summaryrefslogtreecommitdiff
path: root/src/pkg/crypto/rsa
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/crypto/rsa')
-rw-r--r--src/pkg/crypto/rsa/pkcs1v15.go292
-rw-r--r--src/pkg/crypto/rsa/pkcs1v15_test.go271
-rw-r--r--src/pkg/crypto/rsa/pss.go282
-rw-r--r--src/pkg/crypto/rsa/pss_test.go249
-rw-r--r--src/pkg/crypto/rsa/rsa.go538
-rw-r--r--src/pkg/crypto/rsa/rsa_test.go392
-rw-r--r--src/pkg/crypto/rsa/testdata/pss-vect.txt.bz2bin28526 -> 0 bytes
7 files changed, 0 insertions, 2024 deletions
diff --git a/src/pkg/crypto/rsa/pkcs1v15.go b/src/pkg/crypto/rsa/pkcs1v15.go
deleted file mode 100644
index 59e8bb5b7..000000000
--- a/src/pkg/crypto/rsa/pkcs1v15.go
+++ /dev/null
@@ -1,292 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-import (
- "crypto"
- "crypto/subtle"
- "errors"
- "io"
- "math/big"
-)
-
-// This file implements encryption and decryption using PKCS#1 v1.5 padding.
-
-// EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5.
-// The message must be no longer than the length of the public modulus minus 11 bytes.
-// WARNING: use of this function to encrypt plaintexts other than session keys
-// is dangerous. Use RSA OAEP in new protocols.
-func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) {
- if err := checkPub(pub); err != nil {
- return nil, err
- }
- k := (pub.N.BitLen() + 7) / 8
- if len(msg) > k-11 {
- err = ErrMessageTooLong
- return
- }
-
- // EM = 0x00 || 0x02 || PS || 0x00 || M
- em := make([]byte, k)
- em[1] = 2
- ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
- err = nonZeroRandomBytes(ps, rand)
- if err != nil {
- return
- }
- em[len(em)-len(msg)-1] = 0
- copy(mm, msg)
-
- m := new(big.Int).SetBytes(em)
- c := encrypt(new(big.Int), pub, m)
-
- copyWithLeftPad(em, c.Bytes())
- out = em
- return
-}
-
-// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
-// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
-func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return nil, err
- }
- valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
- if err != nil {
- return
- }
- if valid == 0 {
- return nil, ErrDecryption
- }
- out = out[index:]
- return
-}
-
-// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
-// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
-// It returns an error if the ciphertext is the wrong length or if the
-// ciphertext is greater than the public modulus. Otherwise, no error is
-// returned. If the padding is valid, the resulting plaintext message is copied
-// into key. Otherwise, key is unchanged. These alternatives occur in constant
-// time. It is intended that the user of this function generate a random
-// session key beforehand and continue the protocol with the resulting value.
-// This will remove any possibility that an attacker can learn any information
-// about the plaintext.
-// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
-// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
-// (Crypto '98).
-func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return err
- }
- k := (priv.N.BitLen() + 7) / 8
- if k-(len(key)+3+8) < 0 {
- return ErrDecryption
- }
-
- valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
- if err != nil {
- return
- }
-
- if len(em) != k {
- // This should be impossible because decryptPKCS1v15 always
- // returns the full slice.
- return ErrDecryption
- }
-
- valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
- subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
- return
-}
-
-// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
-// rand is not nil. It returns one or zero in valid that indicates whether the
-// plaintext was correctly structured. In either case, the plaintext is
-// returned in em so that it may be read independently of whether it was valid
-// in order to maintain constant memory access patterns. If the plaintext was
-// valid then index contains the index of the original message in em.
-func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
- k := (priv.N.BitLen() + 7) / 8
- if k < 11 {
- err = ErrDecryption
- return
- }
-
- c := new(big.Int).SetBytes(ciphertext)
- m, err := decrypt(rand, priv, c)
- if err != nil {
- return
- }
-
- em = leftPad(m.Bytes(), k)
- firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
- secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
-
- // The remainder of the plaintext must be a string of non-zero random
- // octets, followed by a 0, followed by the message.
- // lookingForIndex: 1 iff we are still looking for the zero.
- // index: the offset of the first zero byte.
- lookingForIndex := 1
-
- for i := 2; i < len(em); i++ {
- equals0 := subtle.ConstantTimeByteEq(em[i], 0)
- index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
- lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
- }
-
- // The PS padding must be at least 8 bytes long, and it starts two
- // bytes into em.
- validPS := subtle.ConstantTimeLessOrEq(2+8, index)
-
- valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
- index = subtle.ConstantTimeSelect(valid, index+1, 0)
- return valid, em, index, nil
-}
-
-// nonZeroRandomBytes fills the given slice with non-zero random octets.
-func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
- _, err = io.ReadFull(rand, s)
- if err != nil {
- return
- }
-
- for i := 0; i < len(s); i++ {
- for s[i] == 0 {
- _, err = io.ReadFull(rand, s[i:i+1])
- if err != nil {
- return
- }
- // In tests, the PRNG may return all zeros so we do
- // this to break the loop.
- s[i] ^= 0x42
- }
- }
-
- return
-}
-
-// These are ASN1 DER structures:
-// DigestInfo ::= SEQUENCE {
-// digestAlgorithm AlgorithmIdentifier,
-// digest OCTET STRING
-// }
-// For performance, we don't use the generic ASN1 encoder. Rather, we
-// precompute a prefix of the digest value that makes a valid ASN1 DER string
-// with the correct contents.
-var hashPrefixes = map[crypto.Hash][]byte{
- crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
- crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
- crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
- crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
- crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
- crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
- crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
- crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
-}
-
-// SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5.
-// Note that hashed must be the result of hashing the input message using the
-// given hash function. If hash is zero, hashed is signed directly. This isn't
-// advisable except for interoperability.
-func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) {
- hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
- if err != nil {
- return
- }
-
- tLen := len(prefix) + hashLen
- k := (priv.N.BitLen() + 7) / 8
- if k < tLen+11 {
- return nil, ErrMessageTooLong
- }
-
- // EM = 0x00 || 0x01 || PS || 0x00 || T
- em := make([]byte, k)
- em[1] = 1
- for i := 2; i < k-tLen-1; i++ {
- em[i] = 0xff
- }
- copy(em[k-tLen:k-hashLen], prefix)
- copy(em[k-hashLen:k], hashed)
-
- m := new(big.Int).SetBytes(em)
- c, err := decrypt(rand, priv, m)
- if err != nil {
- return
- }
-
- copyWithLeftPad(em, c.Bytes())
- s = em
- return
-}
-
-// VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
-// hashed is the result of hashing the input message using the given hash
-// function and sig is the signature. A valid signature is indicated by
-// returning a nil error. If hash is zero then hashed is used directly. This
-// isn't advisable except for interoperability.
-func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) {
- hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
- if err != nil {
- return
- }
-
- tLen := len(prefix) + hashLen
- k := (pub.N.BitLen() + 7) / 8
- if k < tLen+11 {
- err = ErrVerification
- return
- }
-
- c := new(big.Int).SetBytes(sig)
- m := encrypt(new(big.Int), pub, c)
- em := leftPad(m.Bytes(), k)
- // EM = 0x00 || 0x01 || PS || 0x00 || T
-
- ok := subtle.ConstantTimeByteEq(em[0], 0)
- ok &= subtle.ConstantTimeByteEq(em[1], 1)
- ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
- ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
- ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
-
- for i := 2; i < k-tLen-1; i++ {
- ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
- }
-
- if ok != 1 {
- return ErrVerification
- }
-
- return nil
-}
-
-func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
- // Special case: crypto.Hash(0) is used to indicate that the data is
- // signed directly.
- if hash == 0 {
- return inLen, nil, nil
- }
-
- hashLen = hash.Size()
- if inLen != hashLen {
- return 0, nil, errors.New("crypto/rsa: input must be hashed message")
- }
- prefix, ok := hashPrefixes[hash]
- if !ok {
- return 0, nil, errors.New("crypto/rsa: unsupported hash function")
- }
- return
-}
-
-// copyWithLeftPad copies src to the end of dest, padding with zero bytes as
-// needed.
