diff options
Diffstat (limited to 'src/pkg/crypto/x509/x509.go')
-rw-r--r-- | src/pkg/crypto/x509/x509.go | 275 |
1 files changed, 136 insertions, 139 deletions
diff --git a/src/pkg/crypto/x509/x509.go b/src/pkg/crypto/x509/x509.go index 8fda47159..bf39c5dec 100644 --- a/src/pkg/crypto/x509/x509.go +++ b/src/pkg/crypto/x509/x509.go @@ -6,122 +6,73 @@ package x509 import ( - "asn1" - "big" "bytes" "crypto" "crypto/dsa" "crypto/rsa" "crypto/sha1" "crypto/x509/pkix" + "encoding/asn1" "encoding/pem" + "errors" "io" - "os" + "math/big" "time" ) -// pkcs1PrivateKey is a structure which mirrors the PKCS#1 ASN.1 for an RSA private key. -type pkcs1PrivateKey struct { - Version int - N *big.Int - E int - D *big.Int - P *big.Int - Q *big.Int - // We ignore these values, if present, because rsa will calculate them. - Dp *big.Int `asn1:"optional"` - Dq *big.Int `asn1:"optional"` - Qinv *big.Int `asn1:"optional"` - - AdditionalPrimes []pkcs1AdditionalRSAPrime `asn1:"optional"` +// pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo +// in RFC 3280. +type pkixPublicKey struct { + Algo pkix.AlgorithmIdentifier + BitString asn1.BitString } -type pkcs1AdditionalRSAPrime struct { - Prime *big.Int - - // We ignore these values because rsa will calculate them. - Exp *big.Int - Coeff *big.Int -} - -// ParsePKCS1PrivateKey returns an RSA private key from its ASN.1 PKCS#1 DER encoded form. -func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err os.Error) { - var priv pkcs1PrivateKey - rest, err := asn1.Unmarshal(der, &priv) - if len(rest) > 0 { - err = asn1.SyntaxError{"trailing data"} +// ParsePKIXPublicKey parses a DER encoded public key. These values are +// typically found in PEM blocks with "BEGIN PUBLIC KEY". +func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error) { + var pki publicKeyInfo + if _, err = asn1.Unmarshal(derBytes, &pki); err != nil { return } - if err != nil { - return - } - - if priv.Version > 1 { - return nil, os.NewError("x509: unsupported private key version") - } - - if priv.N.Sign() <= 0 || priv.D.Sign() <= 0 || priv.P.Sign() <= 0 || priv.Q.Sign() <= 0 { - return nil, os.NewError("private key contains zero or negative value") - } - - key = new(rsa.PrivateKey) - key.PublicKey = rsa.PublicKey{ - E: priv.E, - N: priv.N, - } - - key.D = priv.D - key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes)) - key.Primes[0] = priv.P - key.Primes[1] = priv.Q - for i, a := range priv.AdditionalPrimes { - if a.Prime.Sign() <= 0 { - return nil, os.NewError("private key contains zero or negative prime") - } - key.Primes[i+2] = a.Prime - // We ignore the other two values because rsa will calculate - // them as needed. + algo := getPublicKeyAlgorithmFromOID(pki.Algorithm.Algorithm) + if algo == UnknownPublicKeyAlgorithm { + return nil, errors.New("ParsePKIXPublicKey: unknown public key algorithm") } - - err = key.Validate() - if err != nil { - return nil, err - } - key.Precompute() - - return + return parsePublicKey(algo, &pki) } -// MarshalPKCS1PrivateKey converts a private key to ASN.1 DER encoded form. -func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte { - key.Precompute() - - version := 0 - if len(key.Primes) > 2 { - version = 1 - } +// MarshalPKIXPublicKey serialises a public key to DER-encoded PKIX format. +func MarshalPKIXPublicKey(pub interface{}) ([]byte, error) { + var pubBytes []byte - priv := pkcs1PrivateKey{ - Version: version, - N: key.N, - E: key.PublicKey.E, - D: key.D, - P: key.Primes[0], - Q: key.Primes[1], - Dp: key.Precomputed.Dp, - Dq: key.Precomputed.Dq, - Qinv: key.Precomputed.Qinv, + switch pub := pub.(type) { + case *rsa.PublicKey: + pubBytes, _ = asn1.Marshal(rsaPublicKey{ + N: pub.N, + E: pub.E, + }) + default: + return nil, errors.New("MarshalPKIXPublicKey: unknown public key type") } - priv.AdditionalPrimes = make([]pkcs1AdditionalRSAPrime, len(key.Precomputed.CRTValues)) - for i, values := range key.Precomputed.CRTValues { - priv.AdditionalPrimes[i].Prime = key.Primes[2+i] - priv.AdditionalPrimes[i].Exp = values.Exp - priv.AdditionalPrimes[i].Coeff = values.Coeff + pkix := pkixPublicKey{ + Algo: pkix.AlgorithmIdentifier{ + Algorithm: []int{1, 2, 840, 113549, 1, 1, 1}, + // This is a NULL parameters value which is technically + // superfluous, but most other code includes it and, by + // doing this, we match their public key hashes. + Parameters: asn1.RawValue{ + Tag: 5, + }, + }, + BitString: asn1.BitString{ + Bytes: pubBytes, + BitLength: 8 * len(pubBytes), + }, } - b, _ := asn1.Marshal(priv) - return b + ret, _ := asn1.Marshal(pkix) + return ret, nil } // These structures reflect the ASN.1 structure of X.509 certificates.: @@ -138,9 +89,9 @@ type tbsCertificate struct { Version int `asn1:"optional,explicit,default:1,tag:0"` SerialNumber *big.Int SignatureAlgorithm pkix.AlgorithmIdentifier - Issuer pkix.RDNSequence + Issuer asn1.RawValue Validity validity - Subject pkix.RDNSequence + Subject asn1.RawValue PublicKey publicKeyInfo UniqueId asn1.BitString `asn1:"optional,tag:1"` SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"` @@ -156,7 +107,7 @@ type dsaSignature struct { } type validity struct { - NotBefore, NotAfter *time.Time + NotBefore, NotAfter time.Time } type publicKeyInfo struct { @@ -339,6 +290,8 @@ type Certificate struct { Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature). RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content. RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo. + RawSubject []byte // DER encoded Subject + RawIssuer []byte // DER encoded Issuer Signature []byte SignatureAlgorithm SignatureAlgorithm @@ -350,7 +303,7 @@ type Certificate struct { SerialNumber *big.Int Issuer pkix.Name Subject pkix.Name - NotBefore, NotAfter *time.Time // Validity bounds. + NotBefore, NotAfter time.Time // Validity bounds. KeyUsage KeyUsage ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages. @@ -378,7 +331,7 @@ type Certificate struct { // that involves algorithms that are not currently implemented. type UnsupportedAlgorithmError struct{} -func (UnsupportedAlgorithmError) String() string { +func (UnsupportedAlgorithmError) Error() string { return "cannot verify signature: algorithm unimplemented" } @@ -387,7 +340,7 @@ func (UnsupportedAlgorithmError) String() string { // certificate signing key. type ConstraintViolationError struct{} -func (ConstraintViolationError) String() string { +func (ConstraintViolationError) Error() string { return "invalid signature: parent certificate cannot sign this kind of certificate" } @@ -397,7 +350,7 @@ func (c *Certificate) Equal(other *Certificate) bool { // CheckSignatureFrom verifies that the signature on c is a valid signature // from parent. -func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err os.Error) { +func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err error) { // RFC 5280, 4.2.1.9: // "If the basic constraints extension is not present in a version 3 // certificate, or the extension is present but the cA boolean is not @@ -423,7 +376,7 @@ func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err os.Error) { // CheckSignature verifies that signature is a valid signature over signed from // c's public key. -func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err os.Error) { +func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err error) { var hashType crypto.Hash switch algo { @@ -445,7 +398,7 @@ func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature } h.Write(signed) - digest := h.Sum() + digest := h.Sum(nil) switch pub := c.PublicKey.(type) { case *rsa.PublicKey: @@ -456,10 +409,10 @@ func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature return err } if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 { - return os.NewError("DSA signature contained zero or negative values") + return errors.New("DSA signature contained zero or negative values") } if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) { - return os.NewError("DSA verification failure") + return errors.New("DSA verification failure") } return } @@ -467,14 +420,14 @@ func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature } // CheckCRLSignature checks that the signature in crl is from c. -func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err os.Error) { +func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err error) { algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm) return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign()) } type UnhandledCriticalExtension struct{} -func (h UnhandledCriticalExtension) String() string { +func (h UnhandledCriticalExtension) Error() string { return "unhandled critical extension" } @@ -483,11 +436,6 @@ type basicConstraints struct { MaxPathLen int `asn1:"optional"` } -type rsaPublicKey struct { - N *big.Int - E int -} - // RFC 5280 4.2.1.4 type policyInformation struct { Policy asn1.ObjectIdentifier @@ -506,7 +454,7 @@ type generalSubtree struct { Max int `asn1:"optional,tag:1"` } -func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, os.Error) { +func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, error) { asn1Data := keyData.PublicKey.RightAlign() switch algo { case RSA: @@ -534,7 +482,7 @@ func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{ return nil, err } if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 { - return nil, os.NewError("zero or negative DSA parameter") + return nil, errors.New("zero or negative DSA parameter") } pub := &dsa.PublicKey{ Parameters: dsa.Parameters{ @@ -551,11 +499,13 @@ func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{ panic("unreachable") } -func parseCertificate(in *certificate) (*Certificate, os.Error) { +func parseCertificate(in *certificate) (*Certificate, error) { out := new(Certificate) out.Raw = in.Raw out.RawTBSCertificate = in.TBSCertificate.Raw out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw + out.RawSubject = in.TBSCertificate.Subject.FullBytes + out.RawIssuer = in.TBSCertificate.Issuer.FullBytes out.Signature = in.SignatureValue.RightAlign() out.SignatureAlgorithm = @@ -563,20 +513,30 @@ func parseCertificate(in *certificate) (*Certificate, os.Error) { out.PublicKeyAlgorithm = getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm) - var err os.Error + var err error out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey) if err != nil { return nil, err } if in.TBSCertificate.SerialNumber.Sign() < 0 { - return nil, os.NewError("negative serial number") + return nil, errors.New("negative serial number") } out.Version = in.TBSCertificate.Version + 1 out.SerialNumber = in.TBSCertificate.SerialNumber - out.Issuer.FillFromRDNSequence(&in.TBSCertificate.Issuer) - out.Subject.FillFromRDNSequence(&in.TBSCertificate.Subject) + + var issuer, subject pkix.RDNSequence + if _, err := asn1.Unmarshal(in.TBSCertificate.Subject.FullBytes, &subject); err != nil { + return nil, err + } + if _, err := asn1.Unmarshal(in.TBSCertificate.Issuer.FullBytes, &issuer); err != nil { + return nil, err + } + + out.Issuer.FillFromRDNSequence(&issuer) + out.Subject.FillFromRDNSequence(&subject) + out.NotBefore = in.TBSCertificate.Validity.NotBefore out.NotAfter = in.TBSCertificate.Validity.NotAfter @@ -777,7 +737,7 @@ func parseCertificate(in *certificate) (*Certificate, os.Error) { } // ParseCertificate parses a single certificate from the given ASN.1 DER data. -func ParseCertificate(asn1Data []byte) (*Certificate, os.Error) { +func ParseCertificate(asn1Data []byte) (*Certificate, error) { var cert certificate rest, err := asn1.Unmarshal(asn1Data, &cert) if err != nil { @@ -792,12 +752,12 @@ func ParseCertificate(asn1Data []byte) (*Certificate, os.Error) { // ParseCertificates parses one or more certificates from the given ASN.1 DER // data. The certificates must be concatenated with no intermediate padding. -func ParseCertificates(asn1Data []byte) ([]*Certificate, os.Error) { +func ParseCertificates(asn1Data []byte) ([]*Certificate, error) { var v []*certificate for len(asn1Data) > 0 { cert := new(certificate) - var err os.Error + var err error asn1Data, err = asn1.Unmarshal(asn1Data, cert) if err != nil { return nil, err @@ -834,7 +794,7 @@ var ( oidExtensionNameConstraints = []int{2, 5, 29, 30} ) -func buildExtensions(template *Certificate) (ret []pkix.Extension, err os.Error) { +func buildExtensions(template *Certificate) (ret []pkix.Extension, err error) { ret = make([]pkix.Extension, 7 /* maximum number of elements. */ ) n := 0 @@ -939,21 +899,41 @@ var ( oidRSA = []int{1, 2, 840, 113549, 1, 1, 1} ) -// CreateSelfSignedCertificate creates a new certificate based on -// a template. The following members of template are used: SerialNumber, -// Subject, NotBefore, NotAfter, KeyUsage, BasicConstraintsValid, IsCA, -// MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical, -// PermittedDNSDomains. +func subjectBytes(cert *Certificate) ([]byte, error) { + if len(cert.RawSubject) > 0 { + return cert.RawSubject, nil + } + + return asn1.Marshal(cert.Subject.ToRDNSequence()) +} + +// CreateCertificate creates a new certificate based on a template. The +// following members of template are used: SerialNumber, Subject, NotBefore, +// NotAfter, KeyUsage, BasicConstraintsValid, IsCA, MaxPathLen, SubjectKeyId, +// DNSNames, PermittedDNSDomainsCritical, PermittedDNSDomains. // // The certificate is signed by parent. If parent is equal to template then the // certificate is self-signed. The parameter pub is the public key of the // signee and priv is the private key of the signer. // // The returned slice is the certificate in DER encoding. -func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.PublicKey, priv *rsa.PrivateKey) (cert []byte, err os.Error) { +// +// The only supported key type is RSA (*rsa.PublicKey for pub, *rsa.PrivateKey +// for priv). +func CreateCertificate(rand io.Reader, template, parent *Certificate, pub interface{}, priv interface{}) (cert []byte, err error) { + rsaPub, ok := pub.