diff options
Diffstat (limited to 'src/pkg/encoding/base32/base32.go')
-rw-r--r-- | src/pkg/encoding/base32/base32.go | 428 |
1 files changed, 0 insertions, 428 deletions
diff --git a/src/pkg/encoding/base32/base32.go b/src/pkg/encoding/base32/base32.go deleted file mode 100644 index d770de391..000000000 --- a/src/pkg/encoding/base32/base32.go +++ /dev/null @@ -1,428 +0,0 @@ -// Copyright 2011 The Go Authors. All rights reserved. -// Use of this source code is governed by a BSD-style -// license that can be found in the LICENSE file. - -// Package base32 implements base32 encoding as specified by RFC 4648. -package base32 - -import ( - "bytes" - "io" - "strconv" - "strings" -) - -/* - * Encodings - */ - -// An Encoding is a radix 32 encoding/decoding scheme, defined by a -// 32-character alphabet. The most common is the "base32" encoding -// introduced for SASL GSSAPI and standardized in RFC 4648. -// The alternate "base32hex" encoding is used in DNSSEC. -type Encoding struct { - encode string - decodeMap [256]byte -} - -const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" -const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" - -// NewEncoding returns a new Encoding defined by the given alphabet, -// which must be a 32-byte string. -func NewEncoding(encoder string) *Encoding { - e := new(Encoding) - e.encode = encoder - for i := 0; i < len(e.decodeMap); i++ { - e.decodeMap[i] = 0xFF - } - for i := 0; i < len(encoder); i++ { - e.decodeMap[encoder[i]] = byte(i) - } - return e -} - -// StdEncoding is the standard base32 encoding, as defined in -// RFC 4648. -var StdEncoding = NewEncoding(encodeStd) - -// HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. -// It is typically used in DNS. -var HexEncoding = NewEncoding(encodeHex) - -var removeNewlinesMapper = func(r rune) rune { - if r == '\r' || r == '\n' { - return -1 - } - return r -} - -/* - * Encoder - */ - -// Encode encodes src using the encoding enc, writing -// EncodedLen(len(src)) bytes to dst. -// -// The encoding pads the output to a multiple of 8 bytes, -// so Encode is not appropriate for use on individual blocks -// of a large data stream. Use NewEncoder() instead. -func (enc *Encoding) Encode(dst, src []byte) { - if len(src) == 0 { - return - } - - for len(src) > 0 { - dst[0] = 0 - dst[1] = 0 - dst[2] = 0 - dst[3] = 0 - dst[4] = 0 - dst[5] = 0 - dst[6] = 0 - dst[7] = 0 - - // Unpack 8x 5-bit source blocks into a 5 byte - // destination quantum - switch len(src) { - default: - dst[7] |= src[4] & 0x1F - dst[6] |= src[4] >> 5 - fallthrough - case 4: - dst[6] |= (src[3] << 3) & 0x1F - dst[5] |= (src[3] >> 2) & 0x1F - dst[4] |= src[3] >> 7 - fallthrough - case 3: - dst[4] |= (src[2] << 1) & 0x1F - dst[3] |= (src[2] >> 4) & 0x1F - fallthrough - case 2: - dst[3] |= (src[1] << 4) & 0x1F - dst[2] |= (src[1] >> 1) & 0x1F - dst[1] |= (src[1] >> 6) & 0x1F - fallthrough - case 1: - dst[1] |= (src[0] << 2) & 0x1F - dst[0] |= src[0] >> 3 - } - - // Encode 5-bit blocks using the base32 alphabet - for j := 0; j < 8; j++ { - dst[j] = enc.encode[dst[j]] - } - - // Pad the final quantum - if len(src) < 5 { - dst[7] = '=' - if len(src) < 4 { - dst[6] = '=' - dst[5] = '=' - if len(src) < 3 { - dst[4] = '=' - if len(src) < 2 { - dst[3] = '=' - dst[2] = '=' - } - } - } - break - } - src = src[5:] - dst = dst[8:] - } -} - -// EncodeToString returns the base32 encoding of src. -func (enc *Encoding) EncodeToString(src []byte) string { - buf := make([]byte, enc.EncodedLen(len(src))) - enc.Encode(buf, src) - return string(buf) -} - -type encoder struct { - err error - enc *Encoding - w io.Writer - buf [5]byte // buffered data waiting to be encoded - nbuf int // number of bytes in buf - out [1024]byte // output buffer -} - -func (e *encoder) Write(p []byte) (n int, err error) { - if e.err != nil { - return 0, e.err - } - - // Leading fringe. - if e.nbuf > 0 { - var i int - for i = 0; i < len(p) && e.nbuf < 5; i++ { - e.buf[e.nbuf] = p[i] - e.nbuf++ - } - n += i - p = p[i:] - if e.nbuf < 5 { - return - } - e.enc.Encode(e.out[0:], e.buf[0:]) - if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { - return n, e.err - } - e.nbuf = 0 - } - - // Large interior chunks. - for len(p) >= 5 { - nn := len(e.out) / 8 * 5 - if nn > len(p) { - nn = len(p) - nn -= nn % 5 - } - e.enc.Encode(e.out[0:], p[0:nn]) - if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { - return n, e.err - } - n += nn - p = p[nn:] - } - - // Trailing fringe. - for i := 0; i < len(p); i++ { - e.buf[i] = p[i] - } - e.nbuf = len(p) - n += len(p) - return -} - -// Close flushes any pending output from the encoder. -// It is an error to call Write after calling Close. -func (e *encoder) Close() error { - // If there's anything left in the buffer, flush it out - if e.err == nil && e.nbuf > 0 { - e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) - e.nbuf = 0 - _, e.err = e.w.Write(e.out[0:8]) - } - return e.err -} - -// NewEncoder returns a new base32 stream encoder. Data written to -// the returned writer will be encoded using enc and then written to w. -// Base32 encodings operate in 5-byte blocks; when finished -// writing, the caller must Close the returned encoder to flush any -// partially written