diff options
Diffstat (limited to 'src/pkg/crypto/x509/x509.go')
-rw-r--r-- | src/pkg/crypto/x509/x509.go | 1073 |
1 files changed, 1073 insertions, 0 deletions
diff --git a/src/pkg/crypto/x509/x509.go b/src/pkg/crypto/x509/x509.go new file mode 100644 index 000000000..8fda47159 --- /dev/null +++ b/src/pkg/crypto/x509/x509.go @@ -0,0 +1,1073 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package x509 parses X.509-encoded keys and certificates. +package x509 + +import ( + "asn1" + "big" + "bytes" + "crypto" + "crypto/dsa" + "crypto/rsa" + "crypto/sha1" + "crypto/x509/pkix" + "encoding/pem" + "io" + "os" + "time" +) + +// pkcs1PrivateKey is a structure which mirrors the PKCS#1 ASN.1 for an RSA private key. +type pkcs1PrivateKey struct { + Version int + N *big.Int + E int + D *big.Int + P *big.Int + Q *big.Int + // We ignore these values, if present, because rsa will calculate them. + Dp *big.Int `asn1:"optional"` + Dq *big.Int `asn1:"optional"` + Qinv *big.Int `asn1:"optional"` + + AdditionalPrimes []pkcs1AdditionalRSAPrime `asn1:"optional"` +} + +type pkcs1AdditionalRSAPrime struct { + Prime *big.Int + + // We ignore these values because rsa will calculate them. + Exp *big.Int + Coeff *big.Int +} + +// ParsePKCS1PrivateKey returns an RSA private key from its ASN.1 PKCS#1 DER encoded form. +func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err os.Error) { + var priv pkcs1PrivateKey + rest, err := asn1.Unmarshal(der, &priv) + if len(rest) > 0 { + err = asn1.SyntaxError{"trailing data"} + return + } + if err != nil { + return + } + + if priv.Version > 1 { + return nil, os.NewError("x509: unsupported private key version") + } + + if priv.N.Sign() <= 0 || priv.D.Sign() <= 0 || priv.P.Sign() <= 0 || priv.Q.Sign() <= 0 { + return nil, os.NewError("private key contains zero or negative value") + } + + key = new(rsa.PrivateKey) + key.PublicKey = rsa.PublicKey{ + E: priv.E, + N: priv.N, + } + + key.D = priv.D + key.Primes = make([]*big.Int, 2+len(priv.AdditionalPrimes)) + key.Primes[0] = priv.P + key.Primes[1] = priv.Q + for i, a := range priv.AdditionalPrimes { + if a.Prime.Sign() <= 0 { + return nil, os.NewError("private key contains zero or negative prime") + } + key.Primes[i+2] = a.Prime + // We ignore the other two values because rsa will calculate + // them as needed. + } + + err = key.Validate() + if err != nil { + return nil, err + } + key.Precompute() + + return +} + +// MarshalPKCS1PrivateKey converts a private key to ASN.1 DER encoded form. +func MarshalPKCS1PrivateKey(key *rsa.PrivateKey) []byte { + key.Precompute() + + version := 0 + if len(key.Primes) > 2 { + version = 1 + } + + priv := pkcs1PrivateKey{ + Version: version, + N: key.N, + E: key.PublicKey.E, + D: key.D, + P: key.Primes[0], + Q: key.Primes[1], + Dp: key.Precomputed.Dp, + Dq: key.Precomputed.Dq, + Qinv: key.Precomputed.Qinv, + } + + priv.AdditionalPrimes = make([]pkcs1AdditionalRSAPrime, len(key.Precomputed.CRTValues)) + for i, values := range key.Precomputed.CRTValues { + priv.AdditionalPrimes[i].Prime = key.Primes[2+i] + priv.AdditionalPrimes[i].Exp = values.Exp + priv.AdditionalPrimes[i].Coeff = values.Coeff + } + + b, _ := asn1.Marshal(priv) + return b +} + +// These structures reflect the ASN.1 structure of X.509 certificates.: + +type certificate struct { + Raw asn1.RawContent + TBSCertificate tbsCertificate + SignatureAlgorithm pkix.AlgorithmIdentifier + SignatureValue asn1.BitString +} + +type tbsCertificate struct { + Raw asn1.RawContent + Version int `asn1:"optional,explicit,default:1,tag:0"` + SerialNumber *big.Int + SignatureAlgorithm pkix.AlgorithmIdentifier + Issuer pkix.RDNSequence + Validity validity + Subject pkix.RDNSequence + PublicKey publicKeyInfo + UniqueId asn1.BitString `asn1:"optional,tag:1"` + SubjectUniqueId asn1.BitString `asn1:"optional,tag:2"` + Extensions []pkix.Extension `asn1:"optional,explicit,tag:3"` +} + +type dsaAlgorithmParameters struct { + P, Q, G *big.Int +} + +type dsaSignature struct { + R, S *big.Int +} + +type validity struct { + NotBefore, NotAfter *time.Time +} + +type publicKeyInfo struct { + Raw asn1.RawContent + Algorithm pkix.AlgorithmIdentifier + PublicKey asn1.BitString +} + +// RFC 5280, 4.2.1.1 +type authKeyId struct { + Id []byte `asn1:"optional,tag:0"` +} + +type SignatureAlgorithm int + +const ( + UnknownSignatureAlgorithm SignatureAlgorithm = iota + MD2WithRSA + MD5WithRSA + SHA1WithRSA + SHA256WithRSA + SHA384WithRSA + SHA512WithRSA + DSAWithSHA1 + DSAWithSHA256 +) + +type PublicKeyAlgorithm int + +const ( + UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota + RSA + DSA +) + +// OIDs for signature algorithms +// +// pkcs-1 OBJECT IDENTIFIER ::= { +// iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 } +// +// +// RFC 3279 2.2.1 RSA Signature Algorithms +// +// md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 } +// +// md5WithRSAEncryption OBJECT IDENTIFER ::= { pkcs-1 4 } +// +// sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 } +// +// dsaWithSha1 OBJECT IDENTIFIER ::= { +// iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 } +// +// +// RFC 4055 5 PKCS #1 Version 1.5 +// +// sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 } +// +// sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 } +// +// sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 } +// +// +// RFC 5758 3.1 DSA Signature Algorithms +// +// dsaWithSha356 OBJECT IDENTIFER ::= { +// joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101) +// algorithms(4) id-dsa-with-sha2(3) 2} +// +var ( + oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2} + oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4} + oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5} + oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11} + oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12} + oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13} + oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3} + oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 4, 3, 2} +) + +func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) SignatureAlgorithm { + switch { + case oid.Equal(oidSignatureMD2WithRSA): + return MD2WithRSA + case oid.Equal(oidSignatureMD5WithRSA): + return MD5WithRSA + case oid.Equal(oidSignatureSHA1WithRSA): + return SHA1WithRSA + case oid.Equal(oidSignatureSHA256WithRSA): + return SHA256WithRSA + case oid.Equal(oidSignatureSHA384WithRSA): + return SHA384WithRSA + case oid.Equal(oidSignatureSHA512WithRSA): + return SHA512WithRSA + case oid.Equal(oidSignatureDSAWithSHA1): + return DSAWithSHA1 + case oid.Equal(oidSignatureDSAWithSHA256): + return DSAWithSHA256 + } + return UnknownSignatureAlgorithm +} + +// RFC 3279, 2.3 Public Key Algorithms +// +// pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) +// rsadsi(113549) pkcs(1) 1 } +// +// rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 } +// +// id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840) +// x9-57(10040) x9cm(4) 1 } +var ( + oidPublicKeyRsa = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1} + oidPublicKeyDsa = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1} +) + +func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm { + switch { + case oid.Equal(oidPublicKeyRsa): + return RSA + case oid.Equal(oidPublicKeyDsa): + return DSA + } + return