-func copyWithLeftPad(dest, src []byte) {
- numPaddingBytes := len(dest) - len(src)
- for i := 0; i < numPaddingBytes; i++ {
- dest[i] = 0
- }
- copy(dest[numPaddingBytes:], src)
-}
diff --git a/src/pkg/crypto/rsa/pkcs1v15_test.go b/src/pkg/crypto/rsa/pkcs1v15_test.go
deleted file mode 100644
index 2dc5dbc2c..000000000
--- a/src/pkg/crypto/rsa/pkcs1v15_test.go
+++ /dev/null
@@ -1,271 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-import (
- "bytes"
- "crypto"
- "crypto/rand"
- "crypto/sha1"
- "encoding/base64"
- "encoding/hex"
- "io"
- "math/big"
- "testing"
- "testing/quick"
-)
-
-func decodeBase64(in string) []byte {
- out := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
- n, err := base64.StdEncoding.Decode(out, []byte(in))
- if err != nil {
- return nil
- }
- return out[0:n]
-}
-
-type DecryptPKCS1v15Test struct {
- in, out string
-}
-
-// These test vectors were generated with `openssl rsautl -pkcs -encrypt`
-var decryptPKCS1v15Tests = []DecryptPKCS1v15Test{
- {
- "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==",
- "x",
- },
- {
- "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==",
- "testing.",
- },
- {
- "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==",
- "testing.\n",
- },
- {
- "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==",
- "01234567890123456789012345678901234567890123456789012",
- },
-}
-
-func TestDecryptPKCS1v15(t *testing.T) {
- for i, test := range decryptPKCS1v15Tests {
- out, err := DecryptPKCS1v15(nil, rsaPrivateKey, decodeBase64(test.in))
- if err != nil {
- t.Errorf("#%d error decrypting", i)
- }
- want := []byte(test.out)
- if !bytes.Equal(out, want) {
- t.Errorf("#%d got:%#v want:%#v", i, out, want)
- }
- }
-}
-
-func TestEncryptPKCS1v15(t *testing.T) {
- random := rand.Reader
- k := (rsaPrivateKey.N.BitLen() + 7) / 8
-
- tryEncryptDecrypt := func(in []byte, blind bool) bool {
- if len(in) > k-11 {
- in = in[0 : k-11]
- }
-
- ciphertext, err := EncryptPKCS1v15(random, &rsaPrivateKey.PublicKey, in)
- if err != nil {
- t.Errorf("error encrypting: %s", err)
- return false
- }
-
- var rand io.Reader
- if !blind {
- rand = nil
- } else {
- rand = random
- }
- plaintext, err := DecryptPKCS1v15(rand, rsaPrivateKey, ciphertext)
- if err != nil {
- t.Errorf("error decrypting: %s", err)
- return false
- }
-
- if !bytes.Equal(plaintext, in) {
- t.Errorf("output mismatch: %#v %#v", plaintext, in)
- return false
- }
- return true
- }
-
- config := new(quick.Config)
- if testing.Short() {
- config.MaxCount = 10
- }
- quick.Check(tryEncryptDecrypt, config)
-}
-
-// These test vectors were generated with `openssl rsautl -pkcs -encrypt`
-var decryptPKCS1v15SessionKeyTests = []DecryptPKCS1v15Test{
- {
- "e6ukkae6Gykq0fKzYwULpZehX+UPXYzMoB5mHQUDEiclRbOTqas4Y0E6nwns1BBpdvEJcilhl5zsox/6DtGsYg==",
- "1234",
- },
- {
- "Dtis4uk/q/LQGGqGk97P59K03hkCIVFMEFZRgVWOAAhxgYpCRG0MX2adptt92l67IqMki6iVQyyt0TtX3IdtEw==",
- "FAIL",
- },
- {
- "LIyFyCYCptPxrvTxpol8F3M7ZivlMsf53zs0vHRAv+rDIh2YsHS69ePMoPMe3TkOMZ3NupiL3takPxIs1sK+dw==",
- "abcd",
- },
- {
- "bafnobel46bKy76JzqU/RIVOH0uAYvzUtauKmIidKgM0sMlvobYVAVQPeUQ/oTGjbIZ1v/6Gyi5AO4DtHruGdw==",
- "FAIL",
- },
-}
-
-func TestEncryptPKCS1v15SessionKey(t *testing.T) {
- for i, test := range decryptPKCS1v15SessionKeyTests {
- key := []byte("FAIL")
- err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, decodeBase64(test.in), key)
- if err != nil {
- t.Errorf("#%d error decrypting", i)
- }
- want := []byte(test.out)
- if !bytes.Equal(key, want) {
- t.Errorf("#%d got:%#v want:%#v", i, key, want)
- }
- }
-}
-
-func TestNonZeroRandomBytes(t *testing.T) {
- random := rand.Reader
-
- b := make([]byte, 512)
- err := nonZeroRandomBytes(b, random)
- if err != nil {
- t.Errorf("returned error: %s", err)
- }
- for _, b := range b {
- if b == 0 {
- t.Errorf("Zero octet found")
- return
- }
- }
-}
-
-type signPKCS1v15Test struct {
- in, out string
-}
-
-// These vectors have been tested with
-// `openssl rsautl -verify -inkey pk -in signature | hexdump -C`
-var signPKCS1v15Tests = []signPKCS1v15Test{
- {"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"},
-}
-
-func TestSignPKCS1v15(t *testing.T) {
- for i, test := range signPKCS1v15Tests {
- h := sha1.New()
- h.Write([]byte(test.in))
- digest := h.Sum(nil)
-
- s, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA1, digest)
- if err != nil {
- t.Errorf("#%d %s", i, err)
- }
-
- expected, _ := hex.DecodeString(test.out)
- if !bytes.Equal(s, expected) {
- t.Errorf("#%d got: %x want: %x", i, s, expected)
- }
- }
-}
-
-func TestVerifyPKCS1v15(t *testing.T) {
- for i, test := range signPKCS1v15Tests {
- h := sha1.New()
- h.Write([]byte(test.in))
- digest := h.Sum(nil)
-
- sig, _ := hex.DecodeString(test.out)
-
- err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA1, digest, sig)
- if err != nil {
- t.Errorf("#%d %s", i, err)
- }
- }
-}
-
-func TestOverlongMessagePKCS1v15(t *testing.T) {
- ciphertext := decodeBase64("fjOVdirUzFoLlukv80dBllMLjXythIf22feqPrNo0YoIjzyzyoMFiLjAc/Y4krkeZ11XFThIrEvw\nkRiZcCq5ng==")
- _, err := DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext)
- if err == nil {
- t.Error("RSA decrypted a message that was too long.")
- }
-}
-
-func TestUnpaddedSignature(t *testing.T) {
- msg := []byte("Thu Dec 19 18:06:16 EST 2013\n")
- // This base64 value was generated with:
- // % echo Thu Dec 19 18:06:16 EST 2013 > /tmp/msg
- // % openssl rsautl -sign -inkey key -out /tmp/sig -in /tmp/msg
- //
- // Where "key" contains the RSA private key given at the bottom of this
- // file.
- expectedSig := decodeBase64("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==")
-
- sig, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.Hash(0), msg)
- if err != nil {
- t.Fatalf("SignPKCS1v15 failed: %s", err)
- }
- if !bytes.Equal(sig, expectedSig) {
- t.Fatalf("signature is not expected value: got %x, want %x", sig, expectedSig)
- }
- if err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.Hash(0), msg, sig); err != nil {
- t.Fatalf("signature failed to verify: %s", err)
- }
-}
-
-func TestShortSessionKey(t *testing.T) {
- // This tests that attempting to decrypt a session key where the
- // ciphertext is too small doesn't run outside the array bounds.
- ciphertext, err := EncryptPKCS1v15(rand.Reader, &rsaPrivateKey.PublicKey, []byte{1})
- if err != nil {
- t.Fatalf("Failed to encrypt short message: %s", err)
- }
-
- var key [32]byte
- if err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, ciphertext, key[:]); err != nil {
- t.Fatalf("Failed to decrypt short message: %s", err)
- }
-
- for _, v := range key {
- if v != 0 {
- t.Fatal("key was modified when ciphertext was invalid")
- }
- }
-}
-
-// In order to generate new test vectors you'll need the PEM form of this key:
-// -----BEGIN RSA PRIVATE KEY-----
-// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
-// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
-// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
-// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
-// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
-// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
-// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
-// -----END RSA PRIVATE KEY-----
-
-var rsaPrivateKey = &PrivateKey{
- PublicKey: PublicKey{
- N: fromBase10("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077"),
- E: 65537,
- },
- D: fromBase10("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861"),
- Primes: []*big.Int{
- fromBase10("98920366548084643601728869055592650835572950932266967461790948584315647051443"),
- fromBase10("94560208308847015747498523884063394671606671904944666360068158221458669711639"),
- },
-}
diff --git a/src/pkg/crypto/rsa/pss.go b/src/pkg/crypto/rsa/pss.go
deleted file mode 100644
index 18eafbc05..000000000
--- a/src/pkg/crypto/rsa/pss.go
+++ /dev/null
@@ -1,282 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-// This file implements the PSS signature scheme [1].
-//
-// [1] http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
-
-import (
- "bytes"
- "crypto"
- "errors"
- "hash"
- "io"
- "math/big"
-)
-
-func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
- // See [1], section 9.1.1
- hLen := hash.Size()
- sLen := len(salt)
- emLen := (emBits + 7) / 8
-
- // 1. If the length of M is greater than the input limitation for the
- // hash function (2^61 - 1 octets for SHA-1), output "message too
- // long" and stop.
- //
- // 2. Let mHash = Hash(M), an octet string of length hLen.
-
- if len(mHash) != hLen {
- return nil, errors.New("crypto/rsa: input must be hashed message")
- }
-
- // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
-
- if emLen < hLen+sLen+2 {
- return nil, errors.New("crypto/rsa: encoding error")
- }
-
- em := make([]byte, emLen)
- db := em[:emLen-sLen-hLen-2+1+sLen]
- h := em[emLen-sLen-hLen-2+1+sLen : emLen-1]
-
- // 4. Generate a random octet string salt of length sLen; if sLen = 0,
- // then salt is the empty string.
- //
- // 5. Let
- // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
- //
- // M' is an octet string of length 8 + hLen + sLen with eight
- // initial zero octets.
- //
- // 6. Let H = Hash(M'), an octet string of length hLen.
-
- var prefix [8]byte
-
- hash.Write(prefix[:])
- hash.Write(mHash)
- hash.Write(salt)
-
- h = hash.Sum(h[:0])
- hash.Reset()
-
- // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
- // zero octets. The length of PS may be 0.
