summaryrefslogtreecommitdiff
path: root/src/pkg/encoding/asn1/asn1.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/pkg/encoding/asn1/asn1.go')
-rw-r--r--src/pkg/encoding/asn1/asn1.go908
1 files changed, 0 insertions, 908 deletions
diff --git a/src/pkg/encoding/asn1/asn1.go b/src/pkg/encoding/asn1/asn1.go
deleted file mode 100644
index ec7f91c1b..000000000
--- a/src/pkg/encoding/asn1/asn1.go
+++ /dev/null
@@ -1,908 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
-// as defined in ITU-T Rec X.690.
-//
-// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
-// http://luca.ntop.org/Teaching/Appunti/asn1.html.
-package asn1
-
-// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
-// are different encoding formats for those objects. Here, we'll be dealing
-// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
-// it's fast to parse and, unlike BER, has a unique encoding for every object.
-// When calculating hashes over objects, it's important that the resulting
-// bytes be the same at both ends and DER removes this margin of error.
-//
-// ASN.1 is very complex and this package doesn't attempt to implement
-// everything by any means.
-
-import (
- "fmt"
- "math/big"
- "reflect"
- "strconv"
- "time"
-)
-
-// A StructuralError suggests that the ASN.1 data is valid, but the Go type
-// which is receiving it doesn't match.
-type StructuralError struct {
- Msg string
-}
-
-func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
-
-// A SyntaxError suggests that the ASN.1 data is invalid.
-type SyntaxError struct {
- Msg string
-}
-
-func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
-
-// We start by dealing with each of the primitive types in turn.
-
-// BOOLEAN
-
-func parseBool(bytes []byte) (ret bool, err error) {
- if len(bytes) != 1 {
- err = SyntaxError{"invalid boolean"}
- return
- }
-
- // DER demands that "If the encoding represents the boolean value TRUE,
- // its single contents octet shall have all eight bits set to one."
- // Thus only 0 and 255 are valid encoded values.
- switch bytes[0] {
- case 0:
- ret = false
- case 0xff:
- ret = true
- default:
- err = SyntaxError{"invalid boolean"}
- }
-
- return
-}
-
-// INTEGER
-
-// parseInt64 treats the given bytes as a big-endian, signed integer and
-// returns the result.
-func parseInt64(bytes []byte) (ret int64, err error) {
- if len(bytes) > 8 {
- // We'll overflow an int64 in this case.
- err = StructuralError{"integer too large"}
- return
- }
- for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
- ret <<= 8
- ret |= int64(bytes[bytesRead])
- }
-
- // Shift up and down in order to sign extend the result.
- ret <<= 64 - uint8(len(bytes))*8
- ret >>= 64 - uint8(len(bytes))*8
- return
-}
-
-// parseInt treats the given bytes as a big-endian, signed integer and returns
-// the result.
-func parseInt32(bytes []byte) (int32, error) {
- ret64, err := parseInt64(bytes)
- if err != nil {
- return 0, err
- }
- if ret64 != int64(int32(ret64)) {
- return 0, StructuralError{"integer too large"}
- }
- return int32(ret64), nil
-}
-
-var bigOne = big.NewInt(1)
-
-// parseBigInt treats the given bytes as a big-endian, signed integer and returns
-// the result.
-func parseBigInt(bytes []byte) *big.Int {
- ret := new(big.Int)
- if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
- // This is a negative number.
- notBytes := make([]byte, len(bytes))
- for i := range notBytes {
- notBytes[i] = ^bytes[i]
- }
- ret.SetBytes(notBytes)
- ret.Add(ret, bigOne)
- ret.Neg(ret)
- return ret
- }
- ret.SetBytes(bytes)
- return ret
-}
-
-// BIT STRING
-
-// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
-// bit string is padded up to the nearest byte in memory and the number of
-// valid bits is recorded. Padding bits will be zero.
-type BitString struct {
- Bytes []byte // bits packed into bytes.
- BitLength int // length in bits.
-}
-
-// At returns the bit at the given index. If the index is out of range it
-// returns false.