UnknownPublicKeyAlgorithm +} + +// KeyUsage represents the set of actions that are valid for a given key. It's +// a bitmap of the KeyUsage* constants. +type KeyUsage int + +const ( + KeyUsageDigitalSignature KeyUsage = 1 << iota + KeyUsageContentCommitment + KeyUsageKeyEncipherment + KeyUsageDataEncipherment + KeyUsageKeyAgreement + KeyUsageCertSign + KeyUsageCRLSign + KeyUsageEncipherOnly + KeyUsageDecipherOnly +) + +// RFC 5280, 4.2.1.12 Extended Key Usage +// +// anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 } +// +// id-kp OBJECT IDENTIFIER ::= { id-pkix 3 } +// +// id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } +// id-kp-clientAuth OBJECT IDENTIFIER ::= { id-kp 2 } +// id-kp-codeSigning OBJECT IDENTIFIER ::= { id-kp 3 } +// id-kp-emailProtection OBJECT IDENTIFIER ::= { id-kp 4 } +// id-kp-timeStamping OBJECT IDENTIFIER ::= { id-kp 8 } +// id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } +var ( + oidExtKeyUsageAny = asn1.ObjectIdentifier{2, 5, 29, 37, 0} + oidExtKeyUsageServerAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1} + oidExtKeyUsageClientAuth = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2} + oidExtKeyUsageCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3} + oidExtKeyUsageEmailProtection = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4} + oidExtKeyUsageTimeStamping = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8} + oidExtKeyUsageOCSPSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9} +) + +// ExtKeyUsage represents an extended set of actions that are valid for a given key. +// Each of the ExtKeyUsage* constants define a unique action. +type ExtKeyUsage int + +const ( + ExtKeyUsageAny ExtKeyUsage = iota + ExtKeyUsageServerAuth + ExtKeyUsageClientAuth + ExtKeyUsageCodeSigning + ExtKeyUsageEmailProtection + ExtKeyUsageTimeStamping + ExtKeyUsageOCSPSigning +) + +// A Certificate represents an X.509 certificate. +type Certificate struct { + Raw []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature). + RawTBSCertificate []byte // Certificate part of raw ASN.1 DER content. + RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo. + + Signature []byte + SignatureAlgorithm SignatureAlgorithm + + PublicKeyAlgorithm PublicKeyAlgorithm + PublicKey interface{} + + Version int + SerialNumber *big.Int + Issuer pkix.Name + Subject pkix.Name + NotBefore, NotAfter *time.Time // Validity bounds. + KeyUsage KeyUsage + + ExtKeyUsage []ExtKeyUsage // Sequence of extended key usages. + UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package. + + BasicConstraintsValid bool // if true then the next two fields are valid. + IsCA bool + MaxPathLen int + + SubjectKeyId []byte + AuthorityKeyId []byte + + // Subject Alternate Name values + DNSNames []string + EmailAddresses []string + + // Name constraints + PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical. + PermittedDNSDomains []string + + PolicyIdentifiers []asn1.ObjectIdentifier +} + +// UnsupportedAlgorithmError results from attempting to perform an operation +// that involves algorithms that are not currently implemented. +type UnsupportedAlgorithmError struct{} + +func (UnsupportedAlgorithmError) String() string { + return "cannot verify signature: algorithm unimplemented" +} + +// ConstraintViolationError results when a requested usage is not permitted by +// a certificate. For example: checking a signature when the public key isn't a +// certificate signing key. +type ConstraintViolationError struct{} + +func (ConstraintViolationError) String() string { + return "invalid signature: parent certificate cannot sign this kind of certificate" +} + +func (c *Certificate) Equal(other *Certificate) bool { + return bytes.Equal(c.Raw, other.Raw) +} + +// CheckSignatureFrom verifies that the signature on c is a valid signature +// from parent. +func (c *Certificate) CheckSignatureFrom(parent *Certificate) (err os.Error) { + // RFC 5280, 4.2.1.9: + // "If the basic constraints extension is not present in a version 3 + // certificate, or the extension is present but the cA boolean is not + // asserted, then the certified public key MUST NOT be used to verify + // certificate signatures." + if parent.Version == 3 && !parent.BasicConstraintsValid || + parent.BasicConstraintsValid && !parent.IsCA { + return ConstraintViolationError{} + } + + if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 { + return ConstraintViolationError{} + } + + if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm { + return UnsupportedAlgorithmError{} + } + + // TODO(agl): don't ignore the path length constraint. + + return parent.CheckSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature) +} + +// CheckSignature verifies that signature is a valid signature over signed from +// c's public key. +func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) (err os.Error) { + var hashType crypto.Hash + + switch algo { + case SHA1WithRSA, DSAWithSHA1: + hashType = crypto.SHA1 + case SHA256WithRSA, DSAWithSHA256: + hashType = crypto.SHA256 + case SHA384WithRSA: + hashType = crypto.SHA384 + case SHA512WithRSA: + hashType = crypto.SHA512 + default: + return UnsupportedAlgorithmError{} + } + + h := hashType.New() + if h == nil { + return UnsupportedAlgorithmError{} + } + + h.Write(signed) + digest := h.Sum() + + switch pub := c.PublicKey.(type) { + case *rsa.PublicKey: + return rsa.VerifyPKCS1v15(pub, hashType, digest, signature) + case *dsa.PublicKey: + dsaSig := new(dsaSignature) + if _, err := asn1.Unmarshal(signature, dsaSig); err != nil { + return err + } + if dsaSig.R.Sign() <= 0 || dsaSig.S.Sign() <= 0 { + return os.NewError("DSA signature contained zero or negative values") + } + if !dsa.Verify(pub, digest, dsaSig.R, dsaSig.S) { + return os.NewError("DSA verification failure") + } + return + } + return UnsupportedAlgorithmError{} +} + +// CheckCRLSignature checks that the signature in crl is from c. +func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) (err os.Error) { + algo := getSignatureAlgorithmFromOID(crl.SignatureAlgorithm.Algorithm) + return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign()) +} + +type UnhandledCriticalExtension struct{} + +func (h UnhandledCriticalExtension) String() string { + return "unhandled critical extension" +} + +type basicConstraints struct { + IsCA bool `asn1:"optional"` + MaxPathLen int `asn1:"optional"` +} + +type rsaPublicKey struct { + N *big.Int + E int +} + +// RFC 5280 4.2.1.4 +type policyInformation struct { + Policy asn1.ObjectIdentifier + // policyQualifiers omitted +} + +// RFC 5280, 4.2.1.10 +type nameConstraints struct { + Permitted []generalSubtree `asn1:"optional,tag:0"` + Excluded []generalSubtree `asn1:"optional,tag:1"` +} + +type generalSubtree struct { + Name string `asn1:"tag:2,optional,ia5"` + Min int `asn1:"optional,tag:0"` + Max int `asn1:"optional,tag:1"` +} + +func parsePublicKey(algo PublicKeyAlgorithm, keyData *publicKeyInfo) (interface{}, os.Error) { + asn1Data := keyData.PublicKey.RightAlign() + switch algo { + case RSA: + p := new(rsaPublicKey) + _, err := asn1.Unmarshal(asn1Data, p) + if err != nil { + return nil, err + } + + pub := &rsa.PublicKey{ + E: p.E, + N: p.N, + } + return pub, nil + case DSA: + var p *big.Int + _, err := asn1.Unmarshal(asn1Data, &p) + if err != nil { + return nil, err + } + paramsData := keyData.Algorithm.Parameters.FullBytes + params := new(dsaAlgorithmParameters) + _, err = asn1.Unmarshal(paramsData, params) + if err != nil { + return nil, err + } + if p.Sign() <= 0 || params.P.Sign() <= 0 || params.Q.Sign() <= 0 || params.G.Sign() <= 0 { + return nil, os.NewError("zero or negative DSA parameter") + } + pub := &dsa.PublicKey{ + Parameters: dsa.Parameters{ + P: params.P, + Q: params.Q, + G: params.G, + }, + Y: p, + } + return pub, nil + default: + return nil, nil + } + panic("unreachable") +} + +func parseCertificate(in *certificate) (*Certificate, os.Error) { + out := new(Certificate) + out.Raw = in.Raw + out.RawTBSCertificate = in.TBSCertificate.Raw + out.RawSubjectPublicKeyInfo = in.TBSCertificate.PublicKey.Raw + + out.Signature = in.SignatureValue.RightAlign() + out.SignatureAlgorithm = + getSignatureAlgorithmFromOID(in.TBSCertificate.SignatureAlgorithm.Algorithm) + + out.PublicKeyAlgorithm = + getPublicKeyAlgorithmFromOID(in.TBSCertificate.PublicKey.Algorithm.Algorithm) + var err os.Error + out.PublicKey, err = parsePublicKey(out.PublicKeyAlgorithm, &in.TBSCertificate.PublicKey) + if err != nil { + return nil, err + } + + if in.TBSCertificate.SerialNumber.Sign() < 0 { + return nil, os.NewError("negative serial number") + } + + out.Version = in.TBSCertificate.Version + 1 + out.SerialNumber = in.TBSCertificate.SerialNumber + out.Issuer.FillFromRDNSequence(&in.TBSCertificate.Issuer) + out.Subject.FillFromRDNSequence(&in.TBSCertificate.Subject) + out.NotBefore = in.TBSCertificate.Validity.NotBefore + out.NotAfter = in.TBSCertificate.Validity.NotAfter + + for _, e := range in.TBSCertificate.Extensions { + if len(e.Id) == 4 && e.Id[0] == 2 && e.Id[1] == 5 && e.Id[2] == 29 { + switch e.Id[3] { + case 15: + // RFC 5280, 4.2.1.3 + var usageBits asn1.BitString + _, err := asn1.Unmarshal(e.Value, &usageBits) + + if err == nil { + var usage int + for i := 0; i < 9; i++ { + if usageBits.At(i) != 0 { + usage |= 1 << uint(i) + } + } + out.KeyUsage = KeyUsage(usage) + continue + } + case 19: + // RFC 5280, 4.2.1.9 + var constraints basicConstraints + _, err := asn1.Unmarshal(e.Value, &constraints) + + if err == nil { + out.BasicConstraintsValid = true + out.IsCA = constraints.IsCA + out.MaxPathLen = constraints.MaxPathLen + continue + } + case 17: + // RFC 5280, 4.2.1.6 + + // SubjectAltName ::= GeneralNames + // + // GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName + // + // GeneralName ::= CHOICE { + // otherName [0] OtherName, + // rfc822Name [1] IA5String, + // dNSName [2] IA5String, + // x400Address [3] ORAddress, + // directoryName [4] Name, + // ediPartyName [5] EDIPartyName, + // uniformResourceIdentifier [6] IA5String, + // iPAddress [7] OCTET STRING, + // registeredID [8] OBJECT IDENTIFIER } + var seq asn1.RawValue + _, err := asn1.Unmarshal(e.Value, &seq) + if err != nil { + return nil, err + } + if !seq.IsCompound || seq.Tag != 16 || seq.Class != 0 { + return nil, asn1.StructuralError{"bad SAN sequence"} + } + + parsedName := false + + rest := seq.Bytes + for len(rest) > 0 { + var v asn1.RawValue + rest, err = asn1.Unmarshal(rest, &v) + if err != nil { + return nil, err + } + switch v.Tag { + case 1: + out.EmailAddresses = append(out.EmailAddresses, string(v.Bytes)) + parsedName = true + case 2: + out.DNSNames = append(out.DNSNames, string(v.Bytes)) + parsedName = true + } + } + + if parsedName { + continue + } + // If we didn't parse any of the names then we + // fall through to the critical check below. + + case 30: + // RFC 5280, 4.2.1.10 + + // NameConstraints ::= SEQUENCE { + // permittedSubtrees [0] GeneralSubtrees OPTIONAL, + // excludedSubtrees [1] GeneralSubtrees