- //
- // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
- // emLen - hLen - 1.
-
- db[emLen-sLen-hLen-2] = 0x01
- copy(db[emLen-sLen-hLen-1:], salt)
-
- // 9. Let dbMask = MGF(H, emLen - hLen - 1).
- //
- // 10. Let maskedDB = DB \xor dbMask.
-
- mgf1XOR(db, hash, h)
-
- // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
- // maskedDB to zero.
-
- db[0] &= (0xFF >> uint(8*emLen-emBits))
-
- // 12. Let EM = maskedDB || H || 0xbc.
- em[emLen-1] = 0xBC
-
- // 13. Output EM.
- return em, nil
-}
-
-func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
- // 1. If the length of M is greater than the input limitation for the
- // hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
- // and stop.
- //
- // 2. Let mHash = Hash(M), an octet string of length hLen.
- hLen := hash.Size()
- if hLen != len(mHash) {
- return ErrVerification
- }
-
- // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
- emLen := (emBits + 7) / 8
- if emLen < hLen+sLen+2 {
- return ErrVerification
- }
-
- // 4. If the rightmost octet of EM does not have hexadecimal value
- // 0xbc, output "inconsistent" and stop.
- if em[len(em)-1] != 0xBC {
- return ErrVerification
- }
-
- // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
- // let H be the next hLen octets.
- db := em[:emLen-hLen-1]
- h := em[emLen-hLen-1 : len(em)-1]
-
- // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
- // maskedDB are not all equal to zero, output "inconsistent" and
- // stop.
- if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 {
- return ErrVerification
- }
-
- // 7. Let dbMask = MGF(H, emLen - hLen - 1).
- //
- // 8. Let DB = maskedDB \xor dbMask.
- mgf1XOR(db, hash, h)
-
- // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
- // to zero.
- db[0] &= (0xFF >> uint(8*emLen-emBits))
-
- if sLen == PSSSaltLengthAuto {
- FindSaltLength:
- for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- {
- switch db[emLen-hLen-sLen-2] {
- case 1:
- break FindSaltLength
- case 0:
- continue
- default:
- return ErrVerification
- }
- }
- if sLen < 0 {
- return ErrVerification
- }
- } else {
- // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
- // or if the octet at position emLen - hLen - sLen - 1 (the leftmost
- // position is "position 1") does not have hexadecimal value 0x01,
- // output "inconsistent" and stop.
- for _, e := range db[:emLen-hLen-sLen-2] {
- if e != 0x00 {
- return ErrVerification
- }
- }
- if db[emLen-hLen-sLen-2] != 0x01 {
- return ErrVerification
- }
- }
-
- // 11. Let salt be the last sLen octets of DB.
- salt := db[len(db)-sLen:]
-
- // 12. Let
- // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
- // M' is an octet string of length 8 + hLen + sLen with eight
- // initial zero octets.
- //
- // 13. Let H' = Hash(M'), an octet string of length hLen.
- var prefix [8]byte
- hash.Write(prefix[:])
- hash.Write(mHash)
- hash.Write(salt)
-
- h0 := hash.Sum(nil)
-
- // 14. If H = H', output "consistent." Otherwise, output "inconsistent."
- if !bytes.Equal(h0, h) {
- return ErrVerification
- }
- return nil
-}
-
-// signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt.
-// Note that hashed must be the result of hashing the input message using the
-// given hash function. salt is a random sequence of bytes whose length will be
-// later used to verify the signature.
-func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) {
- nBits := priv.N.BitLen()
- em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New())
- if err != nil {
- return
- }
- m := new(big.Int).SetBytes(em)
- c, err := decrypt(rand, priv, m)
- if err != nil {
- return
- }
- s = make([]byte, (nBits+7)/8)
- copyWithLeftPad(s, c.Bytes())
- return
-}
-
-const (
- // PSSSaltLengthAuto causes the salt in a PSS signature to be as large
- // as possible when signing, and to be auto-detected when verifying.
- PSSSaltLengthAuto = 0
- // PSSSaltLengthEqualsHash causes the salt length to equal the length
- // of the hash used in the signature.
- PSSSaltLengthEqualsHash = -1
-)
-
-// PSSOptions contains options for creating and verifying PSS signatures.
-type PSSOptions struct {
- // SaltLength controls the length of the salt used in the PSS
- // signature. It can either be a number of bytes, or one of the special
- // PSSSaltLength constants.
- SaltLength int
-}
-
-func (opts *PSSOptions) saltLength() int {
- if opts == nil {
- return PSSSaltLengthAuto
- }
- return opts.SaltLength
-}
-
-// SignPSS calculates the signature of hashed using RSASSA-PSS [1].
-// Note that hashed must be the result of hashing the input message using the
-// given hash function. The opts argument may be nil, in which case sensible
-// defaults are used.
-func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error) {
- saltLength := opts.saltLength()
- switch saltLength {
- case PSSSaltLengthAuto:
- saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size()
- case PSSSaltLengthEqualsHash:
- saltLength = hash.Size()
- }
-
- salt := make([]byte, saltLength)
- if _, err = io.ReadFull(rand, salt); err != nil {
- return
- }
- return signPSSWithSalt(rand, priv, hash, hashed, salt)
-}
-
-// VerifyPSS verifies a PSS signature.
-// hashed is the result of hashing the input message using the given hash
-// function and sig is the signature. A valid signature is indicated by
-// returning a nil error. The opts argument may be nil, in which case sensible
-// defaults are used.
-func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error {
- return verifyPSS(pub, hash, hashed, sig, opts.saltLength())
-}
-
-// verifyPSS verifies a PSS signature with the given salt length.
-func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error {
- nBits := pub.N.BitLen()
- if len(sig) != (nBits+7)/8 {
- return ErrVerification
- }
- s := new(big.Int).SetBytes(sig)
- m := encrypt(new(big.Int), pub, s)
- emBits := nBits - 1
- emLen := (emBits + 7) / 8
- if emLen < len(m.Bytes()) {
- return ErrVerification
- }
- em := make([]byte, emLen)
- copyWithLeftPad(em, m.Bytes())
- if saltLen == PSSSaltLengthEqualsHash {
- saltLen = hash.Size()
- }
- return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New())
-}
diff --git a/src/pkg/crypto/rsa/pss_test.go b/src/pkg/crypto/rsa/pss_test.go
deleted file mode 100644
index 32e6fc39d..000000000
--- a/src/pkg/crypto/rsa/pss_test.go
+++ /dev/null
@@ -1,249 +0,0 @@
-// Copyright 2013 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-import (
- "bufio"
- "bytes"
- "compress/bzip2"
- "crypto"
- _ "crypto/md5"
- "crypto/rand"
- "crypto/sha1"
- _ "crypto/sha256"
- "encoding/hex"
- "math/big"
- "os"
- "strconv"
- "strings"
- "testing"
-)
-
-func TestEMSAPSS(t *testing.T) {
- // Test vector in file pss-int.txt from: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
- msg := []byte{
- 0x85, 0x9e, 0xef, 0x2f, 0xd7, 0x8a, 0xca, 0x00, 0x30, 0x8b,
- 0xdc, 0x47, 0x11, 0x93, 0xbf, 0x55, 0xbf, 0x9d, 0x78, 0xdb,
- 0x8f, 0x8a, 0x67, 0x2b, 0x48, 0x46, 0x34, 0xf3, 0xc9, 0xc2,
- 0x6e, 0x64, 0x78, 0xae, 0x10, 0x26, 0x0f, 0xe0, 0xdd, 0x8c,
- 0x08, 0x2e, 0x53, 0xa5, 0x29, 0x3a, 0xf2, 0x17, 0x3c, 0xd5,
- 0x0c, 0x6d, 0x5d, 0x35, 0x4f, 0xeb, 0xf7, 0x8b, 0x26, 0x02,
- 0x1c, 0x25, 0xc0, 0x27, 0x12, 0xe7, 0x8c, 0xd4, 0x69, 0x4c,
- 0x9f, 0x46, 0x97, 0x77, 0xe4, 0x51, 0xe7, 0xf8, 0xe9, 0xe0,
- 0x4c, 0xd3, 0x73, 0x9c, 0x6b, 0xbf, 0xed, 0xae, 0x48, 0x7f,
- 0xb5, 0x56, 0x44, 0xe9, 0xca, 0x74, 0xff, 0x77, 0xa5, 0x3c,
- 0xb7, 0x29, 0x80, 0x2f, 0x6e, 0xd4, 0xa5, 0xff, 0xa8, 0xba,
- 0x15, 0x98, 0x90, 0xfc,
- }
- salt := []byte{
- 0xe3, 0xb5, 0xd5, 0xd0, 0x02, 0xc1, 0xbc, 0xe5, 0x0c, 0x2b,
- 0x65, 0xef, 0x88, 0xa1, 0x88, 0xd8, 0x3b, 0xce, 0x7e, 0x61,
- }
- expected := []byte{
- 0x66, 0xe4, 0x67, 0x2e, 0x83, 0x6a, 0xd1, 0x21, 0xba, 0x24,
- 0x4b, 0xed, 0x65, 0x76, 0xb8, 0x67, 0xd9, 0xa4, 0x47, 0xc2,
- 0x8a, 0x6e, 0x66, 0xa5, 0xb8, 0x7d, 0xee, 0x7f, 0xbc, 0x7e,
- 0x65, 0xaf, 0x50, 0x57, 0xf8, 0x6f, 0xae, 0x89, 0x84, 0xd9,
- 0xba, 0x7f, 0x96, 0x9a, 0xd6, 0xfe, 0x02, 0xa4, 0xd7, 0x5f,
- 0x74, 0x45, 0xfe, 0xfd, 0xd8, 0x5b, 0x6d, 0x3a, 0x47, 0x7c,
- 0x28, 0xd2, 0x4b, 0xa1, 0xe3, 0x75, 0x6f, 0x79, 0x2d, 0xd1,
- 0xdc, 0xe8, 0xca, 0x94, 0x44, 0x0e, 0xcb, 0x52, 0x79, 0xec,
- 0xd3, 0x18, 0x3a, 0x31, 0x1f, 0xc8, 0x96, 0xda, 0x1c, 0xb3,
- 0x93, 0x11, 0xaf, 0x37, 0xea, 0x4a, 0x75, 0xe2, 0x4b, 0xdb,
- 0xfd, 0x5c, 0x1d, 0xa0, 0xde, 0x7c, 0xec, 0xdf, 0x1a, 0x89,
- 0x6f, 0x9d, 0x8b, 0xc8, 0x16, 0xd9, 0x7c, 0xd7, 0xa2, 0xc4,
- 0x3b, 0xad, 0x54, 0x6f, 0xbe, 0x8c, 0xfe, 0xbc,
- }
-
- hash := sha1.New()
- hash.Write(msg)
- hashed := hash.Sum(nil)
-
- encoded, err := emsaPSSEncode(hashed, 1023, salt, sha1.New())
- if err != nil {
- t.Errorf("Error from emsaPSSEncode: %s\n", err)
- }
- if !bytes.Equal(encoded, expected) {
- t.Errorf("Bad encoding. got %x, want %x", encoded, expected)
- }
-
- if err = emsaPSSVerify(hashed, encoded, 1023, len(salt), sha1.New()); err != nil {
- t.Errorf("Bad verification: %s", err)
- }
-}
-
-// TestPSSGolden tests all the test vectors in pss-vect.txt from
-// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
-func TestPSSGolden(t *testing.T) {
- inFile, err := os.Open("testdata/pss-vect.txt.bz2")
- if err != nil {
- t.Fatalf("Failed to open input file: %s", err)
- }
- defer inFile.Close()
-
- // The pss-vect.txt file contains RSA keys and then a series of
- // signatures. A goroutine is used to preprocess the input by merging
- // lines, removing spaces in hex values and identifying the start of
- // new keys and signature blocks.