blocks. -func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { - return &encoder{enc: enc, w: w} -} - -// EncodedLen returns the length in bytes of the base32 encoding -// of an input buffer of length n. -func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 } - -/* - * Decoder - */ - -type CorruptInputError int64 - -func (e CorruptInputError) Error() string { - return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) -} - -// decode is like Decode but returns an additional 'end' value, which -// indicates if end-of-message padding was encountered and thus any -// additional data is an error. This method assumes that src has been -// stripped of all supported whitespace ('\r' and '\n'). -func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { - olen := len(src) - for len(src) > 0 && !end { - // Decode quantum using the base32 alphabet - var dbuf [8]byte - dlen := 8 - - for j := 0; j < 8; { - if len(src) == 0 { - return n, false, CorruptInputError(olen - len(src) - j) - } - in := src[0] - src = src[1:] - if in == '=' && j >= 2 && len(src) < 8 { - // We've reached the end and there's padding - if len(src)+j < 8-1 { - // not enough padding - return n, false, CorruptInputError(olen) - } - for k := 0; k < 8-1-j; k++ { - if len(src) > k && src[k] != '=' { - // incorrect padding - return n, false, CorruptInputError(olen - len(src) + k - 1) - } - } - dlen, end = j, true - // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not - // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing - // the five valid padding lengths, and Section 9 "Illustrations and - // Examples" for an illustration for how the 1st, 3rd and 6th base32 - // src bytes do not yield enough information to decode a dst byte. - if dlen == 1 || dlen == 3 || dlen == 6 { - return n, false, CorruptInputError(olen - len(src) - 1) - } - break - } - dbuf[j] = enc.decodeMap[in] - if dbuf[j] == 0xFF { - return n, false, CorruptInputError(olen - len(src) - 1) - } - j++ - } - - // Pack 8x 5-bit source blocks into 5 byte destination - // quantum - switch dlen { - case 8: - dst[4] = dbuf[6]<<5 | dbuf[7] - fallthrough - case 7: - dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 - fallthrough - case 5: - dst[2] = dbuf[3]<<4 | dbuf[4]>>1 - fallthrough - case 4: - dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 - fallthrough - case 2: - dst[0] = dbuf[0]<<3 | dbuf[1]>>2 - } - dst = dst[5:] - switch dlen { - case 2: - n += 1 - case 4: - n += 2 - case 5: - n += 3 - case 7: - n += 4 - case 8: - n += 5 - } - } - return n, end, nil -} - -// Decode decodes src using the encoding enc. It writes at most -// DecodedLen(len(src)) bytes to dst and returns the number of bytes -// written. If src contains invalid base32 data, it will return the -// number of bytes successfully written and CorruptInputError. -// New line characters (\r and \n) are ignored. -func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { - src = bytes.Map(removeNewlinesMapper, src) - n, _, err = enc.decode(dst, src) - return -} - -// DecodeString returns the bytes represented by the base32 string s. -func (enc *Encoding) DecodeString(s string) ([]byte, error) { - s = strings.Map(removeNewlinesMapper, s) - dbuf := make([]byte, enc.DecodedLen(len(s))) - n, err := enc.Decode(dbuf, []byte(s)) - return dbuf[:n], err -} - -type decoder struct { - err error - enc *Encoding - r io.Reader - end bool // saw end of message - buf [1024]byte // leftover input - nbuf int - out []byte // leftover decoded output - outbuf [1024 / 8 * 5]byte -} - -func (d *decoder) Read(p []byte) (n int, err error) { - if d.err != nil { - return 0, d.err - } - - // Use leftover decoded output from last read. - if len(d.out) > 0 { - n = copy(p, d.out) - d.out = d.out[n:] - return n, nil - } - - // Read a chunk. - nn := len(p) / 5 * 8 - if nn < 8 { - nn = 8 - } - if nn > len(d.buf) { - nn = len(d.buf) - } - nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf) - d.nbuf += nn - if d.nbuf < 8 { - return 0, d.err - } - - // Decode chunk into p, or d.out and then p if p is too small. - nr := d.nbuf / 8 * 8 - nw := d.nbuf / 8 * 5 - if nw > len(p) { - nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) - d.out = d.outbuf[0:nw] - n = copy(p, d.out) - d.out = d.out[n:] - } else { - n, d.end, d.err = d.enc.decode(p, d.buf[0:nr]) - } - d.nbuf -= nr - for i := 0; i < d.nbuf; i++ { - d.buf[i] = d.buf[i+nr] - } - - if d.err == nil { - d.err = err - } - return n, d.err -} - -type newlineFilteringReader struct { - wrapped io.Reader -} - -func (r *newlineFilteringReader) Read(p []byte) (int, error) { - n, err := r.wrapped.Read(p) - for n > 0 { - offset := 0 - for i, b := range p[0:n] { - if b != '\r' && b != '\n' { - if i != offset { - p[offset] = b - } - offset++ - } - } - if offset > 0 { - return offset, err - } - // Previous buffer entirely whitespace, read again - n, err = r.wrapped.Read(p) - } - return n, err -} - -// NewDecoder constructs a new base32 stream decoder. -func NewDecoder(enc *Encoding, r io.Reader) io.Reader { - return &decoder{enc: enc, r: &newlineFilteringReader{r}} -} - -// DecodedLen returns the maximum length in bytes of the decoded data -// corresponding to n bytes of base32-encoded data. -func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 } |