OPTIONAL } + // + // GeneralSubtrees ::= SEQUENCE SIZE (1..MAX) OF GeneralSubtree + // + // GeneralSubtree ::= SEQUENCE { + // base GeneralName, + // minimum [0] BaseDistance DEFAULT 0, + // maximum [1] BaseDistance OPTIONAL } + // + // BaseDistance ::= INTEGER (0..MAX) + + var constraints nameConstraints + _, err := asn1.Unmarshal(e.Value, &constraints) + if err != nil { + return nil, err + } + + if len(constraints.Excluded) > 0 && e.Critical { + return out, UnhandledCriticalExtension{} + } + + for _, subtree := range constraints.Permitted { + if subtree.Min > 0 || subtree.Max > 0 || len(subtree.Name) == 0 { + if e.Critical { + return out, UnhandledCriticalExtension{} + } + continue + } + out.PermittedDNSDomains = append(out.PermittedDNSDomains, subtree.Name) + } + continue + + case 35: + // RFC 5280, 4.2.1.1 + var a authKeyId + _, err = asn1.Unmarshal(e.Value, &a) + if err != nil { + return nil, err + } + out.AuthorityKeyId = a.Id + continue + + case 37: + // RFC 5280, 4.2.1.12. Extended Key Usage + + // id-ce-extKeyUsage OBJECT IDENTIFIER ::= { id-ce 37 } + // + // ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId + // + // KeyPurposeId ::= OBJECT IDENTIFIER + + var keyUsage []asn1.ObjectIdentifier + _, err = asn1.Unmarshal(e.Value, &keyUsage) + if err != nil { + return nil, err + } + + for _, u := range keyUsage { + switch { + case u.Equal(oidExtKeyUsageAny): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageAny) + case u.Equal(oidExtKeyUsageServerAuth): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageServerAuth) + case u.Equal(oidExtKeyUsageClientAuth): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageClientAuth) + case u.Equal(oidExtKeyUsageCodeSigning): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageCodeSigning) + case u.Equal(oidExtKeyUsageEmailProtection): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageEmailProtection) + case u.Equal(oidExtKeyUsageTimeStamping): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageTimeStamping) + case u.Equal(oidExtKeyUsageOCSPSigning): + out.ExtKeyUsage = append(out.ExtKeyUsage, ExtKeyUsageOCSPSigning) + default: + out.UnknownExtKeyUsage = append(out.UnknownExtKeyUsage, u) + } + } + + continue + + case 14: + // RFC 5280, 4.2.1.2 + var keyid []byte + _, err = asn1.Unmarshal(e.Value, &keyid) + if err != nil { + return nil, err + } + out.SubjectKeyId = keyid + continue + + case 32: + // RFC 5280 4.2.1.4: Certificate Policies + var policies []policyInformation + if _, err = asn1.Unmarshal(e.Value, &policies); err != nil { + return nil, err + } + out.PolicyIdentifiers = make([]asn1.ObjectIdentifier, len(policies)) + for i, policy := range policies { + out.PolicyIdentifiers[i] = policy.Policy + } + } + } + + if e.Critical { + return out, UnhandledCriticalExtension{} + } + } + + return out, nil +} + +// ParseCertificate parses a single certificate from the given ASN.1 DER data. +func ParseCertificate(asn1Data []byte) (*Certificate, os.Error) { + var cert certificate + rest, err := asn1.Unmarshal(asn1Data, &cert) + if err != nil { + return nil, err + } + if len(rest) > 0 { + return nil, asn1.SyntaxError{"trailing data"} + } + + return parseCertificate(&cert) +} + +// ParseCertificates parses one or more certificates from the given ASN.1 DER +// data. The certificates must be concatenated with no intermediate padding. +func ParseCertificates(asn1Data []byte) ([]*Certificate, os.Error) { + var v []*certificate + + for len(asn1Data) > 0 { + cert := new(certificate) + var err os.Error + asn1Data, err = asn1.Unmarshal(asn1Data, cert) + if err != nil { + return nil, err + } + v = append(v, cert) + } + + ret := make([]*Certificate, len(v)) + for i, ci := range v { + cert, err := parseCertificate(ci) + if err != nil { + return nil, err + } + ret[i] = cert + } + + return ret, nil +} + +func reverseBitsInAByte(in byte) byte { + b1 := in>>4 | in<<4 + b2 := b1>>2&0x33 | b1<<2&0xcc + b3 := b2>>1&0x55 | b2<<1&0xaa + return b3 +} + +var ( + oidExtensionSubjectKeyId = []int{2, 5, 29, 14} + oidExtensionKeyUsage = []int{2, 5, 29, 15} + oidExtensionAuthorityKeyId = []int{2, 5, 29, 35} + oidExtensionBasicConstraints = []int{2, 5, 29, 19} + oidExtensionSubjectAltName = []int{2, 5, 29, 17} + oidExtensionCertificatePolicies = []int{2, 5, 29, 32} + oidExtensionNameConstraints = []int{2, 5, 29, 30} +) + +func buildExtensions(template *Certificate) (ret []pkix.Extension, err os.Error) { + ret = make([]pkix.Extension, 7 /* maximum number of elements. */ ) + n := 0 + + if template.KeyUsage != 0 { + ret[n].Id = oidExtensionKeyUsage + ret[n].Critical = true + + var a [2]byte + a[0] = reverseBitsInAByte(byte(template.KeyUsage)) + a[1] = reverseBitsInAByte(byte(template.KeyUsage >> 8)) + + l := 1 + if a[1] != 0 { + l = 2 + } + + ret[n].Value, err = asn1.Marshal(asn1.BitString{Bytes: a[0:l], BitLength: l * 8}) + if err != nil { + return + } + n++ + } + + if template.BasicConstraintsValid { + ret[n].Id = oidExtensionBasicConstraints + ret[n].Value, err = asn1.Marshal(basicConstraints{template.IsCA, template.MaxPathLen}) + ret[n].Critical = true + if err != nil { + return + } + n++ + } + + if len(template.SubjectKeyId) > 0 { + ret[n].Id = oidExtensionSubjectKeyId + ret[n].Value, err = asn1.Marshal(template.SubjectKeyId) + if err != nil { + return + } + n++ + } + + if len(template.AuthorityKeyId) > 0 { + ret[n].Id = oidExtensionAuthorityKeyId + ret[n].Value, err = asn1.Marshal(authKeyId{template.AuthorityKeyId}) + if err != nil { + return + } + n++ + } + + if len(template.DNSNames) > 0 { + ret[n].Id = oidExtensionSubjectAltName + rawValues := make([]asn1.RawValue, len(template.DNSNames)) + for i, name := range template.DNSNames { + rawValues[i] = asn1.RawValue{Tag: 2, Class: 2, Bytes: []byte(name)} + } + ret[n].Value, err = asn1.Marshal(rawValues) + if err != nil { + return + } + n++ + } + + if len(template.PolicyIdentifiers) > 0 { + ret[n].Id = oidExtensionCertificatePolicies + policies := make([]policyInformation, len(template.PolicyIdentifiers)) + for i, policy := range template.PolicyIdentifiers { + policies[i].Policy = policy + } + ret[n].Value, err = asn1.Marshal(policies) + if err != nil { + return + } + n++ + } + + if len(template.PermittedDNSDomains) > 0 { + ret[n].Id = oidExtensionNameConstraints + ret[n].Critical = template.PermittedDNSDomainsCritical + + var out nameConstraints + out.Permitted = make([]generalSubtree, len(template.PermittedDNSDomains)) + for i, permitted := range template.PermittedDNSDomains { + out.Permitted[i] = generalSubtree{Name: permitted} + } + ret[n].Value, err = asn1.Marshal(out) + if err != nil { + return + } + n++ + } + + // Adding another extension here? Remember to update the maximum number + // of elements in the make() at the top of the function. + + return ret[0:n], nil +} + +var ( + oidSHA1WithRSA = []int{1, 2, 840, 113549, 1, 1, 5} + oidRSA = []int{1, 2, 840, 113549, 1, 1, 1} +) + +// CreateSelfSignedCertificate creates a new certificate based on +// a template. The following members of template are used: SerialNumber, +// Subject, NotBefore, NotAfter, KeyUsage, BasicConstraintsValid, IsCA, +// MaxPathLen, SubjectKeyId, DNSNames, PermittedDNSDomainsCritical, +// PermittedDNSDomains. +// +// The certificate is signed by parent. If parent is equal to template then the +// certificate is