- const newKeyMarker = "START NEW KEY"
- const newSignatureMarker = "START NEW SIGNATURE"
-
- values := make(chan string)
-
- go func() {
- defer close(values)
- scanner := bufio.NewScanner(bzip2.NewReader(inFile))
- var partialValue string
- lastWasValue := true
-
- for scanner.Scan() {
- line := scanner.Text()
- switch {
- case len(line) == 0:
- if len(partialValue) > 0 {
- values <- strings.Replace(partialValue, " ", "", -1)
- partialValue = ""
- lastWasValue = true
- }
- continue
- case strings.HasPrefix(line, "# ======") && lastWasValue:
- values <- newKeyMarker
- lastWasValue = false
- case strings.HasPrefix(line, "# ------") && lastWasValue:
- values <- newSignatureMarker
- lastWasValue = false
- case strings.HasPrefix(line, "#"):
- continue
- default:
- partialValue += line
- }
- }
- if err := scanner.Err(); err != nil {
- panic(err)
- }
- }()
-
- var key *PublicKey
- var hashed []byte
- hash := crypto.SHA1
- h := hash.New()
- opts := &PSSOptions{
- SaltLength: PSSSaltLengthEqualsHash,
- }
-
- for marker := range values {
- switch marker {
- case newKeyMarker:
- key = new(PublicKey)
- nHex, ok := <-values
- if !ok {
- continue
- }
- key.N = bigFromHex(nHex)
- key.E = intFromHex(<-values)
- // We don't care for d, p, q, dP, dQ or qInv.
- for i := 0; i < 6; i++ {
- <-values
- }
- case newSignatureMarker:
- msg := fromHex(<-values)
- <-values // skip salt
- sig := fromHex(<-values)
-
- h.Reset()
- h.Write(msg)
- hashed = h.Sum(hashed[:0])
-
- if err := VerifyPSS(key, hash, hashed, sig, opts); err != nil {
- t.Error(err)
- }
- default:
- t.Fatalf("unknown marker: " + marker)
- }
- }
-}
-
-// TestPSSOpenSSL ensures that we can verify a PSS signature from OpenSSL with
-// the default options. OpenSSL sets the salt length to be maximal.
-func TestPSSOpenSSL(t *testing.T) {
- hash := crypto.SHA256
- h := hash.New()
- h.Write([]byte("testing"))
- hashed := h.Sum(nil)
-
- // Generated with `echo -n testing | openssl dgst -sign key.pem -sigopt rsa_padding_mode:pss -sha256 > sig`
- sig := []byte{
- 0x95, 0x59, 0x6f, 0xd3, 0x10, 0xa2, 0xe7, 0xa2, 0x92, 0x9d,
- 0x4a, 0x07, 0x2e, 0x2b, 0x27, 0xcc, 0x06, 0xc2, 0x87, 0x2c,
- 0x52, 0xf0, 0x4a, 0xcc, 0x05, 0x94, 0xf2, 0xc3, 0x2e, 0x20,
- 0xd7, 0x3e, 0x66, 0x62, 0xb5, 0x95, 0x2b, 0xa3, 0x93, 0x9a,
- 0x66, 0x64, 0x25, 0xe0, 0x74, 0x66, 0x8c, 0x3e, 0x92, 0xeb,
- 0xc6, 0xe6, 0xc0, 0x44, 0xf3, 0xb4, 0xb4, 0x2e, 0x8c, 0x66,
- 0x0a, 0x37, 0x9c, 0x69,
- }
-
- if err := VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, nil); err != nil {
- t.Error(err)
- }
-}
-
-func TestPSSSigning(t *testing.T) {
- var saltLengthCombinations = []struct {
- signSaltLength, verifySaltLength int
- good bool
- }{
- {PSSSaltLengthAuto, PSSSaltLengthAuto, true},
- {PSSSaltLengthEqualsHash, PSSSaltLengthAuto, true},
- {PSSSaltLengthEqualsHash, PSSSaltLengthEqualsHash, true},
- {PSSSaltLengthEqualsHash, 8, false},
- {PSSSaltLengthAuto, PSSSaltLengthEqualsHash, false},
- {8, 8, true},
- }
-
- hash := crypto.MD5
- h := hash.New()
- h.Write([]byte("testing"))
- hashed := h.Sum(nil)
- var opts PSSOptions
-
- for i, test := range saltLengthCombinations {
- opts.SaltLength = test.signSaltLength
- sig, err := SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, &opts)
- if err != nil {
- t.Errorf("#%d: error while signing: %s", i, err)
- continue
- }
-
- opts.SaltLength = test.verifySaltLength
- err = VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, &opts)
- if (err == nil) != test.good {
- t.Errorf("#%d: bad result, wanted: %t, got: %s", i, test.good, err)
- }
- }
-}
-
-func bigFromHex(hex string) *big.Int {
- n, ok := new(big.Int).SetString(hex, 16)
- if !ok {
- panic("bad hex: " + hex)
- }
- return n
-}
-
-func intFromHex(hex string) int {
- i, err := strconv.ParseInt(hex, 16, 32)
- if err != nil {
- panic(err)
- }
- return int(i)
-}
-
-func fromHex(hexStr string) []byte {
- s, err := hex.DecodeString(hexStr)
- if err != nil {
- panic(err)
- }
- return s
-}
diff --git a/src/pkg/crypto/rsa/rsa.go b/src/pkg/crypto/rsa/rsa.go
deleted file mode 100644
index bce6ba4eb..000000000
--- a/src/pkg/crypto/rsa/rsa.go
+++ /dev/null
@@ -1,538 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package rsa implements RSA encryption as specified in PKCS#1.
-package rsa
-
-import (
- "crypto/rand"
- "crypto/subtle"
- "errors"
- "hash"
- "io"
- "math/big"
-)
-
-var bigZero = big.NewInt(0)
-var bigOne = big.NewInt(1)
-
-// A PublicKey represents the public part of an RSA key.
-type PublicKey struct {
- N *big.Int // modulus
- E int // public exponent
-}
-
-var (
- errPublicModulus = errors.New("crypto/rsa: missing public modulus")
- errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
- errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
-)
-
-// checkPub sanity checks the public key before we use it.
-// We require pub.E to fit into a 32-bit integer so that we
-// do not have different behavior depending on whether
-// int is 32 or 64 bits. See also
-// http://www.imperialviolet.org/2012/03/16/rsae.html.
-func checkPub(pub *PublicKey) error {
- if pub.N == nil {
- return errPublicModulus
- }
- if pub.E < 2 {
- return errPublicExponentSmall
- }
- if pub.E > 1<<31-1 {
- return errPublicExponentLarge
- }
- return nil
-}
-
-// A PrivateKey represents an RSA key
-type PrivateKey struct {
- PublicKey // public part.
- D *big.Int // private exponent
- Primes []*big.Int // prime factors of N, has >= 2 elements.