-func (b BitString) At(i int) int {
- if i < 0 || i >= b.BitLength {
- return 0
- }
- x := i / 8
- y := 7 - uint(i%8)
- return int(b.Bytes[x]>>y) & 1
-}
-
-// RightAlign returns a slice where the padding bits are at the beginning. The
-// slice may share memory with the BitString.
-func (b BitString) RightAlign() []byte {
- shift := uint(8 - (b.BitLength % 8))
- if shift == 8 || len(b.Bytes) == 0 {
- return b.Bytes
- }
-
- a := make([]byte, len(b.Bytes))
- a[0] = b.Bytes[0] >> shift
- for i := 1; i < len(b.Bytes); i++ {
- a[i] = b.Bytes[i-1] << (8 - shift)
- a[i] |= b.Bytes[i] >> shift
- }
-
- return a
-}
-
-// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
-func parseBitString(bytes []byte) (ret BitString, err error) {
- if len(bytes) == 0 {
- err = SyntaxError{"zero length BIT STRING"}
- return
- }
- paddingBits := int(bytes[0])
- if paddingBits > 7 ||
- len(bytes) == 1 && paddingBits > 0 ||
- bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
- err = SyntaxError{"invalid padding bits in BIT STRING"}
- return
- }
- ret.BitLength = (len(bytes)-1)*8 - paddingBits
- ret.Bytes = bytes[1:]
- return
-}
-
-// OBJECT IDENTIFIER
-
-// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
-type ObjectIdentifier []int
-
-// Equal reports whether oi and other represent the same identifier.
-func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
- if len(oi) != len(other) {
- return false
- }
- for i := 0; i < len(oi); i++ {
- if oi[i] != other[i] {
- return false
- }
- }
-
- return true
-}
-
-func (oi ObjectIdentifier) String() string {
- var s string
-
- for i, v := range oi {
- if i > 0 {
- s += "."
- }
- s += strconv.Itoa(v)
- }
-
- return s
-}
-
-// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
-// returns it. An object identifier is a sequence of variable length integers
-// that are assigned in a hierarchy.
-func parseObjectIdentifier(bytes []byte) (s []int, err error) {
- if len(bytes) == 0 {
- err = SyntaxError{"zero length OBJECT IDENTIFIER"}
- return
- }
-
- // In the worst case, we get two elements from the first byte (which is
- // encoded differently) and then every varint is a single byte long.
- s = make([]int, len(bytes)+1)
-
- // The first varint is 40*value1 + value2:
- // According to this packing, value1 can take the values 0, 1 and 2 only.
- // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
- // then there are no restrictions on value2.
- v, offset, err := parseBase128Int(bytes, 0)
- if err != nil {
- return
- }
- if v < 80 {
- s[0] = v / 40
- s[1] = v % 40
- } else {
- s[0] = 2
- s[1] = v - 80
- }
-
- i := 2
- for ; offset < len(bytes); i++ {
- v, offset, err = parseBase128Int(bytes, offset)
- if err != nil {
- return
- }
- s[i] = v
- }
- s = s[0:i]
- return
-}
-
-// ENUMERATED
-
-// An Enumerated is represented as a plain int.
-type Enumerated int
-
-// FLAG
-
-// A Flag accepts any data and is set to true if present.
-type Flag bool
-
-// parseBase128Int parses a base-128 encoded int from the given offset in the
-// given byte slice. It returns the value and the new offset.
-func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
- offset = initOffset
- for shifted := 0; offset < len(bytes); shifted++ {
- if shifted > 4 {
- err = StructuralError{"base 128 integer too large"}
- return
- }
- ret <<= 7
- b := bytes[offset]
- ret |= int(b & 0x7f)
- offset++
- if b&0x80 == 0 {
- return
- }
- }
- err = SyntaxError{"truncated base 128 integer"}
- return
-}
-
-// UTCTime
-
-func parseUTCTime(bytes []byte) (ret time.Time, err error) {
- s := string(bytes)
- ret, err = time.Parse("0601021504Z0700", s)
- if err != nil {
- ret, err = time.Parse("060102150405Z0700", s)
- }
- if err == nil && ret.Year() >= 2050 {
- // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
- ret = ret.AddDate(-100, 0, 0)
- }
-
- return
-}
-
-// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
-// and returns the resulting time.
