summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/rsa/rsa.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/rsa/rsa.go')
-rw-r--r--src/pkg/crypto/rsa/rsa.go92
1 files changed, 15 insertions, 77 deletions
diff --git a/src/pkg/crypto/rsa/rsa.go b/src/pkg/crypto/rsa/rsa.go
index e1813dbf9..380f71570 100644
--- a/src/pkg/crypto/rsa/rsa.go
+++ b/src/pkg/crypto/rsa/rsa.go
@@ -9,6 +9,7 @@ package rsa
import (
"big"
+ "crypto/rand"
"crypto/subtle"
"hash"
"io"
@@ -18,69 +19,6 @@ import (
var bigZero = big.NewInt(0)
var bigOne = big.NewInt(1)
-// randomPrime returns a number, p, of the given size, such that p is prime
-// with high probability.
-func randomPrime(rand io.Reader, bits int) (p *big.Int, err os.Error) {
- if bits < 1 {
- err = os.EINVAL
- }
-
- bytes := make([]byte, (bits+7)/8)
- p = new(big.Int)
-
- for {
- _, err = io.ReadFull(rand, bytes)
- if err != nil {
- return
- }
-
- // Don't let the value be too small.
- bytes[0] |= 0x80
- // Make the value odd since an even number this large certainly isn't prime.
- bytes[len(bytes)-1] |= 1
-
- p.SetBytes(bytes)
- if big.ProbablyPrime(p, 20) {
- return
- }
- }
-
- return
-}
-
-// randomNumber returns a uniform random value in [0, max).
-func randomNumber(rand io.Reader, max *big.Int) (n *big.Int, err os.Error) {
- k := (max.BitLen() + 7) / 8
-
- // r is the number of bits in the used in the most significant byte of
- // max.
- r := uint(max.BitLen() % 8)
- if r == 0 {
- r = 8
- }
-
- bytes := make([]byte, k)
- n = new(big.Int)
-
- for {
- _, err = io.ReadFull(rand, bytes)
- if err != nil {
- return
- }
-
- // Clear bits in the first byte to increase the probability
- // that the candidate is < max.
- bytes[0] &= uint8(int(1<<r) - 1)
-
- n.SetBytes(bytes)
- if n.Cmp(max) < 0 {
- return
- }
- }
-
- return
-}
-
// A PublicKey represents the public part of an RSA key.
type PublicKey struct {
N *big.Int // modulus
@@ -94,7 +32,7 @@ type PrivateKey struct {
Primes []*big.Int // prime factors of N, has >= 2 elements.
// Precomputed contains precomputed values that speed up private
- // operations, if availible.
+ // operations, if available.
Precomputed PrecomputedValues
}
@@ -126,7 +64,7 @@ func (priv *PrivateKey) Validate() os.Error {
// easy for an attack to generate composites that pass this test.
for _, prime := range priv.Primes {
if !big.ProbablyPrime(prime, 20) {
- return os.ErrorString("Prime factor is composite")
+ return os.ErrorString("prime factor is composite")
}
}
@@ -162,8 +100,8 @@ func (priv *PrivateKey) Validate() os.Error {
}
// GenerateKey generates an RSA keypair of the given bit size.
-func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
- return GenerateMultiPrimeKey(rand, 2, bits)
+func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err os.Error) {
+ return GenerateMultiPrimeKey(random, 2, bits)
}
// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
@@ -176,7 +114,7 @@ func GenerateKey(rand io.Reader, bits int) (priv *PrivateKey, err os.Error) {
//
// [1] US patent 4405829 (1972, expired)
// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
-func GenerateMultiPrimeKey(rand io.Reader, nprimes int, bits int) (priv *PrivateKey, err os.Error) {
+func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err os.Error) {
priv = new(PrivateKey)
// Smaller public exponents lead to faster public key
// operations. Since the exponent must be coprime to
@@ -198,7 +136,7 @@ NextSetOfPrimes:
for {
todo := bits
for i := 0; i < nprimes; i++ {
- primes[i], err = randomPrime(rand, todo/(nprimes-i))
+ primes[i], err = rand.Prime(random, todo/(nprimes-i))
if err != nil {
return nil, err
}
@@ -293,7 +231,7 @@ func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
// EncryptOAEP encrypts the given message with RSA-OAEP.
// The message must be no longer than the length of the public modulus less
// twice the hash length plus 2.
-func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
+func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err os.Error) {
hash.Reset()
k := (pub.N.BitLen() + 7) / 8
if len(msg) > k-2*hash.Size()-2 {
@@ -313,7 +251,7 @@ func EncryptOAEP(hash hash.Hash, rand io.Reader, pub *PublicKey, msg []byte, lab
db[len(db)-len(msg)-1] = 1
copy(db[len(db)-len(msg):], msg)
- _, err = io.ReadFull(rand, seed)
+ _, err = io.ReadFull(random, seed)
if err != nil {
return
}
@@ -405,7 +343,7 @@ func (priv *PrivateKey) Precompute() {
// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
// random source is given, RSA blinding is used.
-func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
+func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.Error) {
// TODO(agl): can we get away with reusing blinds?
if c.Cmp(priv.N) > 0 {
err = DecryptionError{}
@@ -413,16 +351,16 @@ func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.E
}
var ir *big.Int
- if rand != nil {
+ if random != nil {
// Blinding enabled. Blinding involves multiplying c by r^e.
// Then the decryption operation performs (m^e * r^e)^d mod n
// which equals mr mod n. The factor of r can then be removed
- // by multipling by the multiplicative inverse of r.
+ // by multiplying by the multiplicative inverse of r.
var r *big.Int
for {
- r, err = randomNumber(rand, priv.N)
+ r, err = rand.Int(random, priv.N)
if err != nil {
return
}
@@ -483,7 +421,7 @@ func decrypt(rand io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err os.E
// DecryptOAEP decrypts ciphertext using RSA-OAEP.
// If rand != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
-func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
+func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err os.Error) {
k := (priv.N.BitLen() + 7) / 8
if len(ciphertext) > k ||
k < hash.Size()*2+2 {
@@ -493,7 +431,7 @@ func DecryptOAEP(hash hash.Hash, rand io.Reader, priv *PrivateKey, ciphertext []
c := new(big.Int).SetBytes(ciphertext)
- m, err := decrypt(rand, priv, c)
+ m, err := decrypt(random, priv, c)
if err != nil {
return
}