-
- // Precomputed contains precomputed values that speed up private
- // operations, if available.
- Precomputed PrecomputedValues
-}
-
-type PrecomputedValues struct {
- Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
- Qinv *big.Int // Q^-1 mod P
-
- // CRTValues is used for the 3rd and subsequent primes. Due to a
- // historical accident, the CRT for the first two primes is handled
- // differently in PKCS#1 and interoperability is sufficiently
- // important that we mirror this.
- CRTValues []CRTValue
-}
-
-// CRTValue contains the precomputed chinese remainder theorem values.
-type CRTValue struct {
- Exp *big.Int // D mod (prime-1).
- Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
- R *big.Int // product of primes prior to this (inc p and q).
-}
-
-// Validate performs basic sanity checks on the key.
-// It returns nil if the key is valid, or else an error describing a problem.
-func (priv *PrivateKey) Validate() error {
- if err := checkPub(&priv.PublicKey); err != nil {
- return err
- }
-
- // Check that the prime factors are actually prime. Note that this is
- // just a sanity check. Since the random witnesses chosen by
- // ProbablyPrime are deterministic, given the candidate number, it's
- // easy for an attack to generate composites that pass this test.
- for _, prime := range priv.Primes {
- if !prime.ProbablyPrime(20) {
- return errors.New("crypto/rsa: prime factor is composite")
- }
- }
-
- // Check that Πprimes == n.
- modulus := new(big.Int).Set(bigOne)
- for _, prime := range priv.Primes {
- modulus.Mul(modulus, prime)
- }
- if modulus.Cmp(priv.N) != 0 {
- return errors.New("crypto/rsa: invalid modulus")
- }
-
- // Check that de ≡ 1 mod p-1, for each prime.
- // This implies that e is coprime to each p-1 as e has a multiplicative
- // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
- // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
- // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
- congruence := new(big.Int)
- de := new(big.Int).SetInt64(int64(priv.E))
- de.Mul(de, priv.D)
- for _, prime := range priv.Primes {
- pminus1 := new(big.Int).Sub(prime, bigOne)
- congruence.Mod(de, pminus1)
- if congruence.Cmp(bigOne) != 0 {
- return errors.New("crypto/rsa: invalid exponents")
- }
- }
- return nil
-}
-
-// GenerateKey generates an RSA keypair of the given bit size using the
-// random source random (for example, crypto/rand.Reader).
-func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
- return GenerateMultiPrimeKey(random, 2, bits)
-}
-
-// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
-// size and the given random source, as suggested in [1]. Although the public
-// keys are compatible (actually, indistinguishable) from the 2-prime case,
-// the private keys are not. Thus it may not be possible to export multi-prime
-// private keys in certain formats or to subsequently import them into other
-// code.
-//
-// Table 1 in [2] suggests maximum numbers of primes for a given size.
-//
-// [1] US patent 4405829 (1972, expired)
-// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
-func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
- priv = new(PrivateKey)
- priv.E = 65537
-
- if nprimes < 2 {
- return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
- }
-
- primes := make([]*big.Int, nprimes)
-
-NextSetOfPrimes:
- for {
- todo := bits
- // crypto/rand should set the top two bits in each prime.
- // Thus each prime has the form
- // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
- // And the product is:
- // P = 2^todo × α
- // where α is the product of nprimes numbers of the form 0.11...
- //
- // If α < 1/2 (which can happen for nprimes > 2), we need to
- // shift todo to compensate for lost bits: the mean value of 0.11...
- // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
- // will give good results.
- if nprimes >= 7 {
- todo += (nprimes - 2) / 5
- }
- for i := 0; i < nprimes; i++ {
- primes[i], err = rand.Prime(random, todo/(nprimes-i))
- if err != nil {
- return nil, err
- }
- todo -= primes[i].BitLen()
- }
-
- // Make sure that primes is pairwise unequal.
- for i, prime := range primes {
- for j := 0; j < i; j++ {
- if prime.Cmp(primes[j]) == 0 {
- continue NextSetOfPrimes
- }
- }
- }
-
- n := new(big.Int).Set(bigOne)
- totient := new(big.Int).Set(bigOne)
- pminus1 := new(big.Int)
- for _, prime := range primes {
- n.Mul(n, prime)
- pminus1.Sub(prime, bigOne)
- totient.Mul(totient, pminus1)
- }
- if n.BitLen() != bits {
- // This should never happen for nprimes == 2 because
- // crypto/rand should set the top two bits in each prime.
- // For nprimes > 2 we hope it does not happen often.
- continue NextSetOfPrimes
- }
-
- g := new(big.Int)
- priv.D = new(big.Int)
- y := new(big.Int)
- e := big.NewInt(int64(priv.E))
- g.GCD(priv.D, y, e, totient)
-
- if g.Cmp(bigOne) == 0 {
- if priv.D.Sign() < 0 {
- priv.D.Add(priv.D, totient)
- }
- priv.Primes = primes
- priv.N = n
-
- break
- }
- }
-
- priv.Precompute()
- return
-}
-
-// incCounter increments a four byte, big-endian counter.
-func incCounter(c *[4]byte) {
- if c[3]++; c[3] != 0 {
- return
- }
- if c[2]++; c[2] != 0 {
- return
- }
- if c[1]++; c[1] != 0 {
- return
- }
- c[0]++
-}
-
-// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
-// specified in PKCS#1 v2.1.
-func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
- var counter [4]byte
- var digest []byte
-
- done := 0
- for done < len(out) {
- hash.Write(seed)
- hash.Write(counter[0:4])
- digest = hash.Sum(digest[:0])
- hash.Reset()
-
- for i := 0; i < len(digest) && done < len(out); i++ {
- out[done] ^= digest[i]
- done++
- }
- incCounter(&counter)
- }
-}
-
-// ErrMessageTooLong is returned when attempting to encrypt a message which is
-// too large for the size of the public key.
-var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
-
-func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
- e := big.NewInt(int64(pub.E))
- c.Exp(m, e, pub.N)
- return c
-}
-
-// EncryptOAEP encrypts the given message with RSA-OAEP.
-// The message must be no longer than the length of the public modulus less
-// twice the hash length plus 2.
-func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
- if err := checkPub(pub); err != nil {
- return nil, err
- }
- hash.Reset()
- k := (pub.N.BitLen() + 7) / 8
- if len(msg) > k-2*hash.Size()-2 {
- err = ErrMessageTooLong
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- em := make([]byte, k)
- seed := em[1 : 1+hash.Size()]
- db := em[1+hash.Size():]
-
- copy(db[0:hash.Size()], lHash)
- db[len(db)-len(msg)-1] = 1
- copy(db[len(db)-len(msg):], msg)
-
- _, err = io.ReadFull(random, seed)
- if err != nil {
- return
- }
-
- mgf1XOR(db, hash, seed)
- mgf1XOR(seed, hash, db)
-
- m := new(big.Int)
- m.SetBytes(em)
- c := encrypt(new(big.Int), pub, m)
- out = c.Bytes()
-
- if len(out) < k {
- // If the output is too small, we need to left-pad with zeros.
- t := make([]byte, k)
- copy(t[k-len(out):], out)
- out = t
- }
-
- return
-}
-
-// ErrDecryption represents a failure to decrypt a message.
-// It is deliberately vague to avoid adaptive attacks.
-var ErrDecryption = errors.New("crypto/rsa: decryption error")
-
-// ErrVerification represents a failure to verify a signature.
-// It is deliberately vague to avoid adaptive attacks.
-var ErrVerification = errors.New("crypto/rsa: verification error")
-
-// modInverse returns ia, the inverse of a in the multiplicative group of prime
-// order n. It requires that a be a member of the group (i.e. less than n).
-func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
- g := new(big.Int)
- x := new(big.Int)
- y := new(big.Int)
- g.GCD(x, y, a, n)
- if g.Cmp(bigOne) != 0 {
- // In this case, a and n aren't coprime and we cannot calculate
- // the inverse. This happens because the values of n are nearly
- // prime (being the product of two primes) rather than truly
- // prime.
- return
- }
-
- if x.Cmp(bigOne) < 0 {
- // 0 is not the multiplicative inverse of any element so, if x
- // < 1, then x is negative.
- x.Add(x, n)
- }
-
- return x, true
-}
-
-// Precompute performs some calculations that speed up private key operations
-// in the future.
-func (priv *PrivateKey) Precompute() {
- if priv.Precomputed.Dp != nil {
- return
- }
-
- priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
- priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
-
- priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
- priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
-
- priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
-
- r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
- priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
- for i := 2; i < len(priv.Primes); i++ {
- prime := priv.Primes[i]
- values := &priv.Precomputed.CRTValues[i-2]
-
- values.Exp = new(big.Int).Sub(prime, bigOne)
- values.Exp.Mod(priv.D, values.Exp)
-
- values.R = new(big.Int).Set(r)
- values.Coeff = new(big.Int).ModInverse(r, prime)
-
- r.Mul(r, prime)
- }
-}
-
-// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
-// random source is given, RSA blinding is used.
-func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
- // TODO(agl): can we get away with reusing blinds?
- if c.Cmp(priv.N) > 0 {
- err = ErrDecryption
- return
- }
-
- var ir *big.Int
- if random != nil {
- // Blinding enabled. Blinding involves multiplying c by r^e.
- // Then the decryption operation performs (m^e * r^e)^d mod n
- // which equals mr mod n. The factor of r can then be removed
- // by multiplying by the multiplicative inverse of r.