-func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
- return time.Parse("20060102150405Z0700", string(bytes))
-}
-
-// PrintableString
-
-// parsePrintableString parses a ASN.1 PrintableString from the given byte
-// array and returns it.
-func parsePrintableString(bytes []byte) (ret string, err error) {
- for _, b := range bytes {
- if !isPrintable(b) {
- err = SyntaxError{"PrintableString contains invalid character"}
- return
- }
- }
- ret = string(bytes)
- return
-}
-
-// isPrintable returns true iff the given b is in the ASN.1 PrintableString set.
-func isPrintable(b byte) bool {
- return 'a' <= b && b <= 'z' ||
- 'A' <= b && b <= 'Z' ||
- '0' <= b && b <= '9' ||
- '\'' <= b && b <= ')' ||
- '+' <= b && b <= '/' ||
- b == ' ' ||
- b == ':' ||
- b == '=' ||
- b == '?' ||
- // This is technically not allowed in a PrintableString.
- // However, x509 certificates with wildcard strings don't
- // always use the correct string type so we permit it.
- b == '*'
-}
-
-// IA5String
-
-// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
-// byte slice and returns it.
-func parseIA5String(bytes []byte) (ret string, err error) {
- for _, b := range bytes {
- if b >= 0x80 {
- err = SyntaxError{"IA5String contains invalid character"}
- return
- }
- }
- ret = string(bytes)
- return
-}
-
-// T61String
-
-// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
-// byte slice and returns it.
-func parseT61String(bytes []byte) (ret string, err error) {
- return string(bytes), nil
-}
-
-// UTF8String
-
-// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
-// array and returns it.
-func parseUTF8String(bytes []byte) (ret string, err error) {
- return string(bytes), nil
-}
-
-// A RawValue represents an undecoded ASN.1 object.
-type RawValue struct {
- Class, Tag int
- IsCompound bool
- Bytes []byte
- FullBytes []byte // includes the tag and length
-}
-
-// RawContent is used to signal that the undecoded, DER data needs to be
-// preserved for a struct. To use it, the first field of the struct must have
-// this type. It's an error for any of the other fields to have this type.
-type RawContent []byte
-
-// Tagging
-
-// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
-// into a byte slice. It returns the parsed data and the new offset. SET and
-// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
-// don't distinguish between ordered and unordered objects in this code.
-func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
- offset = initOffset
- b := bytes[offset]
- offset++
- ret.class = int(b >> 6)
- ret.isCompound = b&0x20 == 0x20
- ret.tag = int(b & 0x1f)
-
- // If the bottom five bits are set, then the tag number is actually base 128
- // encoded afterwards
- if ret.tag == 0x1f {
- ret.tag, offset, err = parseBase128Int(bytes, offset)
- if err != nil {
- return
- }
- }
- if offset >= len(bytes) {
- err = SyntaxError{"truncated tag or length"}
- return
- }
- b = bytes[offset]
- offset++
- if b&0x80 == 0 {
- // The length is encoded in the bottom 7 bits.
- ret.length = int(b & 0x7f)
- } else {
- // Bottom 7 bits give the number of length bytes to follow.
- numBytes := int(b & 0x7f)
- if numBytes == 0 {
- err = SyntaxError{"indefinite length found (not DER)"}
- return
- }
- ret.length = 0
- for i := 0; i < numBytes; i++ {
- if offset >= len(bytes) {
- err = SyntaxError{"truncated tag or length"}
- return
- }
- b = bytes[offset]
- offset++
- if ret.length >= 1<<23 {
- // We can't shift ret.length up without
- // overflowing.
- err = StructuralError{"length too large"}
- return
- }
- ret.length <<= 8
- ret.length |= int(b)
- if ret.length == 0 {
- // DER requires that lengths be minimal.
- err = StructuralError{"superfluous leading zeros in length"}
- return
- }
- }
- }
-
- return
-}
-
-// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
-// a number of ASN.1 values from the given byte slice and returns them as a
-// slice of Go values of the given type.