self-signed. The parameter pub is the public key of the +// signee and priv is the private key of the signer. +// +// The returned slice is the certificate in DER encoding. +func CreateCertificate(rand io.Reader, template, parent *Certificate, pub *rsa.PublicKey, priv *rsa.PrivateKey) (cert []byte, err os.Error) { + asn1PublicKey, err := asn1.Marshal(rsaPublicKey{ + N: pub.N, + E: pub.E, + }) + if err != nil { + return + } + + if len(parent.SubjectKeyId) > 0 { + template.AuthorityKeyId = parent.SubjectKeyId + } + + extensions, err := buildExtensions(template) + if err != nil { + return + } + + encodedPublicKey := asn1.BitString{BitLength: len(asn1PublicKey) * 8, Bytes: asn1PublicKey} + c := tbsCertificate{ + Version: 2, + SerialNumber: template.SerialNumber, + SignatureAlgorithm: pkix.AlgorithmIdentifier{Algorithm: oidSHA1WithRSA}, + Issuer: parent.Subject.ToRDNSequence(), + Validity: validity{template.NotBefore, template.NotAfter}, + Subject: template.Subject.ToRDNSequence(), + PublicKey: publicKeyInfo{nil, pkix.AlgorithmIdentifier{Algorithm: oidRSA}, encodedPublicKey}, + Extensions: extensions, + } + + tbsCertContents, err := asn1.Marshal(c) + if err != nil { + return + } + + c.Raw = tbsCertContents + + h := sha1.New() + h.Write(tbsCertContents) + digest := h.Sum() + + signature, err := rsa.SignPKCS1v15(rand, priv, crypto.SHA1, digest) + if err != nil { + return + } + + cert, err = asn1.Marshal(certificate{ + nil, + c, + pkix.AlgorithmIdentifier{Algorithm: oidSHA1WithRSA}, + asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, + }) + return +} + +// pemCRLPrefix is the magic string that indicates that we have a PEM encoded +// CRL. +var pemCRLPrefix = []byte("-----BEGIN X509 CRL") +// pemType is the type of a PEM encoded CRL. +var pemType = "X509 CRL" + +// ParseCRL parses a CRL from the given bytes. It's often the case that PEM +// encoded CRLs will appear where they should be DER encoded, so this function +// will transparently handle PEM encoding as long as there isn't any leading +// garbage. +func ParseCRL(crlBytes []byte) (certList *pkix.CertificateList, err os.Error) { + if bytes.HasPrefix(crlBytes, pemCRLPrefix) { + block, _ := pem.Decode(crlBytes) + if block != nil && block.Type == pemType { + crlBytes = block.Bytes + } + } + return ParseDERCRL(crlBytes) +} + +// ParseDERCRL parses a DER encoded CRL from the given bytes. +func ParseDERCRL(derBytes []byte) (certList *pkix.CertificateList, err os.Error) { + certList = new(pkix.CertificateList) + _, err = asn1.Unmarshal(derBytes, certList) + if err != nil { + certList = nil + } + return +} + +// CreateCRL returns a DER encoded CRL, signed by this Certificate, that +// contains the given list of revoked certificates. +func (c *Certificate) CreateCRL(rand io.Reader, priv *rsa.PrivateKey, revokedCerts []pkix.RevokedCertificate, now, expiry *time.Time) (crlBytes []byte, err os.Error) { + tbsCertList := pkix.TBSCertificateList{ + Version: 2, + Signature: pkix.AlgorithmIdentifier{ + Algorithm: oidSignatureSHA1WithRSA, + }, + Issuer: c.Subject.ToRDNSequence(), + ThisUpdate: now, + NextUpdate: expiry, + RevokedCertificates: revokedCerts, + } + + tbsCertListContents, err := asn1.Marshal(tbsCertList) + if err != nil { + return + } + + h := sha1.New() + h.Write(tbsCertListContents) + digest := h.Sum() + + signature, err := rsa.SignPKCS1v15(rand, priv, crypto.SHA1, digest) + if err != nil { + return + } + + return asn1.Marshal(pkix.CertificateList{ + TBSCertList: tbsCertList, + SignatureAlgorithm: pkix.AlgorithmIdentifier{ + Algorithm: oidSignatureSHA1WithRSA, + }, + SignatureValue: asn1.BitString{Bytes: signature, BitLength: len(signature) * 8}, + }) +} |