-
- var r *big.Int
-
- for {
- r, err = rand.Int(random, priv.N)
- if err != nil {
- return
- }
- if r.Cmp(bigZero) == 0 {
- r = bigOne
- }
- var ok bool
- ir, ok = modInverse(r, priv.N)
- if ok {
- break
- }
- }
- bigE := big.NewInt(int64(priv.E))
- rpowe := new(big.Int).Exp(r, bigE, priv.N)
- cCopy := new(big.Int).Set(c)
- cCopy.Mul(cCopy, rpowe)
- cCopy.Mod(cCopy, priv.N)
- c = cCopy
- }
-
- if priv.Precomputed.Dp == nil {
- m = new(big.Int).Exp(c, priv.D, priv.N)
- } else {
- // We have the precalculated values needed for the CRT.
- m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
- m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
- m.Sub(m, m2)
- if m.Sign() < 0 {
- m.Add(m, priv.Primes[0])
- }
- m.Mul(m, priv.Precomputed.Qinv)
- m.Mod(m, priv.Primes[0])
- m.Mul(m, priv.Primes[1])
- m.Add(m, m2)
-
- for i, values := range priv.Precomputed.CRTValues {
- prime := priv.Primes[2+i]
- m2.Exp(c, values.Exp, prime)
- m2.Sub(m2, m)
- m2.Mul(m2, values.Coeff)
- m2.Mod(m2, prime)
- if m2.Sign() < 0 {
- m2.Add(m2, prime)
- }
- m2.Mul(m2, values.R)
- m.Add(m, m2)
- }
- }
-
- if ir != nil {
- // Unblind.
- m.Mul(m, ir)
- m.Mod(m, priv.N)
- }
-
- return
-}
-
-// DecryptOAEP decrypts ciphertext using RSA-OAEP.
-// If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
-func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
- if err := checkPub(&priv.PublicKey); err != nil {
- return nil, err
- }
- k := (priv.N.BitLen() + 7) / 8
- if len(ciphertext) > k ||
- k < hash.Size()*2+2 {
- err = ErrDecryption
- return
- }
-
- c := new(big.Int).SetBytes(ciphertext)
-
- m, err := decrypt(random, priv, c)
- if err != nil {
- return
- }
-
- hash.Write(label)
- lHash := hash.Sum(nil)
- hash.Reset()
-
- // Converting the plaintext number to bytes will strip any
- // leading zeros so we may have to left pad. We do this unconditionally
- // to avoid leaking timing information. (Although we still probably
- // leak the number of leading zeros. It's not clear that we can do
- // anything about this.)
- em := leftPad(m.Bytes(), k)
-
- firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
-
- seed := em[1 : hash.Size()+1]
- db := em[hash.Size()+1:]
-
- mgf1XOR(seed, hash, db)
- mgf1XOR(db, hash, seed)
-
- lHash2 := db[0:hash.Size()]
-
- // We have to validate the plaintext in constant time in order to avoid
- // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
- // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
- // v2.0. In J. Kilian, editor, Advances in Cryptology.
- lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
-
- // The remainder of the plaintext must be zero or more 0x00, followed
- // by 0x01, followed by the message.
- // lookingForIndex: 1 iff we are still looking for the 0x01
- // index: the offset of the first 0x01 byte
- // invalid: 1 iff we saw a non-zero byte before the 0x01.
- var lookingForIndex, index, invalid int
- lookingForIndex = 1
- rest := db[hash.Size():]
-
- for i := 0; i < len(rest); i++ {
- equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
- equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
- index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
- lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
- invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
- }
-
- if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
- err = ErrDecryption
- return
- }
-
- msg = rest[index+1:]
- return
-}
-
-// leftPad returns a new slice of length size. The contents of input are right
-// aligned in the new slice.
-func leftPad(input []byte, size int) (out []byte) {
- n := len(input)
- if n > size {
- n = size
- }
- out = make([]byte, size)
- copy(out[len(out)-n:], input)
- return
-}
diff --git a/src/pkg/crypto/rsa/rsa_test.go b/src/pkg/crypto/rsa/rsa_test.go
deleted file mode 100644
index 4ee1c3a8b..000000000
--- a/src/pkg/crypto/rsa/rsa_test.go
+++ /dev/null
@@ -1,392 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package rsa
-
-import (
- "bytes"
- "crypto/rand"
- "crypto/sha1"
- "math/big"
- "testing"
-)
-
-func TestKeyGeneration(t *testing.T) {
- size := 1024
- if testing.Short() {
- size = 128
- }
- priv, err := GenerateKey(rand.Reader, size)
- if err != nil {
- t.Errorf("failed to generate key")
- }
- if bits := priv.N.BitLen(); bits != size {
- t.Errorf("key too short (%d vs %d)", bits, size)
- }
- testKeyBasics(t, priv)
-}
-
-func Test3PrimeKeyGeneration(t *testing.T) {
- size := 768
- if testing.Short() {
- size = 256
- }
-
- priv, err := GenerateMultiPrimeKey(rand.Reader, 3, size)
- if err != nil {
- t.Errorf("failed to generate key")
- }
- testKeyBasics(t, priv)
-}
-
-func Test4PrimeKeyGeneration(t *testing.T) {
- size := 768
- if testing.Short() {
- size = 256
- }
-
- priv, err := GenerateMultiPrimeKey(rand.Reader, 4, size)
- if err != nil {
- t.Errorf("failed to generate key")
- }
- testKeyBasics(t, priv)
-}
-
-func TestNPrimeKeyGeneration(t *testing.T) {
- primeSize := 64
- maxN := 24
- if testing.Short() {
- primeSize = 16
- maxN = 16
- }
- // Test that generation of N-prime keys works for N > 4.
- for n := 5; n < maxN; n++ {
- priv, err := GenerateMultiPrimeKey(rand.Reader, n, 64+n*primeSize)
- if err == nil {
- testKeyBasics(t, priv)
- } else {
- t.Errorf("failed to generate %d-prime key", n)
- }
- }
-}
-
-func TestGnuTLSKey(t *testing.T) {
- // This is a key generated by `certtool --generate-privkey --bits 128`.
- // It's such that de ≢ 1 mod φ(n), but is congruent mod the order of
- // the group.
- priv := &PrivateKey{
- PublicKey: PublicKey{
- N: fromBase10("290684273230919398108010081414538931343"),
- E: 65537,
- },
- D: fromBase10("31877380284581499213530787347443987241"),
- Primes: []*big.Int{
- fromBase10("16775196964030542637"),
- fromBase10("17328218193455850539"),
- },
- }
- testKeyBasics(t, priv)
-}
-
-func testKeyBasics(t *testing.T, priv *PrivateKey) {
- if err := priv.Validate(); err != nil {
- t.Errorf("Validate() failed: %s", err)
- }
- if priv.D.Cmp(priv.N) > 0 {
- t.Errorf("private exponent too large")
- }
-
- pub := &priv.PublicKey
- m := big.NewInt(42)
- c := encrypt(new(big.Int), pub, m)
-
- m2, err := decrypt(nil, priv, c)
- if err != nil {
- t.Errorf("error while decrypting: %s", err)
- return
- }
- if m.Cmp(m2) != 0 {
- t.Errorf("got:%v, want:%v (%+v)", m2, m, priv)
- }
-
- m3, err := decrypt(rand.Reader, priv, c)
- if err != nil {
- t.Errorf("error while decrypting (blind): %s", err)
- }
- if m.Cmp(m3) != 0 {
- t.Errorf("(blind) got:%v, want:%v (%#v)", m3, m, priv)
- }
-}
-
-func fromBase10(base10 string) *big.Int {
- i, ok := new(big.Int).SetString(base10, 10)
- if !ok {
- panic("bad number: " + base10)