-func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
- expectedTag, compoundType, ok := getUniversalType(elemType)
- if !ok {
- err = StructuralError{"unknown Go type for slice"}
- return
- }
-
- // First we iterate over the input and count the number of elements,
- // checking that the types are correct in each case.
- numElements := 0
- for offset := 0; offset < len(bytes); {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- switch t.tag {
- case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
- // We pretend that various other string types are
- // PRINTABLE STRINGs so that a sequence of them can be
- // parsed into a []string.
- t.tag = tagPrintableString
- case tagGeneralizedTime, tagUTCTime:
- // Likewise, both time types are treated the same.
- t.tag = tagUTCTime
- }
-
- if t.class != classUniversal || t.isCompound != compoundType || t.tag != expectedTag {
- err = StructuralError{"sequence tag mismatch"}
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"truncated sequence"}
- return
- }
- offset += t.length
- numElements++
- }
- ret = reflect.MakeSlice(sliceType, numElements, numElements)
- params := fieldParameters{}
- offset := 0
- for i := 0; i < numElements; i++ {
- offset, err = parseField(ret.Index(i), bytes, offset, params)
- if err != nil {
- return
- }
- }
- return
-}
-
-var (
- bitStringType = reflect.TypeOf(BitString{})
- objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
- enumeratedType = reflect.TypeOf(Enumerated(0))
- flagType = reflect.TypeOf(Flag(false))
- timeType = reflect.TypeOf(time.Time{})
- rawValueType = reflect.TypeOf(RawValue{})
- rawContentsType = reflect.TypeOf(RawContent(nil))
- bigIntType = reflect.TypeOf(new(big.Int))
-)
-
-// invalidLength returns true iff offset + length > sliceLength, or if the
-// addition would overflow.
-func invalidLength(offset, length, sliceLength int) bool {
- return offset+length < offset || offset+length > sliceLength
-}
-
-// parseField is the main parsing function. Given a byte slice and an offset
-// into the array, it will try to parse a suitable ASN.1 value out and store it
-// in the given Value.
-func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
- offset = initOffset
- fieldType := v.Type()
-
- // If we have run out of data, it may be that there are optional elements at the end.
- if offset == len(bytes) {
- if !setDefaultValue(v, params) {
- err = SyntaxError{"sequence truncated"}
- }
- return
- }
-
- // Deal with raw values.
- if fieldType == rawValueType {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
- offset += t.length
- v.Set(reflect.ValueOf(result))
- return
- }
-
- // Deal with the ANY type.
- if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
- var t tagAndLength
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- var result interface{}
- if !t.isCompound && t.class == classUniversal {
- innerBytes := bytes[offset : offset+t.length]
- switch t.tag {
- case tagPrintableString:
- result, err = parsePrintableString(innerBytes)
- case tagIA5String:
- result, err = parseIA5String(innerBytes)
- case tagT61String:
- result, err = parseT61String(innerBytes)
- case tagUTF8String:
- result, err = parseUTF8String(innerBytes)
- case tagInteger:
- result, err = parseInt64(innerBytes)
- case tagBitString:
- result, err = parseBitString(innerBytes)
- case tagOID:
- result, err = parseObjectIdentifier(innerBytes)
- case tagUTCTime:
- result, err = parseUTCTime(innerBytes)
- case tagOctetString:
- result = innerBytes
- default:
- // If we don't know how to handle the type, we just leave Value as nil.
- }
- }
- offset += t.length
- if err != nil {
- return
- }
- if result != nil {
- v.Set(reflect.ValueOf(result))
- }
- return
- }
- universalTag, compoundType, ok1 := getUniversalType(fieldType)
- if !ok1 {
- err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
- return
- }
-
- t, offset, err := parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- if params.explicit {
- expectedClass := classContextSpecific
- if params.application {
- expectedClass = classApplication
- }
- if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
- if t.length > 0 {
- t, offset, err = parseTagAndLength(bytes, offset)
- if err != nil {
- return
- }
- } else {
- if fieldType != flagType {
- err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
- return
- }
- v.SetBool(true)
- return
- }
- } else {
- // The tags didn't match, it might be an optional element.