(*rsa.PublicKey) + if !ok { + return nil, errors.New("x509: non-RSA public keys not supported") + } + + rsaPriv, ok := priv.(*rsa.PrivateKey) + if !ok { + return nil, errors.New("x509: non-RSA private keys not supported") + } + asn1PublicKey, err := asn1.Marshal(rsaPublicKey{ - N: pub.N, - E: pub.E, + N: rsaPub.N, + E: rsaPub.E, }) if err != nil { return @@ -968,14 +948,24 @@ func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.P return } + asn1Issuer, err := subjectBytes(parent) + if err != nil { + return + } + + asn1Subject, err := subjectBytes(template) + if err != nil { + return + } + encodedPublicKey := asn1.BitString{BitLength: len(asn1PublicKey) * 8, Bytes: asn1PublicKey} c := tbsCertificate{ Version: 2, SerialNumber: template.SerialNumber, SignatureAlgorithm: pkix.AlgorithmIdentifier{Algorithm: oidSHA1WithRSA}, - Issuer: parent.Subject.ToRDNSequence(), + Issuer: asn1.RawValue{FullBytes: asn1Issuer}, Validity: validity{template.NotBefore, template.NotAfter}, - Subject: template.Subject.ToRDNSequence(), + Subject: asn1.RawValue{FullBytes: asn1Subject}, PublicKey: publicKeyInfo{nil, pkix.AlgorithmIdentifier{Algorithm: oidRSA}, encodedPublicKey}, Extensions: extensions, } @@ -989,9 +979,9 @@ func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.P h := sha1.New() h.Write(tbsCertContents) - digest := h.Sum() + digest := h.Sum(nil) - signature, err := rsa.SignPKCS1v15(rand, priv, crypto.SHA1, digest) + signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest) if err != nil { return } @@ -1008,6 +998,7 @@ func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.P // pemCRLPrefix is the magic string that indicates that we have a PEM encoded // CRL. var pemCRLPrefix = []byte("-----BEGIN X509 CRL") + // pemType is the type of a PEM encoded CRL. var pemType = "X509 CRL" @@ -1015,7 +1006,7 @@ var pemType = "X509 CRL" // encoded CRLs will appear where they should be DER encoded, so this function // will transparently handle PEM encoding as long as there isn't any leading // garbage. -func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err os.Error) { +func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err error) { if bytes.HasPrefix(crlBytes, pemCRLPrefix) { block, _ := pem.Decode(crlBytes) if block != nil && block.Type == pemType { @@ -1026,7 +1017,7 @@ func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err os.Error) { } // ParseDERCRL parses a DER encoded CRL from the given bytes. -func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err os.Error) { +func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err error) { certList = new(pkix.CertificateList) _, err = asn1.Unmarshal(derBytes, certList) if err != nil { @@ -1037,7 +1028,13 @@ func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err os.Error) // CreateCRL returns a DER encoded CRL, signed by this Certificate, that // contains the given list of revoked certificates. -func (c *Certificate) CreateCRL(rand io.Reader, priv *rsa.PrivateKey, revokedCerts []pkix.RevokedCertificate, now, expiry *time.Time) (crlBytes []byte, err os.Error) { +// +// The only supported key type is RSA (*rsa.PrivateKey for priv). +func (c *Certificate) CreateCRL(rand io.Reader, priv interface{}, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) { + rsaPriv, ok := priv.(*rsa.PrivateKey) + if !ok { + return nil, errors.New("x509: non-RSA private keys not supported") + } tbsCertList := pkix.TBSCertificateList{ Version: 2, Signature: pkix.AlgorithmIdentifier{ @@ -1056,9 +1053,9 @@ func (c *Certificate) CreateCRL(rand io.Reader, priv *rsa.PrivateKey, revokedCer h := sha1.New() h.Write(tbsCertListContents) - digest := h.Sum() + digest := h.Sum(nil) - signature, err := rsa.SignPKCS1v15(rand, priv, crypto.SHA1, digest) + signature, err := rsa.SignPKCS1v15(rand, rsaPriv, crypto.SHA1, digest) if err != nil { return } |