- }
- return i
-}
-
-func BenchmarkRSA2048Decrypt(b *testing.B) {
- b.StopTimer()
- priv := &PrivateKey{
- PublicKey: PublicKey{
- N: fromBase10("14314132931241006650998084889274020608918049032671858325988396851334124245188214251956198731333464217832226406088020736932173064754214329009979944037640912127943488972644697423190955557435910767690712778463524983667852819010259499695177313115447116110358524558307947613422897787329221478860907963827160223559690523660574329011927531289655711860504630573766609239332569210831325633840174683944553667352219670930408593321661375473885147973879086994006440025257225431977751512374815915392249179976902953721486040787792801849818254465486633791826766873076617116727073077821584676715609985777563958286637185868165868520557"),
- E: 3,
- },
- D: fromBase10("9542755287494004433998723259516013739278699355114572217325597900889416163458809501304132487555642811888150937392013824621448709836142886006653296025093941418628992648429798282127303704957273845127141852309016655778568546006839666463451542076964744073572349705538631742281931858219480985907271975884773482372966847639853897890615456605598071088189838676728836833012254065983259638538107719766738032720239892094196108713378822882383694456030043492571063441943847195939549773271694647657549658603365629458610273821292232646334717612674519997533901052790334279661754176490593041941863932308687197618671528035670452762731"),
- Primes: []*big.Int{
- fromBase10("130903255182996722426771613606077755295583329135067340152947172868415809027537376306193179624298874215608270802054347609836776473930072411958753044562214537013874103802006369634761074377213995983876788718033850153719421695468704276694983032644416930879093914927146648402139231293035971427838068945045019075433"),
- fromBase10("109348945610485453577574767652527472924289229538286649661240938988020367005475727988253438647560958573506159449538793540472829815903949343191091817779240101054552748665267574271163617694640513549693841337820602726596756351006149518830932261246698766355347898158548465400674856021497190430791824869615170301029"),
- },
- }
- priv.Precompute()
-
- c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313")
-
- b.StartTimer()
-
- for i := 0; i < b.N; i++ {
- decrypt(nil, priv, c)
- }
-}
-
-func Benchmark3PrimeRSA2048Decrypt(b *testing.B) {
- b.StopTimer()
- priv := &PrivateKey{
- PublicKey: PublicKey{
- N: fromBase10("16346378922382193400538269749936049106320265317511766357599732575277382844051791096569333808598921852351577762718529818072849191122419410612033592401403764925096136759934497687765453905884149505175426053037420486697072448609022753683683718057795566811401938833367954642951433473337066311978821180526439641496973296037000052546108507805269279414789035461158073156772151892452251106173507240488993608650881929629163465099476849643165682709047462010581308719577053905787496296934240246311806555924593059995202856826239801816771116902778517096212527979497399966526283516447337775509777558018145573127308919204297111496233"),
- E: 3,
- },
- D: fromBase10("10897585948254795600358846499957366070880176878341177571733155050184921896034527397712889205732614568234385175145686545381899460748279607074689061600935843283397424506622998458510302603922766336783617368686090042765718290914099334449154829375179958369993407724946186243249568928237086215759259909861748642124071874879861299389874230489928271621259294894142840428407196932444474088857746123104978617098858619445675532587787023228852383149557470077802718705420275739737958953794088728369933811184572620857678792001136676902250566845618813972833750098806496641114644760255910789397593428910198080271317419213080834885003"),
- Primes: []*big.Int{
- fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"),
- fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"),
- fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"),
- },
- }
- priv.Precompute()
-
- c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313")
-
- b.StartTimer()
-
- for i := 0; i < b.N; i++ {
- decrypt(nil, priv, c)
- }
-}
-
-type testEncryptOAEPMessage struct {
- in []byte
- seed []byte
- out []byte
-}
-
-type testEncryptOAEPStruct struct {
- modulus string
- e int
- d string
- msgs []testEncryptOAEPMessage
-}
-
-func TestEncryptOAEP(t *testing.T) {
- sha1 := sha1.New()
- n := new(big.Int)
- for i, test := range testEncryptOAEPData {
- n.SetString(test.modulus, 16)
- public := PublicKey{n, test.e}
-
- for j, message := range test.msgs {
- randomSource := bytes.NewReader(message.seed)
- out, err := EncryptOAEP(sha1, randomSource, &public, message.in, nil)
- if err != nil {
- t.Errorf("#%d,%d error: %s", i, j, err)
- }
- if !bytes.Equal(out, message.out) {
- t.Errorf("#%d,%d bad result: %x (want %x)", i, j, out, message.out)
- }
- }
- }
-}
-
-func TestDecryptOAEP(t *testing.T) {
- random := rand.Reader
-
- sha1 := sha1.New()
- n := new(big.Int)
- d := new(big.Int)
- for i, test := range testEncryptOAEPData {
- n.SetString(test.modulus, 16)
- d.SetString(test.d, 16)
- private := new(PrivateKey)
- private.PublicKey = PublicKey{n, test.e}
- private.D = d
-
- for j, message := range test.msgs {
- out, err := DecryptOAEP(sha1, nil, private, message.out, nil)
- if err != nil {
- t.Errorf("#%d,%d error: %s", i, j, err)
- } else if !bytes.Equal(out, message.in) {
- t.Errorf("#%d,%d bad result: %#v (want %#v)", i, j, out, message.in)
- }
-
- // Decrypt with blinding.
- out, err = DecryptOAEP(sha1, random, private, message.out, nil)
- if err != nil {
- t.Errorf("#%d,%d (blind) error: %s", i, j, err)
- } else if !bytes.Equal(out, message.in) {
- t.Errorf("#%d,%d (blind) bad result: %#v (want %#v)", i, j, out, message.in)
- }
- }
- if testing.Short() {
- break
- }
- }
-}
-
-// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP".
-var testEncryptOAEPData = []testEncryptOAEPStruct{
- // Key 1
- {"a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0cbc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bdbf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb",
- 65537,
- "53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf119517ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d65a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1",
- []testEncryptOAEPMessage{
- // Example 1.1
- {
- []byte{0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0,
- 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23, 0x97,
- 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe,
- 0xfe, 0x34,
- },
- []byte{0x18, 0xb7, 0x76, 0xea, 0x21, 0x06, 0x9d, 0x69,
- 0x77, 0x6a, 0x33, 0xe9, 0x6b, 0xad, 0x48, 0xe1, 0xdd,
- 0xa0, 0xa5, 0xef,
- },