- ok := setDefaultValue(v, params)
- if ok {
- offset = initOffset
- } else {
- err = StructuralError{"explicitly tagged member didn't match"}
- }
- return
- }
- }
-
- // Special case for strings: all the ASN.1 string types map to the Go
- // type string. getUniversalType returns the tag for PrintableString
- // when it sees a string, so if we see a different string type on the
- // wire, we change the universal type to match.
- if universalTag == tagPrintableString {
- switch t.tag {
- case tagIA5String, tagGeneralString, tagT61String, tagUTF8String:
- universalTag = t.tag
- }
- }
-
- // Special case for time: UTCTime and GeneralizedTime both map to the
- // Go type time.Time.
- if universalTag == tagUTCTime && t.tag == tagGeneralizedTime {
- universalTag = tagGeneralizedTime
- }
-
- if params.set {
- universalTag = tagSet
- }
-
- expectedClass := classUniversal
- expectedTag := universalTag
-
- if !params.explicit && params.tag != nil {
- expectedClass = classContextSpecific
- expectedTag = *params.tag
- }
-
- if !params.explicit && params.application && params.tag != nil {
- expectedClass = classApplication
- expectedTag = *params.tag
- }
-
- // We have unwrapped any explicit tagging at this point.
- if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
- // Tags don't match. Again, it could be an optional element.
- ok := setDefaultValue(v, params)
- if ok {
- offset = initOffset
- } else {
- err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
- }
- return
- }
- if invalidLength(offset, t.length, len(bytes)) {
- err = SyntaxError{"data truncated"}
- return
- }
- innerBytes := bytes[offset : offset+t.length]
- offset += t.length
-
- // We deal with the structures defined in this package first.
- switch fieldType {
- case objectIdentifierType:
- newSlice, err1 := parseObjectIdentifier(innerBytes)
- v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
- if err1 == nil {
- reflect.Copy(v, reflect.ValueOf(newSlice))
- }
- err = err1
- return
- case bitStringType:
- bs, err1 := parseBitString(innerBytes)
- if err1 == nil {
- v.Set(reflect.ValueOf(bs))
- }
- err = err1
- return
- case timeType:
- var time time.Time
- var err1 error
- if universalTag == tagUTCTime {
- time, err1 = parseUTCTime(innerBytes)
- } else {
- time, err1 = parseGeneralizedTime(innerBytes)
- }
- if err1 == nil {
- v.Set(reflect.ValueOf(time))
- }
- err = err1
- return
- case enumeratedType:
- parsedInt, err1 := parseInt32(innerBytes)
- if err1 == nil {
- v.SetInt(int64(parsedInt))
- }
- err = err1
- return
- case flagType:
- v.SetBool(true)
- return
- case bigIntType:
- parsedInt := parseBigInt(innerBytes)
- v.Set(reflect.ValueOf(parsedInt))
- return
- }
- switch val := v; val.Kind() {
- case reflect.Bool:
- parsedBool, err1 := parseBool(innerBytes)
- if err1 == nil {
- val.SetBool(parsedBool)
- }
- err = err1
- return
- case reflect.Int, reflect.Int32, reflect.Int64:
- if val.Type().Size() == 4 {
- parsedInt, err1 := parseInt32(innerBytes)
- if err1 == nil {
- val.SetInt(int64(parsedInt))
- }
- err = err1
- } else {
- parsedInt, err1 := parseInt64(innerBytes)
- if err1 == nil {
- val.SetInt(parsedInt)
- }
- err = err1
- }
- return
- // TODO(dfc) Add support for the remaining integer types
- case reflect.Struct:
- structType := fieldType
-
- if structType.NumField() > 0 &&
- structType.Field(0).Type == rawContentsType {
- bytes := bytes[initOffset:offset]
- val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
- }
-
- innerOffset := 0
- for i := 0; i < structType.NumField(); i++ {
- field := structType.Field(i)
- if i == 0 && field.Type == rawContentsType {
- continue
- }
- innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
- if err != nil {
- return
- }
- }
- // We allow extra bytes at the end of the SEQUENCE because
- // adding elements to the end has been used in X.509 as the
- // version numbers have increased.
