than n). -func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { - g := new(big.Int) - x := new(big.Int) - y := new(big.Int) - g.GCD(x, y, a, n) - if g.Cmp(bigOne) != 0 { - // In this case, a and n aren't coprime and we cannot calculate - // the inverse. This happens because the values of n are nearly - // prime (being the product of two primes) rather than truly - // prime. - return - } - - if x.Cmp(bigOne) < 0 { - // 0 is not the multiplicative inverse of any element so, if x - // < 1, then x is negative. - x.Add(x, n) - } - - return x, true -} - -// Precompute performs some calculations that speed up private key operations -// in the future. -func (priv *PrivateKey) Precompute() { - if priv.Precomputed.Dp != nil { - return - } - - priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) - priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) - - priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) - priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) - - priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) - - r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) - priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) - for i := 2; i < len(priv.Primes); i++ { - prime := priv.Primes[i] - values := &priv.Precomputed.CRTValues[i-2] - - values.Exp = new(big.Int).Sub(prime, bigOne) - values.Exp.Mod(priv.D, values.Exp) - - values.R = new(big.Int).Set(r) - values.Coeff = new(big.Int).ModInverse(r, prime) - - r.Mul(r, prime) - } -} - -// decrypt performs an RSA decryption, resulting in a plaintext integer. If a -// random source is given, RSA blinding is used. -func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { - // TODO(agl): can we get away with reusing blinds? - if c.Cmp(priv.N) > 0 { - err = ErrDecryption - return - } - - var ir *big.Int - if random != nil { - // Blinding enabled. Blinding involves multiplying c by r^e. - // Then the decryption operation performs (m^e * r^e)^d mod n - // which equals mr mod n. The factor of r can then be removed - // by multiplying by the multiplicative inverse of r. - - var r *big.Int - - for { - r, err = rand.Int(random, priv.N) - if err != nil { - return - } - if r.Cmp(bigZero) == 0 { - r = bigOne - } - var ok bool - ir, ok = modInverse(r, priv.N) - if ok { - break - } - } - bigE := big.NewInt(int64(priv.E)) - rpowe := new(big.Int).Exp(r, bigE, priv.N) - cCopy := new(big.Int).Set(c) - cCopy.Mul(cCopy, rpowe) - cCopy.Mod(cCopy, priv.N) - c = cCopy - } - - if priv.Precomputed.Dp == nil { - m = new(big.Int).Exp(c, priv.D, priv.N) - } else { - // We have the precalculated values needed for the CRT. - m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) - m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) - m.Sub(m, m2) - if m.Sign() < 0 { - m.Add(m, priv.Primes[0]) - } - m.Mul(m, priv.Precomputed.Qinv) - m.Mod(m, priv.Primes[0]) - m.Mul(m, priv.Primes[1]) - m.Add(m, m2) - - for i, values := range priv.Precomputed.CRTValues { - prime := priv.Primes[2+i] - m2.Exp(c, values.Exp, prime) - m2.Sub(m2, m) - m2.Mul(m2, values.Coeff) - m2.Mod(m2, prime) - if m2.Sign() < 0 { - m2.Add(m2, prime) - } - m2.Mul(m2, values.R) - m.Add(m, m2) - } - } - - if ir != nil { - // Unblind. - m.Mul(m, ir) - m.Mod(m, priv.N) - } - - return -} - -// DecryptOAEP decrypts ciphertext using RSA-OAEP. -// If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks. -func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { - if err := checkPub(&priv.PublicKey); err != nil { - return nil, err - } - k := (priv.N.BitLen() + 7) / 8 - if len(ciphertext) > k || - k < hash.Size()*2+2 { - err = ErrDecryption - return - } - - c := new(big.Int).SetBytes(ciphertext) - - m, err := decrypt(random, priv, c) - if err != nil { - return - } - - hash.Write(label) - lHash := hash.Sum(nil) - hash.Reset() - - // Converting the plaintext number to bytes will strip any - // leading zeros so we may have to left pad. We do this unconditionally - // to avoid leaking timing information. (Although we still probably - // leak the number of leading zeros. It's not clear that we can do - // anything about this.) - em := leftPad(m.Bytes(), k) - - firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) - - seed := em[1 : hash.Size()+1] - db := em[hash.Size()+1:] - - mgf1XOR(seed, hash, db) - mgf1XOR(db, hash, seed) - - lHash2 := db[0:hash.Size()] - - // We have to validate the plaintext in constant time in order to avoid - // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal - // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 - // v2.0. In J. Kilian, editor, Advances in Cryptology. - lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) - - // The remainder of the plaintext must be zero or more 0x00, followed - // by 0x01, followed by the message. - // lookingForIndex: 1 iff we are still looking for the 0x01 - // index: the offset of the first 0x01 byte - // invalid: 1 iff we saw a non-zero byte before the 0x01. - var lookingForIndex, index, invalid int - lookingForIndex = 1 - rest := db[hash.Size():] - - for i := 0; i < len(rest); i++ { - equals0 := subtle.ConstantTimeByteEq(rest[i], 0) - equals1 := subtle.ConstantTimeByteEq(rest[i], 1) - index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) - lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) - invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) - } - - if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { - err = ErrDecryption - return - } - - msg = rest[index+1:] - return -} - -// leftPad returns a new slice of length size. The contents of input are right -// aligned in the new slice. -func leftPad(input []byte, size int) (out []byte) { - n := len(input) - if n > size { - n = size - } - out = make([]byte, size) - copy(out[len(out)-n:], input) - return -} |