- []byte{0x35, 0x4f, 0xe6, 0x7b, 0x4a, 0x12, 0x6d, 0x5d,
- 0x35, 0xfe, 0x36, 0xc7, 0x77, 0x79, 0x1a, 0x3f, 0x7b,
- 0xa1, 0x3d, 0xef, 0x48, 0x4e, 0x2d, 0x39, 0x08, 0xaf,
- 0xf7, 0x22, 0xfa, 0xd4, 0x68, 0xfb, 0x21, 0x69, 0x6d,
- 0xe9, 0x5d, 0x0b, 0xe9, 0x11, 0xc2, 0xd3, 0x17, 0x4f,
- 0x8a, 0xfc, 0xc2, 0x01, 0x03, 0x5f, 0x7b, 0x6d, 0x8e,
- 0x69, 0x40, 0x2d, 0xe5, 0x45, 0x16, 0x18, 0xc2, 0x1a,
- 0x53, 0x5f, 0xa9, 0xd7, 0xbf, 0xc5, 0xb8, 0xdd, 0x9f,
- 0xc2, 0x43, 0xf8, 0xcf, 0x92, 0x7d, 0xb3, 0x13, 0x22,
- 0xd6, 0xe8, 0x81, 0xea, 0xa9, 0x1a, 0x99, 0x61, 0x70,
- 0xe6, 0x57, 0xa0, 0x5a, 0x26, 0x64, 0x26, 0xd9, 0x8c,
- 0x88, 0x00, 0x3f, 0x84, 0x77, 0xc1, 0x22, 0x70, 0x94,
- 0xa0, 0xd9, 0xfa, 0x1e, 0x8c, 0x40, 0x24, 0x30, 0x9c,
- 0xe1, 0xec, 0xcc, 0xb5, 0x21, 0x00, 0x35, 0xd4, 0x7a,
- 0xc7, 0x2e, 0x8a,
- },
- },
- // Example 1.2
- {
- []byte{0x75, 0x0c, 0x40, 0x47, 0xf5, 0x47, 0xe8, 0xe4,
- 0x14, 0x11, 0x85, 0x65, 0x23, 0x29, 0x8a, 0xc9, 0xba,
- 0xe2, 0x45, 0xef, 0xaf, 0x13, 0x97, 0xfb, 0xe5, 0x6f,
- 0x9d, 0xd5,
- },
- []byte{0x0c, 0xc7, 0x42, 0xce, 0x4a, 0x9b, 0x7f, 0x32,
- 0xf9, 0x51, 0xbc, 0xb2, 0x51, 0xef, 0xd9, 0x25, 0xfe,
- 0x4f, 0xe3, 0x5f,
- },
- []byte{0x64, 0x0d, 0xb1, 0xac, 0xc5, 0x8e, 0x05, 0x68,
- 0xfe, 0x54, 0x07, 0xe5, 0xf9, 0xb7, 0x01, 0xdf, 0xf8,
- 0xc3, 0xc9, 0x1e, 0x71, 0x6c, 0x53, 0x6f, 0xc7, 0xfc,
- 0xec, 0x6c, 0xb5, 0xb7, 0x1c, 0x11, 0x65, 0x98, 0x8d,
- 0x4a, 0x27, 0x9e, 0x15, 0x77, 0xd7, 0x30, 0xfc, 0x7a,
- 0x29, 0x93, 0x2e, 0x3f, 0x00, 0xc8, 0x15, 0x15, 0x23,
- 0x6d, 0x8d, 0x8e, 0x31, 0x01, 0x7a, 0x7a, 0x09, 0xdf,
- 0x43, 0x52, 0xd9, 0x04, 0xcd, 0xeb, 0x79, 0xaa, 0x58,
- 0x3a, 0xdc, 0xc3, 0x1e, 0xa6, 0x98, 0xa4, 0xc0, 0x52,
- 0x83, 0xda, 0xba, 0x90, 0x89, 0xbe, 0x54, 0x91, 0xf6,
- 0x7c, 0x1a, 0x4e, 0xe4, 0x8d, 0xc7, 0x4b, 0xbb, 0xe6,
- 0x64, 0x3a, 0xef, 0x84, 0x66, 0x79, 0xb4, 0xcb, 0x39,
- 0x5a, 0x35, 0x2d, 0x5e, 0xd1, 0x15, 0x91, 0x2d, 0xf6,
- 0x96, 0xff, 0xe0, 0x70, 0x29, 0x32, 0x94, 0x6d, 0x71,
- 0x49, 0x2b, 0x44,
- },
- },
- // Example 1.3
- {
- []byte{0xd9, 0x4a, 0xe0, 0x83, 0x2e, 0x64, 0x45, 0xce,
- 0x42, 0x33, 0x1c, 0xb0, 0x6d, 0x53, 0x1a, 0x82, 0xb1,
- 0xdb, 0x4b, 0xaa, 0xd3, 0x0f, 0x74, 0x6d, 0xc9, 0x16,
- 0xdf, 0x24, 0xd4, 0xe3, 0xc2, 0x45, 0x1f, 0xff, 0x59,
- 0xa6, 0x42, 0x3e, 0xb0, 0xe1, 0xd0, 0x2d, 0x4f, 0xe6,
- 0x46, 0xcf, 0x69, 0x9d, 0xfd, 0x81, 0x8c, 0x6e, 0x97,
- 0xb0, 0x51,
- },
- []byte{0x25, 0x14, 0xdf, 0x46, 0x95, 0x75, 0x5a, 0x67,
- 0xb2, 0x88, 0xea, 0xf4, 0x90, 0x5c, 0x36, 0xee, 0xc6,
- 0x6f, 0xd2, 0xfd,
- },
- []byte{0x42, 0x37, 0x36, 0xed, 0x03, 0x5f, 0x60, 0x26,
- 0xaf, 0x27, 0x6c, 0x35, 0xc0, 0xb3, 0x74, 0x1b, 0x36,
- 0x5e, 0x5f, 0x76, 0xca, 0x09, 0x1b, 0x4e, 0x8c, 0x29,
- 0xe2, 0xf0, 0xbe, 0xfe, 0xe6, 0x03, 0x59, 0x5a, 0xa8,
- 0x32, 0x2d, 0x60, 0x2d, 0x2e, 0x62, 0x5e, 0x95, 0xeb,
- 0x81, 0xb2, 0xf1, 0xc9, 0x72, 0x4e, 0x82, 0x2e, 0xca,
- 0x76, 0xdb, 0x86, 0x18, 0xcf, 0x09, 0xc5, 0x34, 0x35,
- 0x03, 0xa4, 0x36, 0x08, 0x35, 0xb5, 0x90, 0x3b, 0xc6,
- 0x37, 0xe3, 0x87, 0x9f, 0xb0, 0x5e, 0x0e, 0xf3, 0x26,
- 0x85, 0xd5, 0xae, 0xc5, 0x06, 0x7c, 0xd7, 0xcc, 0x96,
- 0xfe, 0x4b, 0x26, 0x70, 0xb6, 0xea, 0xc3, 0x06, 0x6b,
- 0x1f, 0xcf, 0x56, 0x86, 0xb6, 0x85, 0x89, 0xaa, 0xfb,
- 0x7d, 0x62, 0x9b, 0x02, 0xd8, 0xf8, 0x62, 0x5c, 0xa3,
- 0x83, 0x36, 0x24, 0xd4, 0x80, 0x0f, 0xb0, 0x81, 0xb1,
- 0xcf, 0x94, 0xeb,
- },
- },
- },
- },
- // Key 10
- {"ae45ed5601cec6b8cc05f803935c674ddbe0d75c4c09fd7951fc6b0caec313a8df39970c518bffba5ed68f3f0d7f22a4029d413f1ae07e4ebe9e4177ce23e7f5404b569e4ee1bdcf3c1fb03ef113802d4f855eb9b5134b5a7c8085adcae6fa2fa1417ec3763be171b0c62b760ede23c12ad92b980884c641f5a8fac26bdad4a03381a22fe1b754885094c82506d4019a535a286afeb271bb9ba592de18dcf600c2aeeae56e02f7cf79fc14cf3bdc7cd84febbbf950ca90304b2219a7aa063aefa2c3c1980e560cd64afe779585b6107657b957857efde6010988ab7de417fc88d8f384c4e6e72c3f943e0c31c0c4a5cc36f879d8a3ac9d7d59860eaada6b83bb",
- 65537,
- "056b04216fe5f354ac77250a4b6b0c8525a85c59b0bd80c56450a22d5f438e596a333aa875e291dd43f48cb88b9d5fc0d499f9fcd1c397f9afc070cd9e398c8d19e61db7c7410a6b2675dfbf5d345b804d201add502d5ce2dfcb091ce9997bbebe57306f383e4d588103f036f7e85d1934d152a323e4a8db451d6f4a5b1b0f102cc150e02feee2b88dea4ad4c1baccb24d84072d14e1d24a6771f7408ee30564fb86d4393a34bcf0b788501d193303f13a2284b001f0f649eaf79328d4ac5c430ab4414920a9460ed1b7bc40ec653e876d09abc509ae45b525190116a0c26101848298509c1c3bf3a483e7274054e15e97075036e989f60932807b5257751e79",
- []testEncryptOAEPMessage{
- // Example 10.1
- {
- []byte{0x8b, 0xba, 0x6b, 0xf8, 0x2a, 0x6c, 0x0f, 0x86,
- 0xd5, 0xf1, 0x75, 0x6e, 0x97, 0x95, 0x68, 0x70, 0xb0,
- 0x89, 0x53, 0xb0, 0x6b, 0x4e, 0xb2, 0x05, 0xbc, 0x16,
- 0x94, 0xee,
- },
- []byte{0x47, 0xe1, 0xab, 0x71, 0x19, 0xfe, 0xe5, 0x6c,
- 0x95, 0xee, 0x5e, 0xaa, 0xd8, 0x6f, 0x40, 0xd0, 0xaa,
- 0x63, 0xbd, 0x33,
- },
- []byte{0x53, 0xea, 0x5d, 0xc0, 0x8c, 0xd2, 0x60, 0xfb,
- 0x3b, 0x85, 0x85, 0x67, 0x28, 0x7f, 0xa9, 0x15, 0x52,
- 0xc3, 0x0b, 0x2f, 0xeb, 0xfb, 0xa2, 0x13, 0xf0, 0xae,
- 0x87, 0x70, 0x2d, 0x06, 0x8d, 0x19, 0xba, 0xb0, 0x7f,
- 0xe5, 0x74, 0x52, 0x3d, 0xfb, 0x42, 0x13, 0x9d, 0x68,
- 0xc3, 0xc5, 0xaf, 0xee, 0xe0, 0xbf, 0xe4, 0xcb, 0x79,
- 0x69, 0xcb, 0xf3, 0x82, 0xb8, 0x04, 0xd6, 0xe6, 0x13,
- 0x96, 0x14, 0x4e, 0x2d, 0x0e, 0x60, 0x74, 0x1f, 0x89,
- 0x93, 0xc3, 0x01, 0x4b, 0x58, 0xb9, 0xb1, 0x95, 0x7a,
- 0x8b, 0xab, 0xcd, 0x23, 0xaf, 0x85, 0x4f, 0x4c, 0x35,
- 0x6f, 0xb1, 0x66, 0x2a, 0xa7, 0x2b, 0xfc, 0xc7, 0xe5,
- 0x86, 0x55, 0x9d, 0xc4, 0x28, 0x0d, 0x16, 0x0c, 0x12,
- 0x67, 0x85, 0xa7, 0x23, 0xeb, 0xee, 0xbe, 0xff, 0x71,
- 0xf1, 0x15, 0x94, 0x44, 0x0a, 0xae, 0xf8, 0x7d, 0x10,
- 0x79, 0x3a, 0x87, 0x74, 0xa2, 0x39, 0xd4, 0xa0, 0x4c,
- 0x87, 0xfe, 0x14, 0x67, 0xb9, 0xda, 0xf8, 0x52, 0x08,
- 0xec, 0x6c, 0x72, 0x55, 0x79, 0x4a, 0x96, 0xcc, 0x29,
- 0x14, 0x2f, 0x9a, 0x8b, 0xd4, 0x18, 0xe3, 0xc1, 0xfd,
- 0x67, 0x34, 0x4b, 0x0c, 0xd0, 0x82, 0x9d, 0xf3, 0xb2,
- 0xbe, 0xc6, 0x02, 0x53, 0x19, 0x62, 0x93, 0xc6, 0xb3,
- 0x4d, 0x3f, 0x75, 0xd3, 0x2f, 0x21, 0x3d, 0xd4, 0x5c,
- 0x62, 0x73, 0xd5, 0x05, 0xad, 0xf4, 0xcc, 0xed, 0x10,
- 0x57, 0xcb, 0x75, 0x8f, 0xc2, 0x6a, 0xee, 0xfa, 0x44,
- 0x12, 0x55, 0xed, 0x4e, 0x64, 0xc1, 0x99, 0xee, 0x07,
- 0x5e, 0x7f, 0x16, 0x64, 0x61, 0x82, 0xfd, 0xb4, 0x64,
- 0x73, 0x9b, 0x68, 0xab, 0x5d, 0xaf, 0xf0, 0xe6, 0x3e,
- 0x95, 0x52, 0x01, 0x68, 0x24, 0xf0, 0x54, 0xbf, 0x4d,
- 0x3c, 0x8c, 0x90, 0xa9, 0x7b, 0xb6, 0xb6, 0x55, 0x32,
- 0x84, 0xeb, 0x42, 0x9f, 0xcc,
- },
- },
- },
- },
-}
diff --git a/src/pkg/crypto/rsa/testdata/pss-vect.txt.bz2 b/src/pkg/crypto/rsa/testdata/pss-vect.txt.bz2
deleted file mode 100644
index ad3da1ac4..000000000
--- a/src/pkg/crypto/rsa/testdata/pss-vect.txt.bz2
+++ /dev/null
Binary files differ