- return
- case reflect.Slice:
- sliceType := fieldType
- if sliceType.Elem().Kind() == reflect.Uint8 {
- val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
- reflect.Copy(val, reflect.ValueOf(innerBytes))
- return
- }
- newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
- if err1 == nil {
- val.Set(newSlice)
- }
- err = err1
- return
- case reflect.String:
- var v string
- switch universalTag {
- case tagPrintableString:
- v, err = parsePrintableString(innerBytes)
- case tagIA5String:
- v, err = parseIA5String(innerBytes)
- case tagT61String:
- v, err = parseT61String(innerBytes)
- case tagUTF8String:
- v, err = parseUTF8String(innerBytes)
- case tagGeneralString:
- // GeneralString is specified in ISO-2022/ECMA-35,
- // A brief review suggests that it includes structures
- // that allow the encoding to change midstring and
- // such. We give up and pass it as an 8-bit string.
- v, err = parseT61String(innerBytes)
- default:
- err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
- }
- if err == nil {
- val.SetString(v)
- }
- return
- }
- err = StructuralError{"unsupported: " + v.Type().String()}
- return
-}
-
-// setDefaultValue is used to install a default value, from a tag string, into
-// a Value. It is successful is the field was optional, even if a default value
-// wasn't provided or it failed to install it into the Value.
-func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
- if !params.optional {
- return
- }
- ok = true
- if params.defaultValue == nil {
- return
- }
- switch val := v; val.Kind() {
- case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
- val.SetInt(*params.defaultValue)
- }
- return
-}
-
-// Unmarshal parses the DER-encoded ASN.1 data structure b
-// and uses the reflect package to fill in an arbitrary value pointed at by val.
-// Because Unmarshal uses the reflect package, the structs
-// being written to must use upper case field names.
-//
-// An ASN.1 INTEGER can be written to an int, int32, int64,
-// or *big.Int (from the math/big package).
-// If the encoded value does not fit in the Go type,
-// Unmarshal returns a parse error.
-//
-// An ASN.1 BIT STRING can be written to a BitString.
-//
-// An ASN.1 OCTET STRING can be written to a []byte.
-//
-// An ASN.1 OBJECT IDENTIFIER can be written to an
-// ObjectIdentifier.
-//
-// An ASN.1 ENUMERATED can be written to an Enumerated.
-//
-// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
-//
-// An ASN.1 PrintableString or IA5String can be written to a string.
-//
-// Any of the above ASN.1 values can be written to an interface{}.
-// The value stored in the interface has the corresponding Go type.
-// For integers, that type is int64.
-//
-// An ASN.1 SEQUENCE OF x or SET OF x can be written
-// to a slice if an x can be written to the slice's element type.
-//
-// An ASN.1 SEQUENCE or SET can be written to a struct
-// if each of the elements in the sequence can be
-// written to the corresponding element in the struct.
-//
-// The following tags on struct fields have special meaning to Unmarshal:
-//
-// application specifies that a APPLICATION tag is used
-// default:x sets the default value for optional integer fields
-// explicit specifies that an additional, explicit tag wraps the implicit one
-// optional marks the field as ASN.1 OPTIONAL
-// set causes a SET, rather than a SEQUENCE type to be expected
-// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
-//
-// If the type of the first field of a structure is RawContent then the raw
-// ASN1 contents of the struct will be stored in it.
-//
-// If the type name of a slice element ends with "SET" then it's treated as if
-// the "set" tag was set on it. This can be used with nested slices where a
-// struct tag cannot be given.
-//
-// Other ASN.1 types are not supported; if it encounters them,
-// Unmarshal returns a parse error.
-func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
- return UnmarshalWithParams(b, val, "")
-}
-
-// UnmarshalWithParams allows field parameters to be specified for the
-// top-level element. The form of the params is the same as the field tags.
-func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
- v := reflect.ValueOf(val).Elem()
- offset, err := parseField(v, b, 0, parseFieldParameters(params))
- if err != nil {
- return nil, err
- }
- return b[offset:], nil
-}